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ABSTRACT Multi-modality (or multi-channel) imaging is becoming increasingly important and more
widely available, e.g. hyperspectral imaging in remote sensing, spectral CT in material sciences as well
as multi-contrast MRI and PET-MR in medicine. Research in the last decades resulted in a plethora of
mathematical methods to combine data from several modalities. State-of-the-art methods, often formulated
as variational regularization, have shown to significantly improve image reconstruction both quantitatively
and qualitatively. Almost all of these models rely on the assumption that the modalities are perfectly
registered, which is not the case in most real world applications. We propose a variational framework
which jointly performs reconstruction and registration, thereby overcoming this hurdle. Our approach is
the first to achieve this for different modalities and outranks established approaches in terms of accuracy
of both reconstruction and registration. Numerical results on simulated and real data show the potential of
the proposed strategy for various applications in multi-contrast MRI, PET-MR, and hyperspectral imaging:
typical misalignments between modalities such as rotations, translations, zooms can be effectively corrected
during the reconstruction process. Therefore the proposed framework allows the robust exploitation of shared
information across multiple modalities under real conditions.

INDEX TERMS Image fusion, image reconstruction, image registration, multi-modality imaging, noncon-
vex and nonsmooth optimization, variational regularization.

I. INTRODUCTION
The aim of this paper is to find an approximate solution to
an ill-posed inverse problem of the form Au = f , within
the framework of structural regularization. Here A denotes
the forward operator and f is measured data which is typi-
cally corrupted by noise. Examples include magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
computed tomography (CT), image denoising, deblurring, or
super-resolution, or possibly a combination of these tasks.
A widely used approach of obtaining approximate solutions
of inverse problems is variational regularization where prior
knowledge, like for instance sparsity of the solution or its
gradient, is enforced through a regularization functional,
see [1]–[3] and references therein.
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In multi-modality imaging one is often in possession of a
specific piece of prior knowledge, namely a side information
v which is known to have some ‘‘common structure’’ with
the true solution u of the inverse problem [4]. The literature
on this topic is rich with some works as early as the 1990’s so
we only list a couple of key papers here. For instance, v could
be a high-resolution photograph which assists the recon-
struction of low-resolution hyperspectral images [5]–[9] or
an anatomical (MRI or CT) image for the reconstruction
of PET images [10]–[17], see Figure 1. This strategy has
also been used for functional MRI (fMRI) [18], spectral CT
[19], electrical impedance tomography (EIT) [20] and multi-
contrast MRI [21]–[26].

While these approaches can greatly improve the image
reconstruction, they all assume that the target solution u
and the side information v are perfectly aligned. If they are
badly aligned, most of these methods yield unsatisfactory
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FIGURE 1. In many applications two images of different contrast and
resolution are acquired. Images courtesy of D. Coomes, P. Markiewicz and
J. Schott.

FIGURE 2. While reconstruction with structural side information (center)
can yield very good reconstructions even for noisy data (left), the
reconstruction is completely distorted when the side information is
misaligned (right).

reconstructions, see Figure 2 for an illustration. In real-world
applications such misalignment typically cannot be avoided
since frequently the acquisitions of v and f happen at different
times and through different modalities, see e.g. [27].

To mitigate this problem, we consider the following joint
reconstruction and registration model

min
u,φ

D(A(u ◦ φ); f )+R(u; v)+ S(φ). (1)

This model seeks to reconstruct an image u together with a
deformation field φ, such that u has common structure with
the side information v (enforced through the regularization
termR(u; v)) and the deformed image u◦φ explains the data
f well (enforced through the data fidelity termD(A(u◦φ); f )).
In addition, functional S can be chosen to suitably regular-
ize φ. Note that the minimization can be restricted to subsets
of admissible images or deformation fields. In particular, one
can use parametric deformations in order to only allow for
rigid, affine, diffeomorphic, and other deformations.

The main advantage of our model over the ones discussed
in the next section is its jointness which allows for more
accurate estimations of the misalignment and leads to better
image quality.

A. RELATED WORK
A common strategy in the literature is to perform a three-step
strategy: first reconstruct u without the side information v,
then to register u and v and finally to reconstruct again using
a registered side information (cf. (22) below). This has been
considered for PET-MR [28]. The registration of different
modalities is often achieved through maximizing the mutual
information [29], [30]. A slightly more advanced strat-
egy is to alternate between reconstruction and registration.
For instance, this strategy was used for PET-CT [16], [17],

super-resolution MRI with CT [31] and multi-contrast MRI
[32]. However, it is not clear if this alternating procedure
converges to a limiting reconstruction / registration and if so
how the limit can be interpreted.

Related to our proposed approach is blind deconvolution
[9], [33] which can correct for translations between side
information and measured data. However, it cannot correct
for more complicated transformations.

