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ABSTRACT This paper addresses the tracking accuracy and robustness enhancement problems of fuzzy
model based predictive control (MPC) for a class of nonlinear systems subjecting to lumped disturbances
composed of bounded unknown disturbances and a model-plant mismatch. Main features of the proposed
method are: 1) A fuzzy disturbance observer and an auxiliary controller are jointly developed to meet a
certain control objective that minimizes the peak bound of the errors caused by the lumped disturbances,
which eventually leads to desired offset-free tracking performance. 2) A pre-computed robust positively
invariant set whose central is the nominal state is derived with the premise of input-to-state stability. 3)
Tightened constraints for the guarantee of recursive feasibility of MPC is computed off-line and the quasi-
min-max fuzzy MPC is elaborately designed according to a piecewise Lyapunov function. Furthermore,
characteristics of robustness enhancement and low on-line computational burden are obtained as compared
with the existing offset-free MPCs, and further the impacts of estimation error arising from sampling time
and admissible target set on the system performance are also discussed. Two simulation examples verify the
effectiveness of the proposed approach ensuring the satisfaction of constraints.

INDEX TERMS Fuzzy discrete disturbance observer, robust model predictive control, T-S fuzzy models,
input-to-state stability.

I. INTRODUCTION
Model predictive control (MPC), which can predict the future
process behavior and optimize the control input with the con-
sideration of various constraints, has been extensively studied
in the past decades [1]. However, for the general MPC, the
control performance is significantly challenged when the
industrial process characterizes large nonlinearity over a wide
operating range and subjects to unknown strong disturbances
and uncertainties [2], such familiar example of this sort of
processes is the continuous stirred tank reactor (CSTR) in
chemical plant [3], or boiler-turbine unit in power plant [4].
First, tracking offset is an unavoidable problem which will
trouble the MPC and cause the tracking performance degra-
dation. Although the disturbance rejection methods, such
as disturbance estimation with feedforward compensation,
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have been regarded as effective strategies to counteract the
disturbances, the recursive feasibility which is the intrinsic
attribute of MPC for stability becomes a difficult issue to
be managed since the separate frame design procedure. Sec-
ond, for nonlinear systems in the presence of disturbances,
the requirement of robustness becomes serious matters that
the controller designed on a single nominal model is never
probably representing the dynamics of the true plant. Third,
within the framework of the existing disturbance observer
based model predictive fuzzy control strategies, the original
control input constraints for the model-based predictive con-
trol are undermined by the disturbance compensation in the
composite control law.

A. LITERATURE REVIEW
It is well known that Takagi-Sugeno (T-S) model has been
widely used to approximate the system’s nonlinearity [5]–[7].
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Many theoretical results on stability analysis and controller
synthesis has been obtained T-S fuzzy models, in which suf-
ficient conditions of stability are converted into a set of linear
matrix inequalities (LMIs) based on a common Lyapunov
function (CLF) [8] or a piecewise Lyapunov function (PLF)
[9]. Considering the presence of uncertainty and disturbance
in application, the stabilization with performance indexes
of H2 [10] and H∞ [11] is achieved to satisfy the robust
requirements. To solve the control problem of the nonlin-
ear dynamic systems with persistent bounded disturbances,
a fuzzy observer-based or filter-based fuzzy controller was
developed to minimize the upper bound of L∞ gain of the
closed-loop system [12], [13]. The tracking accuracy was
further enhanced in [14], in which the modeled disturbances
were estimated by a novel fuzzy disturbance observer and
then compensated in the compound control law, in term of the
semiglobally input-to-state practically stability of the closed-
loop system. More recently, a disturbance observer-based
integral slide-mode control scheme was proposed on the T-S
fuzzy model to deal with the control problem of nonlinear
system subjecting to non-periodic form of disturbance [15].
For more complicated chaotic processes, a fuzzy logic con-
troller was proposed with stability analysis in [16]. Despite
such great achievements, there are still some performance
improvements to be made in industrial process with various
constraints, such as transient control performance and/or eco-
nomic efficiency.

