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ABSTRACT The automatic height adjustment of a shearer cutting drum is a key technology for shearer
automation. However, a fundamental and important requirement for underground electronic products is
explosion-proof rating, which creates great challenges to the research on the control method of the shearer
height adjustment system. To address this problem, a novel shearer height adjustment control method
was proposed based on basic fuzzy control, and the feasibility of the height adjustment method was
studied with the help of multisoftware cosimulation technology. First, the drum cutting coal model was
established using Finite Element Method (FEM) software LS-DYNA, the mechanical model of the gear
transmission system model and the height adjustment system were constructed with the multibody dynamics
software ADAMS, the hydraulic height adjusting system model was constructed with AMESim, and a fuzzy
controller for shearer height adjustment was developed in Simulink. Then, the data conversion interface
between the mentioned models was constructed using MATLAB, to obtain the cosimulation model for the
shearer automatic height adjustment. Finally, with the help of fuzzy control method, the feasibility of the
cosimulation model used in the adaptive control method of the shearer drum height adjustment was verified.
The results show that the cosimulation model can adequately describe the height adjustment process of a
shearer, which lays a foundation for the optimization of adaptive height adjustment method. At the same
time, the proposed model is also applicable for studying the dynamic characteristics of the mechanical-
electrical-hydraulic coordination in the process of shearer adaptive height adjustment.

INDEX TERMS Mechanical-electrical-hydraulic cosimulation, height adjustment, shearer cutting system,
fuzzy control.

I. INTRODUCTION

A. BACKGROUND

Energy is the key factor driving economic development.
Although China’s economic growth has slowed in recent
years, China is still the world’s largest energy consumer.
In 2018, China’s energy consumption and growth accounted
for 24% of global energy consumption and 34% of global
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energy consumption growth, respectively. Coal still plays a
leading role in China’s energy consumption pattern, account-
ing for more than 55% of the overall energy consumption [1],
[2]. Therefore, underground coal mining automation and
intelligent mining technology are inevitable directions of coal
industry development.

A drum shearer is a key piece of equipment for fully
mechanized mining that is responsible for cutting coal and
transporting the coal to the scraper conveyor. A typical drum
shearer is a complex system that usually consists of traction,
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cutting, electronic control, and hydraulic height adjustment
systems. The cutting drum of the shearer is connected to
the rocker arm by a rotational joint. The hydraulic height
adjustment cylinder lifts the rocker arm while the electric
motor, usually installed on the arm, drives the cutting drum.
Under ideal conditions, the shearer is in a state of high stress
caused by drum cutting coal. During the cutting process, the
drum is always in dynamic equilibrium with the surrounding
rock under the combined action of electrical, hydraulic, and
mechanical systems. When the floor or roof is uneven or when
the occurrence height of coal seam varies greatly, the shearer
is prone to cut the roof rock or floor rock. Then, this kind of
equilibrium state is broken. At this time, cutting resistance
of the drum increases suddenly, which results in pick wear
and overload of the cutting motor, causing damage to the
shearer [3]-[5]. Therefore, the automatic height adjustment
behavior of the shearer is of great significance to reduce the
wear of picks and improve the efficiency of coal mining.

B. RELATED WORKS

To solve the problem of shearer cutting rock and improve the
cutting adaptability of the shearer, scholars have made great
efforts to keep the shearer in the state of cutting coal. The
most direct solution is the coal-rock interface identification
technology [6], which can guide the shearer to automati-
cally track the coal-rock interface. To achieve this, the direct
sensors method [7]-[10], the traditional memory cutting
method [11]-[13], the Hidden Markov Model method, and
the multisensor data fusion method have been successively
developed [4], [14], [15]. However, due to the complicated
underground mining environment, it is almost impossible to
develop a height adjustment system that is applicable to all
geological conditions. Therefore, to ensure reasonable and
effective shearer selection, researchers often need to carry out
a large number of industrial tests. As underground conditions
are poor and the tests are expensive, developing an effec-
tive mechanical-electrical-hydraulic cosimulation platform to
achieve a pretest of the dynamic cutting performance and the
height adjustment ability is of great significance [16].