In [34] the authors propose the fusion of hyperspectral
image data with a misaligned RGB image using a joint objec-
tive functional similar to (1) and optimize it using PALM [35].
In contrast to our work, they assume that both modalities are
connected via a system of linear equations which is too much
of an assumption for general modalities.

Similarly, in [36] a variational model for the fusion of mis-
alignedmultispectral and panchromatic images was proposed
and solved with an alternating minimization approach.

In [37], [38] the related problem of simultaneously recon-
structing an image while registering it to a template was
studied.Models to jointly reconstruct and estimate themotion
between a sequence of images observed though indirect
measurements were proposed in [39], [40]. However, these
methods can only deal with data from a single modality.
Registering the reconstruction to a template of a different
modality is not meaningful, hence we enforce registration
indirectly through the regularization functionalR(u; v).

There are only a few neural network based approaches
in the literature for reconstruction with structural priors. We
would like to refer to [41], [42] for pansharpening algorithms
using deep neural nets. However, they do not consider mis-
alignments between the panchromatic image and the multi-/
hyperspectral data.

II. MATHEMATICAL MODEL
A. NOTATION
In this section we thoroughly define all quantities which are
involved in model (1) above. The optimization takes place
over images u ∈ U and deformation fields φ ∈ V. We assume
that an image u ∈ U has its pixels located at some fixed
positions xi in Rd for i = 1, . . . , n, where d ∈ N denotes
the image dimension (typically d ∈ {2, 3}), which allows
us to identify U ∼= R

n where ui := u(xi). Furthermore, this
lets us identify a deformation field φ ∈ V, which we denote
as mapping φ : Rd → R

d , x 7→ φ(x), with an array in
R
n×d by letting the i-th row be given by φi := φ(xi) ∈ Rd

for i = 1, . . . , n. For u ∈ U and φ ∈ V we define their
composition as

u ◦ φ := J (u;φ), (2)

where J : U × V → U denotes an interpolation opera-
tor. Mathematically speaking, being an interpolation operator
requires two properties: firstly, it shall hold J (u; id) = u for
all u ∈ U where id ∈ V denotes the identity deformation
field id(x) = x. Secondly, for fixed φ ∈ V the map u 7→
J (u;φ) shall be linear. In contrast, for fixed u ∈ U the
map φ 7→ J (u;φ) is nonlinear, in general. However, we
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assume that J is continuously differentiable in its second
argument, which is the case for biquadratic (-cubic, -quartic,
etc.) spline interpolation, for instance. Note that linear inter-
polation is not differentiable and is hence not considered here.
The differentiability assumption is not only of mathematical
relevance but is also important from an algorithmic point of
view (cf. [43]) since it assures that optimization algorithms
based on derivatives are well-defined.

The forward operator in (1) is a linear map A : U → R
m

and f ∈ R
m is the measured data. In some applications,

e.g. MRI, one needs a complex-valued data space. This can
be incorporated in our setting by identifying the complex
numbers with R2. For defining the regularization functional
R in (1) we will also need the notion of a gradient ∇u ∈ V of
an image u ∈ U. To this end we use forward finite differences,
as detailed for instance [9]. Throughout the paper, we let ‖x‖
denote the standard Euclidean norm of a vector x.

B. DATA FIDELITIES
The choice of the data fidelity D in (1) typically depends on
the statistical noise modelling of the data acquisition, cf. [1]
and references therein. For Gaussian noise—which models
the noise in MRI or hyperspectral imaging, for instance—one
uses the squared Euclidean norm

D(u; f ) =
1
2
‖u− f ‖2 . (3)

For Poisson distributed noise—which occurs during PET
measurements, for instance—one utilizes the
Kullback–Leibler distance

D(u; f ) =
∫
�

u− f + f log
(
f
u

)
dx. (4)

There are also relevant non-differentiable fidelities, as for
instance, the 1-norm D(u; f ) = ‖u− f ‖1 which is used
for the removal of impulse noise. However, they do not fit
into our optimization framework (cf. Section III-A) which
requires a differentiable fidelity term.

C. STRUCTURE-PROMOTING REGULARIZATION
The main challenge of our model is that it combines data
from different modalities. In particular, the image u, observed
through the data f , and the available side information v
typically have completely different contrasts. This makes
the methods [37]–[40] inapplicable. We only assume struc-
tural similarities on u and v. While there are also other
approaches [12], we model this similarity in terms of shared
image edges. Mathematically, this means that u and v ought
to have parallel gradients, which can be expressed as

∇ui −
∇vi∇vTi
‖∇vi‖2

∇ui = 0 (5)

for all i = 1, . . . , n. Since gradients are orthogonal to level
sets, this condition is also referred to as parallel level sets,
see [4], [44], [45]. Note that the left hand side in (5) vanishes
whenever ∇u and ∇v are collinear and is equal to ∇u if they

are orthogonal. To enforce this constraint, one defines the
directional total variation (cf. [22]) with respect to v ∈ U

as

dTV(u; v) =
n∑
i=1

‖Pi∇ui‖, (6)