Among the advanced control methods, MPC has strong
ability to address the issues of transient performance and deal
with various constraints during design stage, appearing in
[17]–[19]. T-S fuzzy model-based predictive control with the
issues of stability and optimization has been designed on the
basis of PLFs in [20]. Xia et al. developed new sufficient
stability conditions for the fuzzy MPC through the tech-
nique of slack matrices [21]. Afterwards, T-S fuzzy model-
based predictive control has been successfully applied in
many processes, such as energy-efficient office building [22]
and power generation [23]. Although the nonlinear behav-
ior or parameter variation of the system have been considered
in the aforementioned methods, the appearance of distur-
bances, which is ubiquitous in the industry process, can cause
severe degradation of the control performance [24]. Thus, for
uncertain discrete-time T-S fuzzy systems with the consid-
eration of input constraints and disturbance, a robust model
predictive controller was developed in accordance of input-
to-state stability (ISS) and the robust positively invariant
(RPI) set for T-S systems was further investigated [25], [26].

It should be noted that the disturbances mentioned above
are usually assumed to be smooth and centered around zero,
regarded as general disturbances. When there are strong type
disturbances intruding into the loop, field engineers will be
confused by the problem of tracking offset. Pannocchia and
Bemporad [27] proposed an offset-free MPC by estimating
the integrated disturbances through a steady-state Kalman
filter, in which the target set-point was optimally computed
by formulating the estimated disturbance into the steady-

state equations. Based on the T-S fuzzy model, Wu et al.
[23] has extended the offset-free MPC to nonlinear system
and applied it to a boiler-turbine unit. As an alternative,
disturbance observer (DOB) provides another possibility for
the estimation of disturbance [28]. In [29], a DOB basedMPC
for linear systems was proposed, in terms of ISS stability, to
cancel out the disturbances effect from the control input via
feedforward channel. Because the control design framework
is on the basis of continuous time, the time interval reserved
for control computation is expected to be as small as possible
and the disturbance varying rate is required to be slow. In [30],
the perturbations of a mobile robot treated as input addictive
disturbances were estimated by an extended state observer
(ESO) and compensated through the control law, thus the
tracking performance of the distributed model predictive con-
trol was improved. The input disturbance compensation may
violate the constraints of the model predictive control, which
may lead to the performance degradation or even instability of
the model predictive control. For nonlinear controlled plant,
a fuzzy RMPC with ESO was proposed in [31], where the
lumped disturbances could be estimated through the ESO
and alleviated by an appropriate disturbance compensator.
It was observed from the simulation that a better transient
response in disturbance compensation could be achieved.
However, due to the RMPC and ESOwere designed individu-
ally, the disturbance compensation broke the optimality of the
constrained predictive control system. Moreover, the recur-
sive feasibility of the control scheme was not considered.

Recently, in [32], a novel method called tube-based MPC
for the linear systems with bounded disturbances was pro-
vided, where the robustness can be enhanced by using an
auxiliary controller. A disturbance RPI set was computed
to approximate the adverse effect of disturbances, through
which strong stability result can be obtained. Defined from
the RPI set, the center of the ‘‘tube’’ is the trajectory of the
corresponding nominal system driven by the conventional
constrained MPC, while all possible trajectories of the per-
turbed system are constrained in it. The state of the nominal
system, which is free from the disturbance, can guarantee the
MPC to be recursively feasible. In [33], the linear tube-based
MPC design approachwas extended to nonlinear system. And
in [34], a robust MPC was developed for a class of hybrid
systems using the technique of RPI set, in which the ISS
stability of the control system can be guaranteed. In [35],
state observer was further considered in the tube-based MPC
design.

Consequently, within the framework of conventional
tube-based MPC, disturbances with features of finite
energy or slow variation can be well handled. However,
the tracking offset is still an urgent problem to be solved when
the disturbances are strong and there is still a lot of research
to be done to meet the challenges of large nonlinear systems.