In recent years, with the rapid development of computer
technology, cosimulation technology has been widely used
for solving multidomain problems [17], [18]. For instance,
the cutting vibration behavior of the continuous miner [19],
nonlinear motion behavior of the robot [20]-[23], complex
fluid dynamics analysis and structural optimization design
of variable displacement pump [24]-[26], fuel system design
and fuel economy analysis of hybrid cars [27]-[30], and
other mechanical-hydraulic cosimulations have been per-
formed [31]-[34]. There are few literature reports focusing
on cosimulation problems with three or more domains.

C. DESCRIPTION OF THE COSIMULATION MODEL

According to previous research, a method for judging the
cutting state of the shearer was proposed based on the cut-
ting force response. A MG650/1620-WD-type shearer was
taken as an example, and its mechanical-electrical-hydraulic
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cosimulation model was established. The dynamic response
and height adjustment behavior of the shearer during the
cutting process were simulated, and the feasibility of the
scheme was tested. First, a Finite Element Method (FEM)
model of the shearer drum cutting coal was established using
LS-DYNA to predict the cutting load on the cutters. Then,
a mechanical-electrical-hydraulic cosimulation model based
on ADAMS/MATLAB/AMESim software was established
to simulate the whole dynamic response of the shearer dur-
ing the cutting process. Specifically, the dynamic model of
the shearer mechanical transmission system was constructed
using ADAMS software, and the dynamic model of the
cutting unit electrical driving system and hydraulic model
of shearer height adjustment system were constructed using
AMESim software. Finally, a load servo type height adjust-
ment fuzzy controller was developed using Simulink and
applied to the cosimulation model to test its rationality. Data
transmission and co-simulation of these three models were
implemented with MATLAB software as shown in Fig.1.

LS-DYNA: cutt or AMEsim:
FEM model of the (e IOOTOY Ctting unit electrical Cutting motor
z —_——» - power
i dinim @i el Cutting motor velocity driving model

Cutting resistance in X direction
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Cutting resistance moment in Z direction
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i | AMEsim:
Position and velocity of the actuator  Hydraulic height
adjustment model
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ADAMS:
Shearer mechanical
transmission model Pressure and force of the actuator
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Valve control signal Simulink:
Electrical fuzzy
Y displacement of the drum Comroller

FIGURE 1. Data flow within the mechanical-electrical-hydraulic
cosimulation model.

D. MOTIVATION FOR THIS WORK

The main contributions of this paper are as follows: 1) Due
to the environment, cost, and other factors, the industrial test
of shearer height adjustment is very expensive. The proposed
mechanical-electrical-hydraulic cosimulation method lays a
foundation for the virtual development of shearer’s adap-
tive height adjustment system. 2) The height adjustment of
the shearer is essential not only to reduce cutter wear and
improve mining efficiency but also to effectively promote the
intelligent control of the shearer and finally help improve
the intelligence level of coal mining. 3) The mechanical-
electrical-hydraulic cosimulation method proposed in this
paper is suitable not only for shearers but also for other
equipment with the characteristics of mechanical-electrical-
hydraulic cooperation, such as hydraulic support.

E. ORGANIZATION OF THIS PAPER

This paper is arranged as follows. In Section II, the dynamic
sub models of a shearer height adjusting system are con-
structed. This includes the FEM model of the shearer drum
cutting system, the multi-body dynamic mechanical model
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FIGURE 2. FEM model and boundary conditions of the drum cutting coal.

of the shearer transmission system, the dynamic mechanical
model of the cutting unit driving system, and the hydraulic
model of shearer height adjustment system. In Section III,
mechanical-electrical-hydraulic cosimulation models of the
shearer based on both artificial control and fuzzy control are
established. In Section IV, the results of the cosimulation
models are analyzed. Finally, the conclusions are presented
in Section V and the future work is discussed in Section VI.