Pi = 1− ξiξ
T
i , (7)

ξi = γ
∇vi√

‖∇vi‖2 + ε2
, (8)

where 1 denotes the d × d identity matrix. The parameter
γ ∈ [0, 1) steers the influence of the side information from no
(γ = 0) to high (γ ≈ 1), where γ = 1 should be avoided for
theoretical reasons, see [9], [46]. For γ = 0 one observes that
dTV reduces to the standard total variation TV. Furthermore,
ε > 0 is a small parameter which assures that (8) is well-
defined even if ∇vi = 0. Note that if γ = 1 and ε = 0,
then (7) is the projection onto the orthogonal complement of
span(∇vi) and in this case (5) holds for all i = 1, . . . , n if
and only if dTV(u; v) = 0. Conversely, choosing ε > 0 and
γ < 1 implies that ∇ui = 0 is energetically cheaper for dTV
than ∇ui = ∇vi. This ensures that no artificial edges of v are
introduced.

For many modalities the physical assumption that images
are nonnegative makes sense. In these cases, we enforce this
via the characteristic function

ι+(u) =

{
0, if ui ≥ 0 ∀i = 1, . . . , n,
∞, else,

(9)

and set the regularization functionR in (1) as

R(u; v) := α dTV(u; v)+ ι+(u). (10)

Here, α > 0 denotes a regularization parameter which steers
the amount of regularization used.

We would like to stress that the overarching framework of
this contribution is not limited to this particular regularizer
and can be used in conjunction with other models, too, for
example [4]–[6], [10], [12], [14], [18], [21], [23], [24].

D. PARAMETRIC DEFORMATIONS
In practice, frequently the kind of deformation is approxi-
mately known. For instance, a CT and an MRI image of the
brain of the same patient can be assumed to be connected by
an affine transform of the form

φ(x) = Mx + b, x ∈ Rd . (11)

where M ∈ Rd×d and b ∈ Rd . Special cases include rigid
motions in the plane with rotation matrix

M = Rθ :=
(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ (0, 2π ] (12)

and shears with the shear matrix

M = Sa :=
(
1 a
0 1

)
, a ∈ R. (13)
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However, one can also think of higher-order parametrizations
of the form φ(x) = H (x, x) + Mx + b for x ∈ R

d where
H : Rd × Rd → R

d denotes a bilinear form parametrized
by a tensor with d3 degrees of freedom. For more examples
of parametric deformations we refer to [43]. For a review
on different methods in image registration we refer to [43],
[47]. An advantage of using parametrized deformations is
that the number of variables in the optimization problem (1)
is dramatically reduced since not a whole deformation field
with n×d entries has to be estimated but only the parameters
of the parametrization. Remember that n denotes the number
of pixel which can be very large, and d denotes the dimension
of the physical space which is typically 2 or 3. In the case
of affine transformations (11) the number of parameters is
d2 + d = 6 for d = 2 and for rigid motion in the plane it
is only 3. Hence, in these cases the number of parameters
is significantly smaller than n × d . Moreover, parametric
deformations do not require sophisticated regularization, as
used for instance in [39], [40].

We incorporate the parametrization through a map P from
the parameter spaceRp to the space of deformation fieldsV. In
general, P can be nonlinear—as it is the case for rigid motion,
for instance—but for affine deformations (11) it is linear and
given by P : R6

→ V, defined as

P(ϕ) =
[
x 7→

(
1+ ϕ1 ϕ2
ϕ3 1+ ϕ4

)
x +

(
ϕ5
ϕ6

)]
(14)

in two spatial dimensions. Note that the parameters ϕ model
the deviation from the identity such that P(0) = id. For a
more compact notation we suppress the dependency on the
parametrization P and write

uϕ := u ◦ P(ϕ) = J (u;P(ϕ)), (15)

where we used the composition operator (2). Furthermore,
incorporating parametric deformations into (1) we obtain

min
u∈U,ϕ∈Rp

D(Auϕ; f )+R(u; v)+ S(ϕ). (16)

III. ALGORITHMIC FRAMEWORK
A. OPTIMIZATION

Algorithm 1 Proximal Alternating Linearized Minimization
(PALM) to Solve (17)
Input: u, ϕ, σ > 0, τ > 0, K ∈ N
Output: u, ϕ
1: for k = 1, . . . ,K do
2: u = proxσR (u− σ∂uH(u, ϕ))
3: ϕ = proxτS

(
ϕ − τ∂ϕH(u, ϕ)

