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ABSTRACT This paper addresses the asynchronous control design problem for discrete-time Markov
switching Lur’e systems. First, to schedule the information transmission and data collisions by the limited
shared channel, the round-robin protocol is adopted in scheduling the information exchange order. Second,
considering that the system mode cannot be identified to controller, a mode observer is employed to evaluate
the system mode by menas of a hidden Markov model. To address this issue, the mode-dependent stochastic
Lur’e type Lyapunov functional is analyzed, and several sufficient criteria with prescribed performance are
attained to guarantee the stochastically stable of the resulting discrete-timeMSLSs. Finally, the effectiveness
and applicability of the gained technique is verified by a practical example.

INDEX TERMS T-S fuzzy system, fading channel, static output feedback control, actuator fault.

I. INTRODUCTION
The past years have witnessed extensive study of nonlin-
ear systems, due to the complexity of the physical systems
[1], [2]. Accordingly, many efficient tools have been
exhibited to approximate the resulting systems, such as
Takagi-Sugeno model [3]–[5], Inter-type 2 method [6], Lur’e
systems [7], and so on. Among them, Lur’e systems (LSs)
consist of both linear terms and bounded nonlinear ones.
Compared with the normal nonlinear systems, LSs have been
proved to be more general. Up to now, considerable attention
has been paid to the issues of LSs, such as stability, robust
control, distributed filtering [7], [8].

Over the past decades, because of the existence of ran-
domly occurring phenomena, for instance, sudden envi-
ronment changes, component failure, et al, the structure
and parameters of the hybrid systems become variable.
To depict the above mentioned changes, Markov switching
systems (MSSs) have been developed. In recent years, many
fruitful achievements have been reported on MSSs [9]–[13].
However, as implied in [9]–[13], most of the existing results
are concerned on linear systems. In reality, more nonlin-
ear systems are involved, and the investigation of nonlinear
models is more realistic. Recently, the Markov switching
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Lur’e systems (MSLSs) have been developed, each mode is
consisted by a linear term and a mode-dependent nonlinearity
[8], [14]. In [15], the quadratic Lyapunov functional (LF) was
adopted in analysis of discrete-time MSLS. To further reduce
the conservatism, based on a sector condition assumption,
sufficient criteria was proposed by means of a Lur’e-type LF.
Lately, a cone-bounded nonlinearity was considered in the
analysis and synthesis of MSLS [8], [16]. However, research
on MSLSs is far away from maturity and deserves further
study.

On the other hand, owing to the advantage of network
communication, considerable attention has been shifted to
networked systems [17]–[23]. Meanwhile, many unfavor-
able network-induced factors are also emerged, for instance,
quantization effects [18], cyber attack [19], time delays [20],
data collisions [21], fading channel [23], and many con-
trol issues have been addressed [24]–[26]. For mitigating
the communication burden and saving limited resources,
many communication protocols (try-once-discard proto-
col [27], event-triggered scheme [28], stochastic communi-
cation law [29]) are introduced to schedule the information
transmission via a shared channel. Note that these protocols
aiming at reducing transmission volume at each time. Differ-
ently, to mitigates data collision by scheduling transmission
frequency, the round-robin protocol (RRP) is recognized as a
time-periodic multiple strategy to access the network [30].
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Nevertheless, to our knowledge, the asynchronous control
issue for discrete-timeMSLSs with RRP has not been studied
yet. It is an interesting issue worth further exploring, which
inspires us to shorten this a gap.

Motivated by the above discussion, this work is dedicated
to the asynchronous control for discrete-time MSLS by the
means of RRP. Different from previous work, to schedule
the information transmission and data collisions by the lim-
ited shared channel, the RRP is adopted in scheduling the
information exchange order. Meanwhile, to tackle the dif-
ficulty in acquiring system mode information, a detector is
introduced and an asynchronous controller is established.
By formulating the mode-dependent stochastic Lur’e type
LK, several sufficient criteria are attained to guarantee the
stochastically stable of the resulting discrete-time MSLSs.
At last, the effectiveness of this work is verified by a practical
simulation.