B. NOVELTY AND CONTRIBUTION
In light of tube-based MPC, this paper proposes a dis-
turbance observer based fuzzy model-based predictive
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FIGURE 1. Block diagram of the overall system.

control (DOBFMPC) approach, which is shown in FIG-
URE 1 to address the aforementioned control challenges
for industry process. Three controllers are involved in the
DOBFMPC framework, namely, RMPC, discrete DOB and
aux-controller. With the evolution of the system state, all the
controllers and the fuzzy nominal model are updated accord-
ing to the scheduling signal. The nominal input ū generated
by the RMPC on the fuzzy nominal model fulfills a major
role in tracking the set-point xs, which can guarantee the
optimality of the system without disturbances. The estimated
disturbance d̂ , as a feed-forward compensating signal, is the
output of discrete DOB designed with the consideration of
sampling time. The remaining control input generated by the
aux-controller is used to alleviate the deviation between real
plant state x and nominal state x̄. It should be noted that
the ultimate bound of the error state ex is determined by
both the discrete DOB and the aux-controller, in which the
impact factors are the disturbance variation and the selection
of sampling time. For this reason, the DOB and aux-controller
are jointly designed as shown in FIGURE 1 to meet a certain
control objective that minimizes the peak bound of the error
state. The RPI set used to constrain the error state and the
tightened constraints acted on the RMPC optimization can
be computed off-line. Consequently, DOBFMPC consisted of
RMPC, discrete DOB and aux-controller is proposed for the
fuzzy system, which improves the tracking performance and
robustness of the control system.

To our best knowledge, a unified framework of discrete
fuzzy DOB and fuzzy MPC for nonlinear systems subject
to disturbances has never been reported in literature so far.
Contributions and qualitative improvements of the proposed
DOBFMPC approach compared with the previous literatures
can be summarized as follows:
1) Compared with [30], [31], this paper proposes a novel

offset-free MPC strategy with enhanced robustness in terms
of aux-controller, and with the satisfactory of recursive feasi-
bility that the global stability is achieved.
2) Unlike the tube-based MPC [32], [34] and the approach

in [29], a discrete-time control strategy with full considera-
tion of sampling time is developed for a nonlinear plant. The
disturbance rejection’s ability is improved and model-plant
mismatch arising from the T-S fuzzy modeling is compen-
sated.

3)Moreover, a novel RPI set solution for T-S fuzzy system
is derived by constructing a new ISS-Lyapunov condition.

The rest of the paper is organized as follows. Section 2
presents relevant concepts, definitions and the control struc-
ture. Integrated design of the disturbance observer and
aux-controller is provided in Section 3. The robust MPC
design is presented in Section 4. Simulations are carried
out in Section 5. Finally, some conclusions of the proposed
approach are provided in Section 6.
Notation:Given two sets A and B, theMinkowski sumation

is defined as A⊕B = {a+b|a ∈ A, b ∈ B} and the Pontryagin
difference is defined as A	B = {a|a⊕B ⊂ A}. ||w|| denotes
the Euclidean norm and the norm ||w||∞ = sup

0≤i≤N−1
||w(i||).

II. PRELIMINARIES
A. DEFINITIONS
Based on the definition of K− functions, K∞− functions
and KL− functions in [37], the input-to-state stability of a
discrete nonlinear system is given as follows
Definition 1 (ISS [37]): A discrete nonlinear system x(k +

1) = f (x(k), d(k)) is called input-to-state stable if there exist
β ∈ KL and γ ∈ K such that for any bounded disturbance
d(k) and any initial state x(0), the behavior of x(k) satisfies

‖x(k)‖ ≤ β(‖x(0)‖ , k)+ γ ( sup
0≤i≤k−1

‖d(i)‖) (1)

Definition 2 (ISS-Lyapunov Function [37]): For a discrete
nonlinear system x(k+1) = f (x(k), d(k)), a positive definite
function V (x) is called an ISS-Lyapunov function if there
exist α1, α2, α3 ∈ K∞ and γ ∈ K such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