Il. DYNAMIC SUB MODELS OF THE SHEARER

CUTTING SYSTEM

A. FEM MODEL OF THE SHEARER DRUM

CUTTING COAL

There are two primary methods to predict the pick cutting
force, namely: the static analytical method and the dynamic
analysis based on the finite element method. The static ana-
lytical method can estimate the average cutting force of pick
cutting, while the dynamic analysis method can provide a true
representation of the coal or rock cutting process and obtain
the random dynamic load of the pick cutting process [35].
Thus, the FEM method was adopted in this paper. Structures
of the shearer drum and picks are shown in Fig. 1. The system
consisted of one shearer drum and the coal seam, as shown
in Fig. 2. The FEM model was meshed using hexahedral
elements, and rigid body constraints were applied among the
picks, vanes, and hub to confirm their similar movement. The
movement degree of freedom (DOF) in the Y and Z directions
and the rotational DOF around the X and Y directions of the
drum are constrained, so that it can only move along the X
axis and rotate around the Z axis.

Given that the constitutive model of the coal mate-
rial has a significant influence on the simulation results,
multiple constitutive models are provided by LS-DYNA,
such as the Holmquist-Johnson-Cook, Drucke-Prager, and
Brittle-Damage models [36]-[39]. The Brittle-Damage
model and eroding failure of material were selected in this
study because of the brittle characteristics of coal [38], [39].
The contact between the pick and coal was defined as surface
to surface penetration contact (*CONTACT_ERODING_
SURFACE_TO_SURFACE). The pick was defined as the
master face, and the coal was defined as the slave face.
When the maximum principal strain of coal element reaches
0.02, the coal element will be removed from the coal model.

222066

Shearer drum

»

Planetary Rocker arm
— gearbox J

dib db

[ & 1 |
(S5 1 ¥ |
.

B

Rocker gearbox

7 |

Cutting electric motor

FIGURE 3. Mechanical transmission system of shearer cutting part.

FIGURE 4. Dynamic model of shearer mechanical transmission system.

Rigid hourglass type 5 control was adopted to define the coal
element, and the hourglass coefficient was set as 0.04. The
main material parameters of the coal and drum model are
shown in Table 1.

B. MULTI-BODY DYNAMIC MODEL OF THE SHEARER
MECHANICAL TRANSMISSION SYSTEM

The cutting motor-rocker arm reducer-planetary gearbox-
drum transmission system was adopted in MG650/1620-WD,
as shown in Fig. 3. The rocker arm reducer consists of a
2-stage spur gearbox with a transmission ratio of 2.486. The
planetary gear reducer consists of 2 stage planetary transmis-
sion with a transmission ratio of 23.0785.

The digital model of the shearer mechanical transmission
system was prepared using Solidworks, and the data were
transferred to ADAMS in parasolid format. The established
multibody dynamic model of the transmission system is
shown in Fig. 4. The shearer body was mounted on the ground
with a fixed joint. The rocker arm and the shearer body,
the rod of height adjustment cylinder and the rocker arm,
the cylinder barrel and the shearer body were connected with

VOLUME 8, 2020



K. Gao et al.: Shearer Height Adjustment Based on Mechanical-Electrical-Hydraulic Cosimulation

IEEE Access

TABLE 1. Main parameters of the coal and drum.

Density Elastic Poisson's Tensile Compressive Shear strength Fracture
Coal (Ymm’) modulus (MPa) ratio strength (MPa) strength (MPa) judgment
(MPa) (MPa/mm?)
1.3e-9 3100 0.3 1.2 37 9 0.2
Density Elastic Poisson's Translation Rotational Translational Rotational
Drum (Ymm’) modulus (MPa) ratio constraint restraint velocity (m/min)  velocity (m/min)
7.85e-9 2x10° 0.3 Y,Z XY 10.4 25.83

rotational joints. Displacements of the rod drove the swing
angle of the rocker arm, and then the drum cutting height was
adjusted to cut the coal seam with different thicknesses. Tak-
ing the impact and collision characteristics of the transmis-
sion system into consideration, the contact among the gears
and the splines was defined using an impact-function-based
contact algorithm, which was provided by ADAMS. As the
contact force between the gears produces friction force, soak-
ing lubrication was adopted in gear transmission. According
to the material contact properties table proposed by ADAMS,
the static friction coefficient was defined as 0.23, the dynamic
friction coefficient was 0.16, and the rebound coefficient
was 0.9 [40].