Notations: In this research, Rn symbolizes the n-
dimensional Euclidean. diag{. . .} means the block diagonal
matrix. sym{Z } indicates Z> + Z . δ(·) means Kronecker
product. E {·} is the mathematic expectation.

II. PRELIMINARY
Consider a type of discrete-time Markov switching Lur’e
system (DTMSLS) described by:

δ(k + 1) = A(ϕk )δ(k)+ B(ϕk )u(k)
+D(ϕk )ζ (ϕk ,H (ϕk )δ(k))
+G(ϕk )ω(k),

z(k) = F(ϕk )δ(k),

(1)

where δ(k) ∈ Rnδ , z(k) ∈ Rnz , u(k) ∈ Rnu are, respec-
tively, the state vector, output vector and control input.
ζ (ϕk ,H (ϕk )δ(k)) ∈ Rnh represents a mode-dependent mem-
oryless nonlinear function (MDNS). ω(k) ∈ Rnw describes
the disturbance taking values in l2[0,∞). The sequence
{ϕk , k ≥ 0} renders a discrete-time Markov chain (DTMC)
having values over a set Lp = {1, 2, . . . ,Lp}. In this work,
the transition probabilities (TPs) of DTMSLS (1) are elicited
as

αij = Pr{ϕk+1 = j | ϕk = i},

where αij ≥ 0, and
∑

j∈Lp
αij = 1, ∀i, j ∈ Lp, and TP matrix

5 = [αij]Lp×Lp .
For technique convenience, ∀i ∈ Lp, A(ϕk ), B(ϕk ), D(ϕk ),

F(ϕk ), G(ϕk ), H (ϕk ), and ζ (ϕk ,H (ϕk )δ(k)) are denoted by
Ai, Bi, Di, Fi, Gi, Hi and ζi(Hiδ(k)), respectively.
In DTMSLS (1), it is assumed that ith MDNF ζ (i,Hiδ(k))

satisfies the Assumption 1 as below.
Assumption 1: The ith MDNF ζi(Hiδ(k)) satisfies a

cone-bounded sector function, and can be decentralized into
ϕk = i ∈ Lp, the ith MDNF ζi(Hiδ(k)) satisfies: 1) ζi(0) = 0
and 2) there exists the diagonal matrices �i ∈ Rnh×nh ≥ 0,
∀q = 1, 2, . . . , nh, one has

ζi,(q)(Hiδ(k))[ζi,(q)(Hiδ(k))−�iHiδ(k)](q) ≤ 0.

By Assumption 1, for ∀i ∈ Lp, the following condition
holds:

ζ>i (Hiδ(k))2i[ζi(Hiδ(k))−�iHiδ(k)] ≤ 0, (2)

where matrices 2i ≥ 0 (∀i ∈ Lp). Obviously, by inequality
(2), one concludes ∀i ∈ Lp

0 ≤ ζ>i (Hiδ(k))2iζi(Hiδ(k)) ≤ ζ>i (Hiδ(k))2i�iHiδ(k)

≤ δ>(k)H>i �i2i�iHiδ(k). (3)

In reality, the network-induced phenomenon exists in the
data transmission, such as data collisions, information quan-
tization, et al. To improve the communication of network,
one assumes that the sensors are divided into nu, then can be
written as u(k) = [u1(k) u2(k) . . . unu (k)]

>. To omit the data
collisions in the limited communication resources, the RRP
is adopted to decide which sensor is permitted to access the
network. More specifically, only one node is activated by
means of RRP with respect to ϑk ∈ {1, 2, . . . , nu}. Here,
the RRP is scheduled in the following principle:

ϑk = mod(k − 1, nu)+ 1. (4)

where mod(k − 1, nu) implies the remainder on division of
k − 1 by nu.
In the RRP scheduling, the chosen node ϑk satisfies

ϑk+nu = ϑk . Setting ϑk = k , by the means of zero-holder
(ZOH) approach, a compensation strategy is adopted for the
unselected signals. Therefore, ∀m = 1, 2, . . . , nu, one has

um(k) =

{
vm(k), if ϑk = m
um(k − 1), otherwise

(5)

where um(k) stands for the measurement signal after being
sent out of mth sensor.