V (x(k + 1))− V (x(k)) ≤ −α3(‖x(k)‖)+ γ (‖d(k)‖)

Lemma 1 [37]): A discrete nonlinear system x(k + 1) =
f (x(k), d(k)) is ISS, if an ISS-Lyapunov function can be
found for it.
Definition 3 (RPI):Consider a nonlinear system x(k+1) =

f (x(k), d(k)). A set � is called a RPI set for the closed-loop
system with control law π , if ∀x(k) ∈ �, x(k + 1) ∈ �,
∀d ∈ D where D is a compact set.
Assumption 1: The lumped disturbance d(k) :=

[d1(k), . . . dm(k)] ∈ W is bounded and the disturbance
deviation 1d(k) := d(k) − d(k − 1) satisfies 1d(k) ∈ D =
{1d : Fd1d ≤ Ts · σ } where the matrix Fd and the vector σ
are assumed to be constant with σ > 0. The state and control
input of the system are subject to the constraints x(k) ∈ X
and u(k) ∈ U, respectively, where the origin is contained in
the interior of X and U which are assumed to be compact.

B. T-S FUZZY MODEL
We consider a class of continuous nonlinear system with
multiple disturbances described by

ẋ = f (x, u,w) (2)

where x = [x1, . . . , xn] ∈ Rn is the state, u = [u1, . . . , um] ∈
Rm is the control input and w = [w1, . . . ,wm] ∈ Rm is the
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disturbance satisfying the matching condition that the dis-
turbances enter the plant through the same input distribution
matrix as the control input.

Using the approximation-based modeling method, a non-
linear system can be represented by the following discrete-
time T-S fuzzy model with the sampling time Ts.

Rl : If ν1 is M l
1 and . . . νυ is M l

υ

Then x(k + 1) = Alx(k)+ Bl(u(k)+ d(k)) (3)

where l ∈ NL+ and L is the number of inference rules.
M l

1, . . . ,M
l
υ are fuzzy set and ν := [ν1, ν1, . . . , νυ ] are

scheduling signals. x(k) ∈ Rn, u(k) ∈ Rm and d(k) ∈ Rm

represent the vector of state, input and lumped disturbances,
respectively.
Remark 1: The lumped disturbances are mainly composed

of plant uncertainties, model-plant mismatches, modeling
errors and external disturbances.

The discrete-time perturbed dynamic fuzzy system used as
the model for the controller design below can be rewritten as

x(k + 1) = Aµx(k)+ Bµ(u(k)+ d(k)) (4)

where Aµ :=
∑L

l=1 µl(ν)Al and Bµ :=
∑L

l=1 µl(ν)Bl , µl(ν)
is the normalized membership function.

III. LOCAL ROBUST CONTROLLER DESIGN WITH
DISTURBANCE OBSERVER
To alleviate the influence of unknown disturbances on the
model predictive control system, fuzzy DOB and aux-
controller are jointly designed in this section. The fuzzy DOB
is designed to estimate the value of the disturbances and
make a direct compensation for the MPC, while the aux-
controller is designed to limit the estimation error. To reduce
the conservativeness of theMPC, the aux-controller andDOB
are designed synthetically so that the estimation error RPI set
is as small as possible, which will be used to calculate the
tightened constraints for the RMPC

A. FUZZY DISCRETE DISTURBANCE OBSERVER
In this subsection, a discrete fuzzy disturbance observer
(FDOB) is firstly developed to estimate the lumped dis-
turbances. Extending the study in [26] for fuzzy system,
the dynamics of the FDOB can be constructed as{
θ (k + 1)=θ (k)+ Lµ

{
(Aµ−In)x(k)+Bµ(u(k)+d̂(k))

}
d̂(k) = Lµx(k)− θ (k)

(5)

where θ (k) is the observer state variable, Lµ is the observer
gain and In is an identity matrix.