C. DYNAMIC MODEL OF THE CUTTING UNIT ELECTRICAL
DRIVING SYSTEM

A flameproof three-phase servo motor (YBCS-650) was
equipped on the MG 650/1620-WD as the cutting motor.
The motor was transversally arranged in the rocker arm box.
The torque of the motor was transmitted to the torque shaft
through a spline and then output to the external gear transmis-
sion system. The main parameters of YBCS-650 are shown
in Table 2.

TABLE 2. Main parameters of YBCS-650 flameproof three phase
asynchronous motor for a shearer.

Parameters Value Parameters Value
Rated power 650 kW  Operation mode S1
Rated voltage 3300 V. Connection mode Y
Rated current 136 A Rotor rated current 5.5 A
Rated frequency 50 Hz Efficiency 96%
Rated speed 1486 r/min Power factor 0.86

In this study, based on the sub model of EMDIMSCOL1 in
AMESim, the electrical driving system for the motor
reducer considering load and viscous friction was established,
as shown in Fig. 5.

D. HYDRAULIC MODEL OF SHEARER HEIGHT
ADJUSTMENT SYSTEM

The hydraulic height adjustment system of the shearer is
shown in Fig. 6. The system was mainly composed of a pump
station motor, an oil leach, a double gear pump, two solenoid
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FIGURE 5. Electrical driving model of the shearer cutting motor.
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FIGURE 6. Schematic of shearer height adjustment hydraulic system.

valves, oil pipes, a balance valve (bidirectional hydraulic
lock) and a height-adjustment cylinder. The black lines are
the main oil pipes, and the blue lines are the control oil pipes.
The pump used in the system was a double gear pump with
1465 r/min rotational velocity and 92% volumetric efficiency.
The rated flow rate and working resistance of the large pump
and small pump were 28 mL/r and 4 mL/r and 18 MPa and
2.5 MPa, respectively. The balance valve was used to lock the
hydraulic circuit and maintain the hydraulic cylinder in the
same position. It consisted of two CBEA-LAN type counter-
balance valves, as shown in Fig. 7, and the flow capacity of
the balance valve was 150 L/min. As a simulation platform
to establish and analyze the complex systems, AMESim soft-
ware was selected to construct the model of the balance valve,
as shown in Fig. 8. In the pilot valve, mass and displacement
limit of the spool were 0.02 kg and -3.5~0 mm, respectively.
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FIGURE 7. Schematic of the CBEA-LAN type balance valve.
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FIGURE 8. Hydraulic model of the balance valve in AMESim.

The spring stiffness was 150 N/mm, and the preload was
1500 N. The piston and rod diameters were 16 mm and
12 mm. In the main valve, the mass and displacement limit of
the spool were 0.01 kg and 0~3.5 mm. The spring stiffness
was 1 N/mm. The diameters of cone valve, hole and rod were
12 mm, 10 mm and 4 mm, respectively. The clearance of end
stop was 0.5 mm.

The simplified hydraulic system model is shown in Fig. 9.
The balance valve model was packaged into a super compo-
nent. The flow capacity of the solenoid valve was 150 L/min.
The piston diameter, rod diameter, and working stroke of the
cylinder were 278 mm, 150 mm, and 740 mm, respectively.
The oil pressure was 18 MPa. The inner diameter and length
of tubing 2 were 25 mm and 0.5 m, while those of tubing
3 were 13 mm and 5.5 m. The external load was the random
load obtained in Section II. A.

Ill. MECHANICAL-ELECTRICAL-HYDRAULIC
COSIMULATION MODEL OF THE SHEARER HEIGHT
ADJUSTMENT SYSTEM

A. COSIMULATION MODEL WITH ARTIFICIAL HEIGHT
ADJUSTMENT SIGNAL

Based on the sub models of the cutting system established
in Section II, the mechanical-electrical-hydraulic cosimula-
tion model with artificial height adjustment signal was con-
structed using software interfaces, as shown in Fig. 10. The
main purpose of this model was to test the rationality of
the cosimulation model. The multibody dynamic mechani-
cal model of the shearer was exported from ADAMS using
A/Control plug tool. The models were compiled into an
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FIGURE 9. AMESim model of the hydraulic height-adjustment system.