)
4: end for

In this section, we detail the optimization scheme that we
use to solve problem (16) numerically. Before we formulate
the algorithm, we cast problem (16) into the form

min
u,ϕ

H(u, ϕ)+R(u)+ S(ϕ), (17)

where H(u, ϕ) = D(Auϕ; f ) denotes the data fidelity term
and we abbreviated R(u) = R(u; v). Note that—due to
the smoothness assumption on the interpolation operator
in (2)—the function H is smooth in both variables if the
fidelity D is. Furthermore, the objective function in (17) is
non-convex in the joint variable (u, ϕ) and also non-convex
in ϕ. However, it is convex in the variable u. Still, due to
the overall non-convexity one can in general only expect
to find critical points of (17) using gradient-based algo-
rithms and the outcome depends on the initialization of the
numerical optimization algorithm. Another difficulty arises
from the non-smoothness of the regularization functionals
in (17) which excludes many gradient-based algorithms. Here
we employ the proximal alternating linearized minimiza-
tion (PALM) algorithm [35] which amounts to alternating
forward-backward splitting, see Algorithm 1.

The proximal operator [48]–[50] of a proper function J :
R
k
→ R ∪ {∞} is defined as

proxJ (x) := arg min
y∈Rk

(
1
2
‖x − y‖2 + J (y)

)
. (18)

The proximal operator for dTV with nonnegativity constraint
(10) can be computed using the fast gradient projection algo-
rithm (also known as FISTA) [51], see [22] for details.

Let us now study the gradients of the data fidelity used in
Algorithm 1. With the chain rule and (15), these are given by

∂uH(u, ϕ) = ∂uJ (u;P(ϕ))∗A∗∂D(Auϕ; f ) (19)

∂ϕH(u, ϕ) = ∂P(ϕ)∗∂φJ (u;P(ϕ))∗A∗∂D(Auϕ; f ) (20)

where the asterisk denotes the adjoint / transpose of
a linear map. Note that since the interpolation oper-
ator J is linear in the first argument, it holds that
∂uJ = J and its adjoint—which involves inverting the
deformation—can be explicitly calculated for affine defor-
mations. In our implementation we use the scipy [52]
routine RectBivariateSpline which allows to evalu-
ate bivariate splines of order two or higher together with
their derivatives ∂φJ . Furthermore, the linear operator ∂P(ϕ)∗

can be explicitly calculated in dependency on the type of
parametrization used. For affine deformations, for instance,
map P in (14) is linear; hence, it holds ∂P = P and the adjoint
map P∗ : V→ R

6 can be computed easily.
Finally, we address the choice of step sizes σ and τ appear-

ing in Algorithm 1. From a theoretical point of view it suffices
to choose them smaller than the reciprocal of the Lipschitz
constants of the gradient maps in (19), (20) to obtain conver-
gence of the algorithm. However, in practice those Lipschitz
constants are hard to compute analytically and typically one
can only find pessimistic upper bounds for them. Since this
slows down convergence, we employ a backtracking scheme
instead, see [9] for details.

B. INITIALIZATION STRATEGY
Since image registration alone is already a severely
non-convex problem, one can expect that the degree of non-
convexity of our joint model (1) is even higher. In particular,
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the outcome of Algorithm 1 will depend heavily on its ini-
tialization, in general. Hence, in order to be able to detect
large deformations between the side information v and the
image u such that Au ≈ f , we employ a scale-space strategy
commonly used in image registration [43]. To overcome large
deformations we reduce the resolution of the problem such
that these correspond to a few pixels only. We also employ an
over-smoothing strategy based on the regularization param-
eter α in (10). It is well-known for a large class of regu-
larization functionals of the form R = αJ , that solutions
of the associated variational regularization method converge
to an element in the null-space of J as α → ∞ (see [53]
for total variation and [54] for the general case). For the
case of directional total variation, i.e. J = dTV, this means
that for high regularization parameters R the reconstructed
images become less oscillatory and better align with the side
information. However, to avoid a strong loss of contrast in the
reconstructions [53], one would like to choose the regulariza-
tion parameter as small as possible. In this work we propose a
combination of resolution-based and over-smoothing strategy
to solve (1) which is detailed in Algorithm 2. In a nutshell,
the algorithm first reconstructs low-resolution images with
high regularization parameters first and then successively
decreases the regularization parameter while reconstructing
better resolved images.