Denoting the estimation error ed (k) := d(k) − d̂(k), and
then the estimation error dynamics can be given as

ed (k + 1) = (Im − LµBµ)ed (k)+1d(k + 1) (6)

Lemma 2: Suppose that the pair (Im, Bµ) is observable
and the observer gain Lµ are chosen such that the system (6)

is stable, the estimation error will asymptotically converge to
a bound in the order of O(Ts).
Proof: The proof can be referred to [37] and [38].
The stability of (6) can be guaranteed in condition of the

pair (Im, Bµ) is observable which implies that Bµ is of full
column-rank, i.e., rank(Bµ) = m. In most control problem,
such condition can be satisfied by choosing appropriate con-
trol inputs. Further, various methods can be applied here to
choose the observer gain Lµ, such as pole-placement or the
method provided in [38]. In this paper, the observer gain is
elaborately designed tomeet a global goal, which is presented
in the following section.
Corollary 1: Suppose lim

k→∞
1d(k) = 0, the lumped distur-

bances d(k) can be accurately estimated as k goes to infinity.
Proof: Since (Im, Bµ) is observable, then Im − LµBµ is

Schur (i.e., the corresponding eigenvalues are located strictly
inside the unit disk), the system (6) is ISS from1d(k) to state
ed (k). Then, there exist β ∈ KL and γ ∈ K, such that

‖ed (k)‖ ≤ β(‖ed (0)‖ , k)+ γ ( sup
0≤i≤k−1

‖1d(i)‖).

Considering that lim
k→∞

1d(k) = 0 and β(‖ed (0)‖ , k)→ 0

as k → ∞, the state ‖ed (k →∞)‖ → 0, i.e., lim
k→∞

d(k) −

d̂(k) = 0.
Remark 2: If 1d(k → ∞) = 0 in (6), the estimation

error will be ed (k → ∞) = 0. Therefore, the disturbance
observer (5) can accurately estimate the disturbance. It should
be noted that the smaller the sampling time Ts, the smaller
the estimation error, then the estimation error can be limited
due to the assumption of the disturbance changing rate in
Assumption 1. To prohibit the undesirable transient response,
it is necessary to initialize the observer state to θ0 = Lµx(0)
where x(0) is the initial state of the plant, since the developed
observer gain Lµ may be large.
In [38], the approach of pole placement was used to deter-

mine the observer gain, which was simple but not suited for
the fuzzy system. Moreover, as it is pointed out in Section I,
both the aux-controller and the DOB have great influences on
the performance of the control system. Thus, a novel design
approach is proposed in the next subsection, which jointly
determines the aux-controller and the DOB gain.

B. JOINT DESIGN OF DISCRETE DOB AND
AUX-CONTROLLER
In this subsection, we first suppose that there are no distur-
bances appeared in the system, and the system (4) can be
expressed in the following fuzzy nominal form

x̄(k + 1) = Aµx̄(k)+ Bµū(k) (7)

where x̄(k) is the nominal state satisfying x̄(k) ∈ X̄, and ū(k)
is the nominal input satisfying ū(k) ∈ Ū.
Remark 3: Due to the existence of d(k), the compact sets

satisfy X̄ ⊂ X, Ū ⊂ U, where the set (X̄, Ū) is prerequisite
for the implementation of MPC.
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To force the system state x(k) close to the nominal state
x̄(k) in the presence of lumped disturbances d(k), a composite
control law u(k) for the system (4) is proposed

u(k) = ū(k)+ Kµex(k)− d̂(k) (8)

where Kµ is the gain of the aux-controller, which can bring
the enhanced robustness characteristic for the control system.