S-function in MATLAB. As shown in Fig. 10, the valve con-
trol signal (external control signal in Fig. 9) was generated by
using an artificial signal builder. Both the solvers in AMESim
and Simulink software were defined as the variable-step
solvers. In addition, the time interval for data communica-
tions between the mentioned software was defined as 0.001 s.

B. FUZZY CONTROLLER MODEL OF THE SHEARER
HEIGHT ADJUSTMENT
As mentioned in Section I, the height-adjustment process of a
shearer is highly nonlinear. It is difficult to establish a precise
mathematical model for this behavior. Therefore, the tradi-
tional modeling theory is not applicable for this work. In this
study, the intelligent fuzzy control method was selected
to develop the height-adjustment controller because it can
achieve the precise control of a complex system [41], [42].
The actual output power of the shearer cutting motor was
calculated with equation (1). During the shearer cutting pro-
cess, the supplied voltage remains almost unchanged. Assum-
ing that the efficiency and power factor of the motor are
constants, the current variations of the cutting motor can
reflect the power variations of the shearer cutting part.

P, = \/gnUIcosgo (D

Here, 7 is the efficiency of the cutting motor, U is the line
voltage of stator winding, / is the line current of the stator
winding, cos ¢ is the power factor of the cutting motor, ¢
is the phase difference between the stator phase current and
phase voltage, and P; is the power of the cutting motor. The
resultant force of the height adjustment cylinder is positively
correlated with the cutting load. Therefore, the variations in
the cutting motor power and the cylinder resultant force can
be used to accurately determine the shearer working condi-
tions. The control logic of the rocker arm height adjustment of
the shearer is usually determined according to the experience
of the technicians. Hence, this study used a Mamdani-type
fuzzy controller [43], which typically consists of the
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FIGURE 10. Mechanical-electrical-hydraulic cosimulation model of shearer cutting system.
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FIGURE 11. Mamdani-type fuzzy controller.

following three stages, as shown in Fig. 11: fuzzification,
fuzzy inference, and defuzzification [44].

1) FUZZIFICATION OF THE INPUT VARIABLES

In the fuzzification stage, input and output variables are
converted into fuzzy values. In this study, the rated power
of the cutting motor and the maximum resultant force of the
cylinder were defined as input variables, marked as P, and F,.
The rated voltage of the valve controller was defined as the
output variable, marked as Uy. Accordingly, the real power of
the cutting motor, the real-time resultant force of the cylinder,
and the real-time voltage of the valve controller were defined
as P, F, and u, respectively. Then, the quantization factors
kl = Pg/P,, k2 = F/F,, and ku = u/Uy were introduced
to transfer Py, F, and u from the fundamental domain to
the fuzzy domain, namely, X, Y, and Z, respectively. Finally,
X was divided into 5 levels, and its fuzzy subset was defined
as {xVS, xS, xM, xB, xVB}. Y was divided into 6 levels,
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and its fuzzy subset was defined as {yVS, yS, yM, yB, yVB,
yVVB}. Z was divided into 11 levels, and its fuzzy subset
was defined as {NVB, NB, NM, NS, NVS, ZO, PVS, PS, PM,
PB, PVB}. Trapezoidal and triangular membership functions
were selected to fuzzy the variables and the results are shown
in Fig. 12.

2) FUZZY RULE BASE

A fuzzy if-then rule base was chosen based on experiences
of the experts to make an informed decision [45], [46]. It is
known that the hardness of the rock is greater than that of
the coal wall. Therefore, when the shearer cuts the roof rock
or the floor rock, the two input variables increase signifi-
cantly. Then, the controller needs to send a control signal
to adjust the height of the drum to avoid cutting the rock
for a long period. Thus, the fuzzy rule can be expressed
by equation (2).