Algorithm 2 Scale-Space Strategy to Solve (17)
Input: u, ϕ, resolutions n1 < . . . < nM = n,

regularization parameters α1 > . . . > αM in (10)
Output: u, ϕ
1: for i = 1, . . . ,M do
2: down-sample v to resolution ni
3: up-sample u to resolution ni
4: compute (u, ϕ) = PALM(u, ϕ)
5: end for

IV. NUMERICAL RESULTS
In all numerical experiments we will use affine paramet-
ric deformations (cf. Section II-D), since they model many
realistic deformations and are computationally efficient due
to the low number of free parameters. Furthermore, we do
not regularize the affine deformation fields, meaning that we
choose S(ϕ) = 0 for all ϕ ∈ Rp in (16). Correspondingly,
the second proximal operator in Algorithm 1 reduces to the
identity operator. The details of the scale-space Algorithm 2
are specified below but at this point we already remark that we
useK = 500 iterations of the PALMalgorithm in each loop of
Algorithm 2. The model parameters in (8) were chosen simi-
lar to [9], [22] as γ = 0.9995, ε = 0.01 ·maxni=1 ‖∇vi‖. The
numerical experiments have been carried out in Python using
ODL [55]. The line integrals in the PET experiment were
computed using the Python module scikit-image [56]
and for interpolation we use biquadratic splines from the
scipy [52] routineRectBivariateSpline. The source

code which reproduces all experiments can be found on
https://github.com/mehrhardt/robust_guided_reconstruction.

The error metrics we use in this section are structural
similarity (SSIM) [57] for the comparison of reconstructed
and ground truth images, and the relative difference (RD),
given by

RD =

∥∥ϕ − ϕgt∥∥∥∥ϕgt∥∥ × 100 [%], (21)

for the comparison of reconstructed motion parameters ϕ
with ground truth parameters ϕgt. Whereas more advanced
evaluation metrics (cf. e.g. [58] for semantic evaluation of
neural networked based MR reconstruction) would be desir-
able, they are beyond the scope of this paper and the com-
bination of SSIM, RD, and visual assessment appears to be
sufficient for our applications.

In our numerical experiments we compare our methodwith
a three-step method which computes an initial reconstruction,
registers the side information, and subsequently reconstructs
again (cf. the references in Section I-A). Based on the struc-
tural side information v and data f it computes

ũ ∈ argmin
u∈U

D(Au; f )+ α TV(u), (22a)

ϕ∗ ∈ arg max
ϕ∈Rp

MI(v, ũϕ), (22b)

u∗ ∈ argmin
u∈U

D(Auϕ∗; f )+ α dTV(u; v). (22c)

The maximum is taken over all parametrized affine deforma-
tion fields ϕ ∈ Rp. Furthermore,MI(·, ·) denotes the mutual
information [59] of images which is a popular distance mea-
sure for the registration of multi-modal images. The affine
registration step (22b) was performed using the MATLAB˙

routine imregtform.

A. UNDERSAMPLED MULTI-CONTRAST MRI
RECONSTRUCTION
In our first experiment we performmulti-contrast MRI recon-
struction from undersampled data. Since all contrasts are
likely to share a structural information, less data is needed
if the expected redundancy is exploited. Here we assume
that a T2-weighted has been acquired using ‘‘full data’’ and
reconstructed without artefacts. We then use this image to
reconstruct a T1-weighted image using only a fraction of the
data. In this experiment we simulate the k-space data based
on reconstructions of fully sampled clinical data.

The forward operator is a discrete Fourier transform
defined on complex-valued images of size 256 × 256, fol-
lowed by a sampling operator corresponding to 15 equidistant
spokes and a low-pass sampling of the 10× 10 center of the
k-space. This yields a sampling of approximately 3% of the
k-space. This sampling is easy to approximate on any clinical
MRI scanner. The noise modelling here is Gaussian which is
why we use the squared Euclidean norm (3) as data fidelity.
The image domain is [−1, 1]2 which corresponds to a pixel
width of approximately 0.0078. The deformation field in this

222948 VOLUME 8, 2020



L. Bungert, M. J. Ehrhardt: Robust Image Reconstruction With Misaligned Structural Information

FIGURE 3. Multi-contrast MRI reconstruction. Pseudo-inverse, TV, and misaligned dTV do not correct motion. The proposed method corrects the
deformation and the reconstruction satisfyingly agrees with the ground truth. We give (SSIM, RD) values of the reconstructed images and deformation
parameters. For pseudo-inverse and TV no deformation was corrected and SSIM is given with respect to the deformed ground truth.

simulation is a rigid transform followed by zooming, given
by

φzoom(x) = αRθx + b

where Rθ is a rotation matrix (12) with angle θ = 0.1,
b = (−0.02,−0.08)T is a translation vector, and α = 0.85
is a zoom factor. The latter means that the size of the side
information image is only 85% of the size of the image which
underlies the k-space data. Since nonnegativity is not a mean-
ingful assumption for complex-valued images, we drop this
constraint in (10) for this test case. The resolutions and reg-
ularization parameters in Algorithm 2 were chosen as nk =
(322, 622, 1282, 2562) and αk = 5 · 10−3 · (53, 52, 5, 1). For
the TV reconstruction we used αk = 5 · 10−4 · (53, 52, 5, 1).
Here, and also for the following experiments, the resolutions
were determined by successively dividing the resolution of
the side information by a factor of two. The regularization
parameters at the target resolution were chosen experimen-
tally in order to maximize SSIM. Typically, the regularization
parameter of TV has to be chosen one or two orders of
magnitude smaller than the one for dTV.