Letting u(k) = [u1(k) u2(k) . . . unu (k)]
>, δyx = δ(x − y),

9m , diag{δ1m, δ
2
m, . . . , δ

nu
m } (m = 1, 2, . . . , nu), where

δ(x − y) =

{
1, if x = y

0, otherwise
. Thus, ∀ϑk = 1, 2, . . . , ny,

a compensator (6) is elicited as

u(k) = 9ϑk v(k)+ (I −9ϑk )u(k − 1). (6)

On the other hand, due to the difficulty in acquiring sys-
tem mode information, in most circumstance, the DTMC
ϕk is unmeasured. To solve this issue, a mode detector is
applied, in which the output is denoted by another DTMC
τk . Obviously, the DTMC τk runs asynchronous with ϕk .
Thus, a HMM is presented to model the aforementioned
asynchronous phenomena, for any i ∈ Lp, t ∈ Lc =
{1, 2, . . . ,Lc}, such that the detection probability matrix
8 = [βit ]Lp×Lc is obtained:

βit = Prob{τk = t | ϕk = i}, (7)

where βit ∈ [0, 1], and
∑

t∈Lc
βit = 1.
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Following the above discussion, the purpose of this work is
provide a suitable control scheme for the DTMSLS (1). In this
work, the control strategy is inferred as

v(k) = K (τk )δ(k), (8)

where K (τk ) represents the controller gains to be solved.
For ϕk = i, τk = t , the overall closed-loop DTMSLS (9)

can be derived:
δ(k + 1) = (Ai + Bi9ϑkKt )δ(k)
+Bi(I −9ϑk )u(k − 1)
+Diζ i(Hiδ(k))+ Giω(k),

z(k) = Fiδ(k)

(9)

Before proceeding further, one introduces the definitions
for DTMSLS (9).
Definition 1 [18]: The DTMSLS (9) with ω(k) = 0 is

called stochastic stable (SS), if for any (δ0, ϑ0), one has

E

{
∞∑
k=0

‖ δ(k) ‖2| δ0, ϑ0

}
<∞.

This work aiming at exploring theH∞ asynchronous con-
trol problem for DTMSLS (9) with RRP such that

(i) DTMSLS (9) is SS in mean square;
(ii) Under zero initial condition, the controlled output z(k)

meets
∞∑
k=0

E
{
‖ δ(k) ‖2

}
< γ 2

∞∑
k=0

E
{
‖ %(k) ‖2

}
.

III. MAIN RESULTS
Theorem 1 The DTMSLS (9) is called SS, if there exists
matrices Piϑk > 0, 2iϑk > 0, Riϑk > 0 and Qitϑk > 0
(i, j ∈ Lp, t ∈ Lc, ϑk = {1, 2, . . . , nu}) such that

−Piϑk +
∑
t∈Lc

βitQitϑk < 0, (10)[
6

(1)
it 6

(2)>
it

∗ −diag{I , 4−1i ,P−1iϑk+1 ,2
−1
iϑk+1 ,R

−1
ϑk+1
}

]
< 0, (11)

where

6
(1)
it =


−Qitϑk 0 0 0
∗ −Riϑk 0 0
∗ ∗ −4i −2iϑk 0
∗ ∗ ∗ −γ 2I

 ,
6

(2)
it =

[
6

(2)>
1it 6

(2)>
2it 6

(2)>
3it 6

(2)>
3it 6

(2)>
4it

]>
,

6
(2)
1it = [Fi 0 0 0], 6(2)

2it = [�iHi 0 0 0],

6
(2)
3it =

[
Ai + Bi9ϑkKt Bi(I −9ϑk ) Di Gi

]
,

6
(2)
4it = [9ϑkKt (I −9ϑk ) 0 0],

Piϑk+1 =
∑
j∈Lp

αijPjϑk+1 ,Riϑk+1 =
∑
j∈Lp

αijRjϑk+1 ,

2iϑk+1 =
∑
j∈Lp

αijH>j �j2jϑk+1�jHj.