R If Xisx; and Y is yj, then Zis z;; (2

Here, R/ is the fuzzy control rules, x; and y; belong
to X and Y, respectively. Based on the above, the fuzzy
rule base for the fuzzy controller was established, as shown
in Table 3.

The input and output surfaces of the height adjustment
fuzzy controller were produced as shown in Fig. 13.
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FIGURE 13. Input and output surfaces of the height adjustment fuzzy
controller of the shearer.

TABLE 3. Fuzzy controller rule base.

YX xVS xS xM xB xVB
yVS 70 NVB NM NVB NVB
yS Z0 NB y40) NB NVB
yM PS PVS 70 NB NB
yB PM PS y40) NM NB
yVB PB PM PS NM NM
yVVB PVB PB PM NS NM

3) DEFUZZIFICATION

Defuzzification is the last stage for a fuzzy controller, which
can be performed by many different methods. In this study,
a center of gravity defuzzifier was chosen to complete the
defuzzification [47], [48].

Fig. 14 shows the model of the fuzzy control subsystem
based on the aforementioned fuzzy control rules by using
MATLAB/Simulink. Scale transformation of the correspond-
ing variables was performed by using the gain modules, and
the input and output of the fuzzy controller were limited in
the range of fuzzy domain by using the saturation modules.

222070

Moreover, a three-order BW low pass filter with the cutoff
frequency of 20 rad/s was added to the model to filter the
variable signals (i.e., to filter out the high frequency parts
of the motor power and actuator force to prevent excessive
system vibration).

The initial operating height of the rocker arm in the
mechanical model was set as the lowest. For the rocker arm
to swing up and down, the signal builder needs to output a
valve control signal to raise the rocker arm first. The signal
builder stops working after 2 s, and the valve control signal is
determined by the fuzzy controller. Moreover, to cut the roof
and the floor evenly, there should be a limitation in the vertical
motion direction of the drum. In consideration of this, a logic
control of the drum motion range was added into the designed
fuzzy control subsystem. If the vertical displacement of the
drum was less than 450 mm, the valve control signal was set
as -10 so the drum moved upward. If the vertical displacement
was greater than 750 mm, the valve control signal was set
as 10 so the drum moved downward. Otherwise, the valve
control signal was given by the fuzzy controller.

C. COSIMULATION MODEL WITH FUZZY CONTROL
HEIGHT ADJUSTMENT SIGNAL

In Section III. A, the valve control signal for the mechanical-
electrical-hydraulic cosimulation model was generated by
an artificial signal builder. In this section, the artificial
signal builder was replaced by the fuzzy controller built
in Section III. B to test the height adjustment fuzzy con-
trol method (Fig. 15). The mechanical-electrical-hydraulic
cosimulation model in AMESim was the same as that
in Fig. 10 (a).

IV. NUMERICAL SIMULATIONS AND RESULTS

A. COAL CUTTING SIMULATION RESULTS

Fig. 16 (a) shows the three-directional force loads of the drum
during the coal cutting process. It can be observed that the Y
direction force Ry, is significantly greater than the X direction
force R,. This is clearly explained in Fig. 17, where the
cutting resistance of the vane pick (Z;) is along the tangential
direction of the drum, while the advancing resistance of the
drum (Y;) is pointed towards the center of the drum. w is the
rotation angular speed of the drum and vy is the traction speed
of the shearer. The values of forces Ry, Ry, and R, can be
determined using the following equations:

np

Ry = Z(—Yi sin 6; — Z; cos 6;) 3)
=1
lnp

Ry =) (~Yicos 0; + Z; sin 0;) )
i=1
lnp

R, =) X ©)
i=1

Here, X; is the average lateral force, 6; is the vertical angle
of Y;, and n,, is the number of cutting picks. When Z; and Y;
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Fig. 16 (b) shows the three directional moment loads, namely,
M, My, and M. It can be seen that the mean values of M, and
M, are small, while the mean value of M, is approximately
155 kN-m.