The first row of Figure 3 shows the sampling pattern and
the deformed image which was used to generate the data.
Furthermore, it shows the side information and the ground
truth image which we would like to reconstruct.

In the second row of Figure 3 we show the zero-filled
reconstruction (pseudo-inverse), a standard TV reconstruc-
tion, the result of the three-step method (22), and our pro-
posed method. Obviously the pseudo-inverse and TVmethod
yield unsatisfactory results since the do not utilize the side
information. Furthermore, they visualize the strong degree
of ill-posedness of the problem where the sampled Fourier

data alone cannot be used for a meaningful reconstruction. In
contrast, both the three-step method (22) and our proposed
method successfully correct the deformation between side
information and data and yield good reconstructions despite
the high degree of undersampling in the data. Notably, the
proposed method yields better reconstructions of fine struc-
tures as can be seen in the zooms of Figure 3.

The previous observations are also supported by quantita-
tive metrics. The SSIM values between the pseudo-inverse
and TV reconstruction and the deformed ground truth image
which underlies the data are very low which is due to the
strong undersampling. In contrast, the three-step method
and the proposed method have high similarity values with
the ground truth image, with slightly better numbers of the
proposed method. Also the relative difference between the
estimated affine deformation parameters and the ground truth
parameters is lower for the proposed method than for the
three-step method which underlines the superiority of our
joint approach over the three-step method (22) in this appli-
cation. We suspect that worse estimation of the deformation
field of the three-step method is due to the fact that it must
utilize the blurry and blocky TV reconstruction for regis-
tration whereas the proposed method iteratively improves
registration and reconstruction.

We visualize our algorithm in Figure 4 where we plot
the reconstructions and deformations fields of the scale-
space Algorithm 2, respectively. Since our reconstructed
motion parameters correspond to the deviation from the iden-
tity (see (14)), we let the yellow arrows indicate the field
φzoom − id and the red arrows the corresponding expression
for the reconstructed fields. Already at the second resolution
stage 60 × 60 the estimated deformation field is visually
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FIGURE 4. From left to right: MRI reconstructions of increasing resolutions generated by Algorithm 2. The deviation of the ground truth field φzoom and
the reconstructed fields from the identity are shown in yellow and red, respectively. The ground truth field is only visible in the first image where the
estimated deformation field is still inaccurate. Relative differences (RD) between reconstructed and ground truth motion parameters are given, as well.

FIGURE 5. PET reconstructions with structural MR side information. Filtered back-projection (FBP) and TV do not correct motion and yield poor
reconstructions. Both the three-step and the proposed method correct the deformation and the reconstruction satisfyingly agrees with the ground truth.
We give SSIM and RD values of the reconstructed images and deformation parameters. For FBP and TV no deformation was corrected and SSIM is given
with respect to the deformed ground truth.

not distinguishable from the ground truth field which is also
supported by the decreasing relative differences between the
estimated and ground truth motion parameters.

B. PET-MR RECONSTRUCTION
In this experiment we consider PET-MR, where we aim
to reconstruct a tracer distribution using a fully sampled
T1-weightedMR image of size 144×144 as side information.
The forward operator is modelled by a parallel beam X-ray
transform with 200 angles equispaced in (0, π] and 192 bins.
The sinogram data were simulated using a ground truth image
deformed with respect to the side information through the
rigid deformation

φrigid(x) = Rθx + b, (23)

where Rθ is a rotation matrix (12) with angle θ = 0.1 ≈ 5.7◦

and b = (0.02, 0.08)T is a translation vector.

In this experiment we simulate data based on a
dTV-regularized reconstruction of clinical data, see [28].
The data is an instance of a Poisson random variable with
parameter Ax + r , where the background r is chosen as
constant 7 and the forward operator is scaled to about 1.3·106

expected counts in the data. Correspondingly, the data fidelity
used is the Kullback–Leibler distance (4).

Again, images are in [−1, 1]2 and hence the pixel width
of the side information is 0.0138. The resolutions and
regularization parameters in Algorithm 2 were chosen as
nk = (92, 182, 362, 722, 1442) and αk = 4 · 10−1 ·
(104, 103, 102, 10, 1). For the TV experiment we used αk =
4 · 10−2 · (104, 103, 102, 10, 1).

The sinogram data and the deformed imagewhichwas used
to generate the data are shown in the top row of Figure 5.
Furthermore, we show the side information and the ground
truth image. In the second row of Figure 5 we show four dif-
ferent reconstructions: the first one obtained through filtered
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FIGURE 6. From left to right: PET reconstructions of increasing resolutions generated by Algorithm 2. The deviation of the ground truth field
φrigid and the reconstructed fields from the identity are shown in yellow and red, respectively. The ground truth field is only visible in the first
three images where the estimated deformation field is still inaccurate. In the first image the reconstructed field is zero and thus not plotted.
Relative differences (RD) between reconstructed and ground truth motion parameters are given, as well.

back-projection, the second one utilizing TV regularization,
the third one using the three-step method (22), and the fourth
one being the proposedmethod. The first twomethods, which
do not use the side information or correct any motion, exhibit
poor image quality due to strong noise in the sinogram. On
the other hand, both the three-step and the proposed method
correct the deformation and the reconstructions are in very
good agreement with the ground truth image.