Proof: In this work, establishing the Lyapunov functional
for DTMSLS (9) as follows:

V (δk , ϕk , ϑk ) =
3∑
s=1

Vs(δk , ϕk , ϑk ), (12)

where

V1(δk , ϕk , ϑk ) = δ>(k)Pϕkϑk δ(k),

V2(δk , ϕk , ϑk ) = ζ>(ϕk ,H (ϕk )δ(k))2ϕkϑk�(ϕk )H (ϕk )δ(k),

V3(δk , ϕk , ϑk ) = u>(k − 1)Riϑku(k − 1).

With calculating the difference of V (λk , ϕk , ϑk ), which
implies

E {1V (λk , ϕk , ϑk )} = E {V (λk+1, ϕk+1 = j, ϑk+1 | λk ,

ϕk = i, ϑk )} − V (λk , ϕk , ϑk ).

For the first term of (12), E {1V1(λk , ϕk , ϑk )} infers

E {1V1(δk , ϕk , ϑk )}

= E {δ>(k + 1)Piϑk+1δ(k + 1)− δ>(k)Pϕkϑk δ(k)}

= E

∑
t∈Lc

βitδ
>(k)A>itϑkPiϑk+1Aitϑk δ(k)

+

∑
t∈Lc

βitsym{δ>(k)A>itϑkPiϑk+1Bi(I −9ϑk )u(k − 1)}

+

∑
t∈Lc

βitsym{δ>(k)A>itϑkPiϑk+1Diζi(Hiδ(k))}

+

∑
t∈Lc

βitsym{δ>(k)A>itϑkPiϑk+1Giω(k)}

+

∑
t∈Lc

βitu>(k − 1)(Bi(I −9ϑk ))
>Piϑk+1

×Bi(I −9ϑk )u(k − 1)

+

Nc∑
t=1

βitsym{u>(k − 1)(Bi(I −9ϑk ))
>

×Piϑk+1Diζi(Hiδ(k))}

+

Nc∑
t=1

βitsym{u>(k − 1)(Bi(I −9ϑk ))
>Piϑk+1Giω(k)}

+

Nc∑
t=1

βitζ
>
i (Hiδ(k))D>i Piϑk+1Diζi(Hiδ(k))

+

Nc∑
t=1

βitsym{ζ>i (Hiδ(k))D>i Piϑk+1Giω(k)}

+

Nc∑
t=1

βitω
>(k)G>i Piϑk+1Giω(k)

}
−δ>(k)Piϑk δ(k). (13)

Besides, for the second term of (12), one has

E {1V2(δk , ϕk , ϑk )}

≤ E
{
δ>(k + 1)H>(ϑk+1)�(ϑk+1)2ϕk+1ϑk+1
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×�(ϑk+1)H (ϑk+1)δ(k + 1)

−ζ>i (Hiδ(k))2iζi(Hiδ(k))}

= E
{
δ>(k)A>itϑk2iϑk+1Aitϑk δ(k)

+sym{δ>(k)A>itϑk2iϑk+1Bi(I −9ϑk )u(k − 1)}

+sym{δ>(k)A>itϑk2iϑk+1Diζi(Hiδ(k))}

+sym{δ>(k)A>itϑk2iϑk+1Giω(k)}

+u>(k − 1)(Bi(I −9ϑk ))
>2iϑk+1

×Bi(I −9ϑk )u(k − 1)

+sym{u>(k − 1)(Bi(I −9ϑk ))
>

×2iϑk+1Diζi(Hiδ(k))}

+sym{u>(k − 1)(Bi(I −9ϑk ))
>2iϑk+1Giω(k)}

+ζ>i (Hiδ(k))D>i 2iϑk+1Diζi(Hiδ(k))

+sym{ζ>i (Hiδ(k))D>i 2iϑk+1Giω(k)}

+ω>(k)G>i 2iϑk+1Giω(k)
}

−ζ>i (Hiδ(k))2iϑk ζi(Hiδ(k)). (14)

On the other hand, for the last term of (12), one derives

E {1V3(δk , ϕk , ϑk )}

= E
{
δ>(k)K>t 9

>
ϑk
Riϑk+19ϑkKtδ(k)