B. RESULTS ANALYSIS OF THE COSIMULATION MODEL
WITH ARTIFICIAL HEIGHT ADJUSTMENT SIGNAL

In this section, the presented simulation aimed to verify the
feasibility of the mechanical-hydraulic cosimulation platform
and to analyze the variation law of the variables that can
reflect the cutting state of the drum. The random drum cutting
load obtained in Section IV.A was applied to the model in
different proportions (1, 0.8, 0.6, 0.4) to simulate different
loads. At the beginning of the simulation, an initial pressure
was applied in the cylinder to balance the self-weight of the
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(b) Moment loads of the shearer drum.

FIGURE 16. Loads of the shearer drum.

rocker arm. Then, the simulation models were run for 10 s
and the corresponding results are shown in Fig. 18.

In this simulation, the height control signal was defined
artificially, which consisted of 5 stages. The first stage was the
initial adjusting, where the rocker arm was adjusted to grad-
ually enter the cutting state. To achieve this, the valve control
signal was first set as 0, and the directional valve was in the
center position (0-1 s). Pressure in the rodless chamber fluc-
tuated violently under the action of cutting resistance, which
established an equilibrium between the mechanical system
and the hydraulic system of the shearer. Then, the pressure
decreased gradually and tended to be stable. Pressure in
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FIGURE 17. Force analysis of the shearer drum.

the rod chamber was O at this stage. Therefore, the piston
resultant force was provided by the rodless chamber.

The second stage was the upward swing stage of the drum.
The valve control signal was set as negative during this
process (1-4 s). The piston rod was displaced outward and
caused the drum to rise.

The third stage was the stable cutting stage of the drum
(4-6 s). Both chambers exhibited large pressure fluctuations
under the action of changing cutting resistance.

The fourth stage was the downward swing stage of the
drum (6-9 s). At this stage, the directional valve turned on in
reverse. The piston rod was displaced backward and caused
the drum to fall. There was a large pressure increase in the
rod chamber when the directional valve opened at 40%.

The final stage was the unloading stage. The oil supply
circuit was cut off in this stage, and the pressures in both
chambers decreased gradually, while the pressures in the
rodless chamber exhibited a larger fluctuation.

In an evaluation of the simulation from an overall view,
the pressure of the cylinder varied greatly during the height
adjusting process. When the hydraulic cylinder circuit was
turned on (forward or reverse), the pressures in both chambers
increased significantly. The increase was more significant
when the circuit was turned on reversely (the drum swung
downward). When the hydraulic circuit was locked and the
drum was stable at different working positions, the mean pres-
sures of the cylinder were different. This is because the heavy
moment of the rocker arm varied with the operating height of
the drum. Moreover, the pressure fluctuation amplitude was
large because there was no buffer in the system. The mean
values of the characteristic parameters under the action of
cutting loading are shown in Table 4. It can be seen that the
mean resultant force of the piston rod decreased as the cutting
load increased.

C. RESULTS ANALYSIS OF COSIMULATION MODEL WITH
FUZZY CONTROL HEIGHT ADJUSTMENT SIGNAL

The fuzzy control method was used in this paper to test
the height adjustment method. Therefore, this paper mainly
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TABLE 4. The mean values of the characteristic parameters.

Pressure in Pressure in

Load Resultant
Proportion rodless rod force/kN
chamber/MPa  chamber/MPa
1 5.95 5.8 105.5
0.8 6.67 54 177
0.6 7.5 5 246
0.4 8.3 4.9 325

focuses on the cosimulation method and height adjustment
method for shearer height adjustment. In addition, the robust-
ness of control system can also be used to evaluate the
controller performance [49], [50]. However, this paper only
aims to prove the validity of the fuzzy control method and
the validity of the co-simulation platform, rather than the
robustness of the system. Therefore, the height adjustment
method was used to evaluate the controller performance and
the height adjustment performance of the system will be
mainly discussed. Fig. 19 shows the results of the mechanical-
electrical-hydraulic cosimulation model.