Quantitatively, the SSIM values for filtered back-
projection and TV are relatively low whereas they are com-
parably high for both the three-step and the proposed method,
with slightly better values for the proposed method. The same
is also true for the relative errors of the computed deformation
fields.

The scale-space generated by Algorithm 2 is again visual-
ized in Figure 6 with observations similar to Section IV-A.
We also test the limits of the three-step method and our

method by performing PET reconstructions where the mea-
sured sinogram data and the side information at hand are
offset by the rigid deformation φrigid from (23) with θ ∈
{0.2, 0.4, . . . , 1.2}. The first row of Figure 7 shows the
deformed ground truth images which were used to generate
the PET data. In the second row we show the reconstructions
generated by the three-step method (22) together with SSIM
and RD values for the images and deformation parameters,
respectively.

The remaining five rows of Figure 7 show the results of our
proposed method for different sizesM ∈ {1, 2, 3, 4, 5} of the
scale space in Algorithm 2. The method behaves very reliably
in the sense that a larger scale space implies enables the
method to estimate larger deformations correctly. In particu-
lar, for scale space of size 3 or larger our method breaks down
much later than the three-step method (22) which internally
uses state-of-the-art multimodal registration algorithms. This
suggests a high degree of robustness of our method and also
shows that the scale space algorithm 2 is inevitable for joint
reconstruction / registration problems.

Also the error metrics SSIM and RD are better for the
proposed method than for the three-step method, as it was
the case in the previous experiments.

C. HYPERSPECTRAL SUPER-RESOLUTION
In this section we fuse a 100 × 100 spectral data channel
with a highly resolved panchromatic side information of size

400 × 400. We assume Gaussian noise and hence utilize the
Euclidean fidelity (3).

We consider three test cases rigid, shear, and
nonlinear where we artificially introduce different defor-
mations between data and side information. For rigid we
utilize the deformation φrigid in (23) with θ = 0.1 ≈ 5.7◦

and b = (0.06,−0.04)T . The pixels of the images lie in
[−1, 1]2 and have width 0.02 (data image) and 0.005 (side
information). Hence, we try to correct an effective off-set of
approximately 12 pixels. The other deformations are given by
φshear(x) = Sax+b—where Sa is the shear matrix (13) with
a = 0.08—and

φnonlinear(x) = φrigid(x)+ 0.05
(
x22
−x31

)
.

We notice that φnonlinear is a nonlinear perturbation of
φrigid and, in particular, is not affine. In the scale-space
Algorithm 2 we chose five different resolutions nk =
(252, 502, 1002, 2002, 4002) and corresponding regulariza-
tion parameters αk = 10−3 · (104, 103, 102, 10, 1). These
parameters were used for all reconstructions involving dTV
and for all test cases. In the experiment with standard total
variation TV as the regularizer we used the parameters
αk = 10−5 · (104, 103, 102, 10, 1) instead.

The first row of Figure 8 shows the data rigid together
with the side information misaligned through a rigid trans-
form. Below we show four different reconstructions, includ-
ing a target reconstruction which was computed using aligned
data and serves as substitute for a ground truth solution
for this real data set. The second one is a standard TV
reconstruction, which does not utilize the side information
at all and hence yields the expected poor and blurry super-
resolution result. Instead of the three-stepmethod—whichwe
compared with our method in Sections IV-A and IV-B—the
third reconstruction is now a dTV reconstruction which uses
misaligned data and side information and does not correct
the deformation. This result corresponds to a naive super-
resolution which does not take into account the misalignment
between the two modalities and hence produces an erroneous
imagewithmany artefacts. The last reconstruction is obtained
using our proposed method which corrects for the misalign-
ment between data and side information and almost perfectly
agrees with the target reconstruction which is also reflected
by its SSIM value.
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FIGURE 7. Testing the limits of our method: first row: rotated images which were used to create the PET data, second row: results of the three-step
method, other rows: proposed reconstructions for difference sizes M of the scale space. Failed registrations are marked with a red frame. Note that
relative differences are larger for small displacements since these have a small norm (cf. (14) and (21)).