+sym{δ>(k)K>t 9
>
ϑk
Riϑk+1 (I −9ϑk )u(k − 1)}

+u>(k − 1)(I −9ϑk )
>Riϑk+1 (I −9ϑk )

×u(k − 1)− u>(k − 1)Riϑku(k − 1). (15)

Recalling Assumption 1, one has

ζ>i (Hiδ(k))4i(ζ>i (Hiδ(k))−�iHiδ(k)) ≤ 0. (16)

With respect to (16), one further achieves

0 ≤ −sym{ζ>i (Hiδ(k))4i(ζ>i (Hiδ(k))−�iHiδ(k))}

≤ −ζ>i (Hiδ(k))4iζ
>
i (Hiδ(k))

+δ>(k)H>i �i4i�iHiδ(k). (17)

Letting η(k) = [δ>(k) u>(k − 1) ζ>i (Hiδ(k))]>, and
combining (12)-(17), one also has

E {1V (δk , ϕk , ϑk )} ≤ 1V (δk , ϕk , ϑk )

+sym
{
ζ>i (Hiδ(k))4i(ζ>i (Hiδ(k))−�iHiδ(k))

}
≤ δ>(k)

∑
t∈Lc

βitQitϑk − Piϑk

 δ(k)
+η>(k)

(
6

(1)
it +6

(2)>
it (Piϑk+1 +2iϑk+1 )6

(2)
it

)
η(k),

(18)

where

6
(1)
it =

−Qitϑk + H>i �i4i�iHi 0 0
∗ −Riϑk 0
∗ ∗ −4i −2iϑk

 ,
6

(2)
it =

[
Aitϑk Bi(I −9ϑk ) Di

]
.

When ω(k) = 0, the inequality (18) can be written as

E {1V1(δk , ϕk , ϑk )}

≤ δ>(k)

∑
t∈Lc

βitQitϑk − Piϑk

 δ(k)
+η>(k)

(
6

(1)
it +6

(2)>
it (Piϑk+1 +2iϑk+1 )6

(2)
it

)
η(k)

≤ δ>(k)

∑
t∈Lc

βitQitϑk − Piϑk

 δ(k)
≤ −χE {‖ δ(k) ‖2}, (19)

whereχ=mini∈Np,ϑk∈{1,2,...,ny}{λmin(Piϑk )−
∑Lc

t=1 βitQitϑk }.
Apparently, it follows from (18) that χ > 0. Consequently,
it can be concluded that

E

{
∞∑
k=0

‖ δ(k) ‖2
}
< −

1
χ

E

{
∞∑
k=0

1V (δk , ϕk , ϑk )

}

≤
1
χ

E {V (δ0, ϕ0, ϑ0)} <∞. (20)

By Definition 1, the DTMSLS (9) with ω(k) = 0 is SS.
In what follows, the analysis ofH∞ performance for DTM-

SLS (9) with ω(k) 6= 0 will be attained. Define the H∞
performance index:

J (T ) = E

{
T∑
k=0

z>(k)z(k)− γ 2ω>(k)ω(k)

}
. (21)

By combing (12)-(17) and (21),J (T ) can be reformulated
as

J (T ) ≤ E

{
T∑
k=0

[z>(k)z(k)− γ 2ω>(k)ω(k)

+1V (δk , ϑk )]}

≤ λ>(k)

∑
t∈Lc

βitQitϑk − Piϑk

 δ(k)
+η>(k)

(
6

(1)
it +6

(2)>
it Piϑk+16

(2)
it

+6
(2)>
it 2iϑk+16

(2)
it

)
η(k), (22)

where η(k) = [η>(k) ω>(k)]>.
In addition, by utilizing Schur complement to (10) and

(11), we have

J (T ) < 0. (23)

Letting T →∞, it is readily obtained that
∞∑
k=0

E {‖ z(k) ‖2} ≤ γ 2
∞∑
k=0

E {‖ ω(k) ‖2}. (24)

Therefore, by Definition 1, it is easy to see that the DTM-
SLS (9) is SS withH∞ performance index γ . This completes
the proof. �
Theorem 2: For a given scalar γ , the DTMSLS (9) is called