As shown in Fig.19, during the initialization stage
(0-2 s), the valve control signal was set as negative. Thus,
the piston rod was displaced outward and caused the drum
to rise (525 mm). The motor power reached 500 kW in this
stage (Fig. 19 (a)). However, due to the large self-weight
of the rocker arm, there was a large impact force on the
piston. The piston force reached a stable value of 270 kN at
approximately 1 s (Fig. 19 (b)). After 2 s, the control signal
was given by the fuzzy controller. During 2-2.5 s, the drum
continued to cut the coal wall horizontally. At this stage, the
drum cutting load was small, while the resultant force of the
piston was large. Moreover, the motor power did not achieve
the rated value. From 2.5 s to 3.95 s, the bottom coal was
cut. The controller gave a negative signal to control the drum,
which swung up to cut the top coal. From 3.95 s to 5 s, the
controller detected that the vertical displacement of the drum
had exceeded the limit height of 5 mm (750 mm). Then,
a maintenance signal was given to keep the drum operating
at this height. The valve control signal fluctuated constantly
under the action of the movement inertia of the drum and
rocker arm. When the resultant force of the piston was lower
(68.6 kN) and the motor power was in the rated working state
(5.17 s), the conclusion of the drum overload was obtained
by the controller, and a positive signal was given to cause
the drum to fall. At 6.2 s, the motor power reached 803 kW,
and the cutting resistance of the drum increased continuously.
Then, the controller determined that the cutting motor was
in a severe overload state, and a positive control signal was
given to control the drum to swing down. At approximately
7.4 s, the drum reached the minimum operating height, and
the controller output a control signal to keep the drum in this
state.

According to the above analysis, functions of the fuzzy
controller in the height adjustment control system can be
determined as follows: 1) When the motor power was lower
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FIGURE 18. Variation curves of the characteristic parameters under different cutting loads.

and the piston resultant force was greater (cutting load of the
drum was small), the controller could control the cylinder
to swing up automatically to cut more coal; 2) When the
motor power exceeded 1.2 times the rated value, the controller
determined that the shearer was in an overloaded cutting rock
state. At this stage, the controller ignored the drum cutting
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load signal and controlled the drum to swing down directly.
Therefore, the cutting rock state and the longtime overload
state were avoided effectively. 3) When the displacement of
the drum reached the highest or lowest limit of the set height,
the fuzzy controller could keep the drum around the set height
to ensure flatness of the roof to a certain extent. In summary,
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the proposed fuzzy controller can output the corresponding
control signal according to the cutting condition of the drum
to realize automatic height adjustment of the shearer.

V. CONCLUSION
1) This paper employed a MG650/1620-WD shearer as
the research object. First, ADAMS, AMESim, and
MATLAB were used to establish the mechanical-
electrical-hydraulic cosimulation model, and its
rationality was tested. Subsequently, a fuzzy height
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adjustment controller was established. Finally, the con-
troller was substituted into the cosimulation platform
to test the rationality of the proposed height adjustment
method. The variation rule of the system parameters
was reasonable, which verified the feasibility of the
cosimulation method.

2) The cosimulation results showed that the proposed
fuzzy controller can realize the height adjustment
control of the drum. Thus, a long term no-load or
overload operating state of the motor can be prevented.
With pressure of the hydraulic cylinder and the stator
winding current of the motor as the controlling vari-
ables, the proposed fuzzy control method has a high
development and application potential in the field of
shearer height adjustment.

3) The cosimulation platform based on ADAMS/ MAT-
LAB/AMESim, with the shearer height-adjustment
object as the example, ran well, and the results were
reasonable, which provides a theoretical basis for the
subsequent experimental verification.

VI. FUTURE WORK

Due to the limitations of time and computer calculation effi-
ciency, only the feasibility of the proposed height adjustment
method and mechanical-electrical-hydraulic cosimulation
was tested herein, without making too many improvements to
the fuzzy control method. Therefore, the following problems
still remain to be solved in the design of the mechanical-
electrical-hydraulic cosimulation platform and control per-
formance analysis for height adjustment of a shearer:

1) It is necessary to further improve the model of the
shearer traction system and refine the mechanical-
electrical-hydraulic cosimulation model of the shearer
based on industrial tests and other means;

2) To expand the applicability of the proposed height
adjustment method, more performance tests are needed
according to the different characteristics of coal and
rock in different coal faces. Furthermore, robustness
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of the control method with different system parameters
also needs to be evaluated.
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