In Figure 9 we apply our method also to the other data
sets shear and nonlinear. Also here our algorithm was
able to correct the deformation between data and side infor-
mation sufficiently to achieve reconstructions which are very
similar to the target reconstruction, as also shown by SSIM.
Note that even though the deformation field in the data set

nonlinear is not affine, the reconstruction is almost as
good as those for the affine data sets rigid and shear and
the SSIM to the target reconstruction is only slightly lower
than for rigid or shear. Since the ground truth deforma-
tion field is non-affine for this data set, it is not meaningful to
provide relative distances of the estimated parameters here.
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FIGURE 8. Hyperspectral super-resolution. Reconstruction of data set
rigid using three different methods. TV and misaligned dTV do not
correct deformations and yield poor results. The proposed method
corrects the deformation and the reconstruction is in very good
agreement with the target. We give SSIM and RD values of the
reconstructed images and deformation parameters. For TV and
misaligned dTV no deformation was corrected and for TV SSIM is given
with respect to a deformed target image.

V. DISCUSSION
In this work we have proposed a variational framework for
jointly reconstructing an image from indirect measurements
while registering it to a structural side information from a
potentially different modality. We have then specialized our
model to the case of parametric deformations. In numerical
experiments on multi-contrast MR, PET-MR, and hyperspec-
tral super-resolutionwe have compared ourmethodwith stan-
dard reconstruction methods (pseudo inversion, total vari-
ation regularization) and with a three-step method which
first reconstructs an auxiliary image, then registers the side
information, and finally reconstructs again.

While the standard methods, which do not use any struc-
tural prior, do not produce satisfactory results for the type
of inverse problems we are considering, both the three-step
method and the proposed method yield comparable results
and their pros and cons are discussed in more detail in the
following.

FIGURE 9. Reconstructions of data sets shear and nonlinear. The
proposed method corrects the deformations and yields very good
reconstructions. We give SSIM values of the reconstructed images and
deformation parameters for both data sets and RD values for the affine
data set shear.

The clear benefit of the three-step method is that it is
straightforward to implement since it can be constructed by
combining any two (black-box) reconstruction and multi-
modal registration algorithms. Furthermore, by using state-
of-the-art solvers of the sub-problems one can create a very
efficient method. However, the drawback of this strategy
becomes evident in our numerical experiments on MR and
PET-MR where—due to the ill-posedness of the problems—
the initial reconstruction does not suffice to estimate an
accurate deformation field. Correspondingly, the final recon-
structions of the three-step method is not as accurate as our
proposed approach. Furthermore, as seen in Section IV-B the
three-step methods seems to be less robust to large deforma-
tions since it utilizes a possibly poor initial reconstruction
which makes the registration hard.

Thanks to its joint approach, which simultaneously
estimates the deformation field and the reconstruction, our
proposed method is able to estimate deformations more accu-
rately which reflected in better image quality and higher
robustness to larger deformations. Another benefit of our
method is that, despite its non-convexity, it can be solved
with optimization algorithms which come with convergence
guarantees.

Incorporating more general deformation models than the
affine one considered here can be achieved by suitably choos-
ing the regularization functionals R and S in (1) or even
choosing a joint regularization. For diffeomorphic deforma-
tions this can be done similarly to [40] and for optical flow
approaches see [39]. In any case, judging from what the
authors report in these works, the scale space algorithm 2 is
necessary also for more complicated types of deformations.

VOLUME 8, 2020 222953



L. Bungert, M. J. Ehrhardt: Robust Image Reconstruction With Misaligned Structural Information

Finally, it is also worth discussing the limitations of the
assumption that side information and ground truth solu-
tion have structural similarity in terms of parallel gradients
(cf. (5)). For the scenario of an aligned side information it was
demonstrated in [13], [15], [45] that features which are only
present in PET data but not in the structural MR prior can be
recovered in the reconstruction. Similarly, excess edges in the
MR image were shown not to propagate into the reconstruc-
tion. A comprehensive overview of different MR-informed
PET reconstruction methods is given in [60]. While these
observations were made for registered modalities, one should
mention that in our case the registration (enforced through the
regularization functionalR(u; v)) heavily depends on the side
information. In particular, a successful registration can only
be obtained if most of the edges in the data are also present
in the side information. In the extreme case where the side
information is a constant image and no registration can be
performed, this condition is of course violated.

VI. CONCLUSION
Multi-modality imaging is becoming ever more important in
many disciplines from medicine to material sciences. Mathe-
matical approaches to combine data frommultiple modalities
exist but are prone to imperfect misalignment. In this work we
proposed a generic framework to reconstruct an image from
indirect measurements while registering it to a structural side
information from a potentially different modality. Numerical
experiments for a specific regularizer (directional total vari-
ation) and a variety of applications including hyperspectral
imaging in remote sensing, PET-MR and multi-contrast MRI
underpinned the aptness of the proposed approach to correct
misalignments between data and structural side information
which cause existing algorithms to fail. Missing robustness
to misalignment has been the biggest hurdle for integrating
structure promoting regularizers into routine use, for instance
in the clinic. Thus, the proposed framework paves the way for
their translation into various applications.
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