SS, if there exists matrices Piϑk > 0, 2̃iϑk > 0, Riϑk > 0,
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Qitϑk > 0, 4̃i > 0 (i, j ∈ Lp, t ∈ Lc, ϑk = {1, 2, . . . , nu}),
matrices Z , K t , such that

−Piϑk +
∑
t∈Lc

βitQitϑk < 0, (25)[
6̃

(1)
it 6̃

(2)>
it

∗ 6̃
(3)
it

]
< 0, (26)

where

6̃
(3)
it = diag{−I , 4̃i − sym{Y },P iϑk+1 ,

−→
2 iϑk+1 ,Riϑk+1},

P iϑk+1 = diag{P1ϑk+1 − sym{Z },P2ϑk+1 − sym{Z },

. . . ,PLpϑk+1 − sym{Z }},
−→
2 iϑk+1 = diag{2̃1ϑk+1 − sym{Y }, 2̃2ϑk+1 − sym{Y },

. . . , 2̃Lpϑk+1 − sym{Y }},

Riϑk+1 = diag{R1ϑk+1 − sym{Z },R2ϑk+1 − sym{Z },

. . . ,RLpϑk+1 − sym{Z }},

6̃
(1)
it =


−Qitϑ 0 0 0
∗ −Riϑk 0 0
∗ ∗ −4i −2iϑk 0
∗ ∗ ∗ −γ 2I

 ,
6̃

(2)
it =

[
6

(2)>
1it 6

(2)>
2it 6̃

(2)>
3it 6̃

(2)>
4it 6̃

(2)>
5it

]>
,

6̃
(2)>
3it =

[
√
αi16

(2)>
3it
√
αi26

(2)>
3it . . .

√
αiLp6

(2)>
3it

]
,

6̃
(2)>
4it =

[
√
αi1H>1 �16

(2)>
3it
√
αi2H>2 �26

(2)>
3it

. . .
√
αiLpH

>
Lp�Lp6

(2)>
3it

]
,

6̃
(2)>
5it =

[
√
αi16

(2)>
4it
√
αi26

(2)>
4it . . .

√
αiLp6

(2)>
4it

]
,

6
(2)
1it = [FiZ 0 0 0], 6

(2)
2it = [�iHiZ 0 0 0],

6
(2)
3it =

[
AiZ + Bi9ϑkK t Bi(I −9ϑk )Z DiY Gi

]
,

6
(2)
4it = [9ϑkK t (I −9ϑk )Z 0 0].

In this case, the desired asynchronous controller gain can
be acquired as

Kt = KZ−1. (27)

Proof: First, let Pitϑk = Z>PitϑkZ , Qitϑk = Z>QitϑkZ ,
Riϑk = Z>RiϑkZ , 2̃iϑk = Z>2iϑkZ , 4̃i = Z>4iZ .

In fact, for any matrix Z , one has

Piϑk = Piϑk − sym{Z }

= ZPiϑkZ
>
− sym{Z } ≥ −P−1iϑk . (28)

Similarly, one has

Riϑk = Ri − sym{Z } ≥ −R
−1
iϑk ,

4̂i = 4̃i − sym{Z } ≥ −4
−1
i ,

2̂iϑk = 2̃iϑk − sym{Z } ≥ −2
−1
iϑk . (29)

By the equation (27), one has K t = KtZ . Then, pre- and
post multiplication by diag{Z>,Z>,Z>, I , I , I , I , I , I } and

its transpose, which implies (10) and (11) that (25) and (26)
hold, respectively. The proof is finished. �
Remark 1: Remarkably, in (5), the compensation scheme

is adopt to improve the signal transmission. By neglecting
the compensation scheme, ∀m = 1, 2, . . . , nu, the received
measurement signal (RMS) is reduces to

um(k) =

{
um(k), if ϑk = m
0, otherwise

(30)

Hereafter, the RMS is degraded as:

u(k) = 9ϑku(k). (31)

Consequently, the closed-loop DTMSLS (9) can be formu-
lated as 

δ(k + 1) = (Ai + Bi9ϑkKt )δ(k)
+Diζi(Hiδ(k))+ Giω(k),

z(k) = Fiδ(k)

(32)

To exploit the analysis and control synthesis of system (32),
the sufficient conditions are summarized in corollary 1.
Corollary 1: For a given scalar γ , the DTMSLS (32) is

called SS, if there exists matrices Piϑk > 0, 2̃iϑk > 0,
Qitϑk > 0, 4̃i > 0 (i, j ∈ Lp, t ∈ Lc, ϑk = {1, 2, . . . , nu}),
matrices Z , K t , such that (33) holds and[

6̃
(1)
it 6̃

(2)>
it

∗ 6̃
(3)
it

]
< 0, (33)

where

6̃
(3)
it = diag{−I , 4̃i − sym{Z },P iϑk+1 ,

−→
2 iϑk+1},

P iϑk+1 = diag{P1ϑk+1 − sym{Z },P2ϑk+1 − sym{Z },

. . . ,PLpϑk+1 − sym{Z }},
−→
2 iϑk+1 = diag{2̃1ϑk+1 − sym{Z }, 2̃2ϑk+1 − sym{Z },

. . . , 2̃Lpϑk+1 − sym{Z }},

6̃
(1)
it =

−Qitϑ 0 0
∗ −4i −2iϑk 0
∗ ∗ −γ 2I

 ,
6̃

(2)
it =

[
6

(2)>
1it 6

(2)>
2it 6̃

(2)>
3it 6̃

(2)>
4it

]>
,

6̃
(2)>
3it =

[
√
αi16

(2)>
3it
√
αi26

(2)>
3it . . .

√
αiLp6

(2)>
3it

]
,

6̃
(2)>
4it =

[
√
αi1H>1 �16

(2)>
3it
√
αi2H>2 �26

(2)>
3it

. . .
√
αiLpH

>
Lp�Lp6

(2)>
3it

]
,

6
(2)
1it = [FiZ 0 0], 6

(2)
2it = [�iHiZ 0 0],

6
(2)
3it =

[
AiZ + Bi9ϑkK t Di Gi

]
.

IV. A NUMERICAL EXAMPLE
To verify the applicability of the derived results, a practical
F-404 aircraft engine model (FAEM) is considered [31], [32].
Note that in FAEM, the signals are transmitted via a wireless
communication with RRP. In this model, the system matrix
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A(k) =

 −1.46 0 2.4280
0.1643 −0.4 −0.3788
0.3107 0 −2.23

. Obviously, it is easy to

discretize the FAEM into

A(k) =

 0.5227 0 0.5009
0.0458 0.8187 −0.0783
0.0641 0 0.3638

 .
As stated in [31], [32], in FAEM, δ1(k), δ2(k) stand for

horizontal position, δ3(k) symbolizes the altitude. By absorb-
ing the external disturbance and other unexpected factors,
the resulting parameters are elicited as

A1 =

 0.9 0.1 0
0.1 0.5 0
0.35 0 0.65

 ,
B1 =

 0.22 0.3 −0.2
0.01 0.22 0.59
−0.3 0 −0.09

 ,
A2 =

 0.81 0 0.05
0 0.58 0

0.17 0 0.3

 ,
B2 =

 0.1 0.1 −0.18
0.22 0.22 0.33
−0.35 0.5 0.1

 ,
and other parameters are given as

D1 = [0.6 0.2 0.1]>,D2 = [0.4 1.2 0.7],

D3 = [1.1 0.6 1.2],

H1 = [0.5 0.3 0.1],H2 = [0.4 − 0.5 0.3],

H3 = [1.5 − 0.9 0.4],

Fs = diag{1.1, 1.3, 1.2}(s = 1, 2, 3), �1 = 0.8, �2 = 1.5,

�1 = 0.8,G1 = 0.15,G2 = 0.3,G3 = 0.2.

Similarly, the TPM of DTMSLS (1) is selected as

5 =

[
0.55 0.45
0.2 0.8

]
Recalling the NDNF ζi(Hiδ(k)) in [16], the parameters of

DTMSLS (1) are selected as:

D1 = [0.6 0.8 1]>, D2 = [0.4 0.7 1]>,

D3 = [0.4 0.5 − 0.3]>, H1 = [0.5 0.3 0.1],

H2 = [0.4 − 0.5 0.3], H3 = [1.5 − 0.9 0.4],

�1 = 0.8, �2 = 1.5, �3 = 0.7.

More specifically, the Lur’e nonlinear functions are
given by ζ1(H1δ(k)) = 0.3�1δ(k)(1 + cos(H1δ(k))),
ζ2(H2δ(k)) = 0.3�2δ(k)(1 − exp(−0.1(H2δ(k))2)),
ζ3(H3δ(k)) = 0.3�3δ(k)(1 − sin(H3δ(k))). In the following
subsection, three cases will be exploit for DTMSLS (9):
Case 1: Lp > Lc; Case 2: Lp = Lc; Case 3: Lp < Lc.
Case 1: Lp > Lc, i.e., Lp = {1, 2}, Lc = {1},8 = [1 1]>.

In view of LMIs of Theorem 2, the controller gains Kt can
be attained as below:

K1 =

−0.1226 −1.3304 −0.1018
−3.4558 0.0071 −0.7832
2.3613 −0.9765 0.6108

 .
Letting x(0) = [−0.2 0.5 0.3]>, ω(k) = 0.25 exp(−0.2k)

sin(5k), the resulting plant mode and the controller mode
are shown in Fig. 1. Based on the achieved controller gains,
the state evolution δ(k) is plotted in Fig. 2, from which one
can concludes the closed-loop DTMSLS is convergence.

FIGURE 1. The switching sequences of DTMCs ϑk and τk .

FIGURE 2. The state evolution δ(k).

Case 2: Lp = Lc, i.e., Lp = Lc = {1, 2},

8 =

[
0.35 0.65
0.9 0.1

]
.

In view of LMIs of Theorem 2, the controller gains Kt can
be attained as below:

K1 =

 0.4907 −1.5784 0.0366
−3.3455 −0.0252 −0.8267
2.3567 −1.1673 0.6355

 ,
K2 =

−1.5211 −0.5028 −0.4689
−3.4639 0.0670 −0.8231
2.1005 −0.7704 0.6331

 .
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FIGURE 3. The switching sequences of DTMCs ϑk and τk .

FIGURE 4. The state evolution δ(k).

Similar to Case 1, the resulting plant mode and the con-
troller mode are shown in Fig. 3. Based on the achieved
controller gains, the state evolution δ(k) is plotted in Fig. 4,
from which one can concludes the closed-loop DTMSLS is
convergence.
Case 3: Lp < Lc, i.e., Lp = {1, 2}, Lc = {1, 2, 3}, 8 =[
0.25 0.4 0.35
0.5 0.2 0.3

]
.

In view of LMIs of Theorem 2, the controller gains Kt can
be attained as below:

K1 =

 0.1430 −1.4382 −0.0566
−3.4437 0.0137 −0.7987
2.4425 −1.0904 0.6054

 ,
K2 =

−0.4979 −1.0959 −0.1897
−3.4883 0.0176 −0.7777
2.2985 −0.8844 0.6200


K3 =

−0.1648 −1.2727 −0.1220
−3.4670 0.0135 −0.7864
2.3576 −0.9659 0.6227

 .
Similarly, the resulting plant mode and the controller mode

are shown in Fig. 5. Based on the achieved controller gains,

FIGURE 5. The switching sequences of DTMCs ϑk and τk .

FIGURE 6. The state evolution δ(k).

the state evolution δ(k) is plotted in Fig. 6, from which one
can concludes the closed-loop DTMSLS is convergence.

V. CONCLUSION
This paper has investigated the asynchronous control design
problem for discrete-time MSLSs. To schedule the informa-
tion transmission and data collisions by the limited shared
channel, the RRP is adopted in scheduling the information
exchange order. Then, the mode-dependent stochastic Lur’e
type LF is analyzed, and several sufficient criteria with pre-
scribed performance are attained to guarantee the stochas-
tically stable of the resulting discrete-time MSLSs. Finally,
the effectiveness and applicability of the gained technique is
verified by a practical FAEM. Furthermore, how to extend the
derived results to multi-agent systems is our future research
topic.
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