Combining (4), (7) and (8), the dynamic error state ex can
be expressed as

ex(k + 1) = Aµex(k)+ Bµ(ũ(k)+ d(k)) (9a)

ũ(k) = Kµex(k)− d̂(k) (9b)

Substituting (9b) into (9a) yields

ex(k + 1) = (Aµ + BµKµ)ex(k)+ Bµed (k) (10)

Combining (6) and (10), the closed-loop of the augmented
error system can be constructed as[
ex(k + 1)
ed (k + 1)

]
=

[
Aµ + BµKµ Bµ

0 Im − LµBµ

] [
ex(k)
ed (k)

]
+

[
0
Im

]
1d(k + 1) (11)

Theorem 1: Suppose that Assumption 1 is satisfied for the
system (9a). If Kµ and Lµ are selected in such a way that
Aµ + BµKµ and Im − LµBµ are Schur matrices, the system
(11) under the proposed control law (9b) is ISS and the error
state ex(k) is bounded in the order of O(Ts).
Proof:
1) Since bothAµ+BµKµ and Im−LµBµ are Schurmatrices,

[
Aµ + BµKµ Bµ

0 Im − LµBµ

]
is also a Schur matrix. Thus, the closed-loop system (11) is
ISS [37].
2) Since the closed-loop system (11) is ISS, there exist β ∈

KL and γ ∈ K, such that∥∥∥∥[ ex(k)ed (k)

]∥∥∥∥ ≤ β(∥∥∥∥[ ex(0)ed (0)

]∥∥∥∥ , k)+ γ ( sup
0≤i≤k−1

‖1d(i)‖)

(12)

Considering Assumption 1 and the Lemma 2, the state ex(k)
is bounded to ‖1d(k)‖∞, which is not related to the ‖d(k)‖∞.
Thus, we finish the proof.
Remark 4: From Theorem 1, the upper bound of ex(k)

is determined by the selection of Kµ, Lµ and ‖1d(k)‖∞.
Furthermore, the sampling time Ts is also a non-negligible
factor as indicated in Lemma 2.
Lemma 3: Suppose that Assumption 1 is satisfied for sys-

tem (9a) and lim
k→∞

1d(k) = 0. If Kµ and Lµ are calculated to

ensure that Aµ + BµKµ and Im − LµBµ are Schur matrices,
the lumped disturbances d(k) can be attenuated from the state
ex(k) under the control law (9b) as k goes to infinity.
Proof: For system (10), because Im−LµBµ is Schur matrix

and lim
k→∞

1d(k) = 0, one can get ed (k → ∞) = 0 from

the Corollary 1. Because Aµ + BµKµ is Schur matrix, then
lim
k→∞

ex(k) = 0. Thus, the impact of disturbances can be

eliminated from the state ex(k).

C. MAIN RESULTS
Theorem 1 already obtained only provides a design crite-
rion for making the system (9a) ISS stable. In this subsec-
tion, the problem of obtaining the aux-controller gains and
observer gains will be solved with the technique of LMI.
In [39], a minimal RPI was sought to express the minimal
influence of the disturbances for the linear system. For the
fuzzy system considered in this paper, the future behavior
of the system is unknown, which brings difficulties for the
solution of minimal RPI set using the reachable set method
[40]. Thus, an alternative method is proposed here to find the
minimal RPI set.
Reconsidering the disturbance deviation constraint D, one

can find an outer ellipsoid E(Pd ) = {1d ∈ Rm
:

1dTPd1d ≤ 1, Pd > 0} that approximates D.
Considering system (11) and choosing ex(k) as the con-

trolled output, one can get

∗20c

[
ex(k + 1)
ed (k + 1)

]
=

[
Aµ + BµKµ Bµ

0 Im − LµBµ

]
︸ ︷︷ ︸

Aclµ

×

[
ex(k)
ed (k)

]

+

[
0
Im

]
︸ ︷︷ ︸
Bclµ

1d(k)

ex(k) =
[
In 0

]
︸ ︷︷ ︸
Cclµ

[
ex(k)
ed (k)

]
(13)

Denoting the error state e(k) :=
[
ex(k)T ed (k)T

]T ,
the following lemma shows that there exists a controlled
output bound for system (13) with the input bound E(Pd ).
Define Pµ :=

∑L
i=1 µi(ν)Pi and P

+
µ :=

∑L
i=1 µi(ν

+)Pi in
which Pi is the piecewise Lyapunov matrix for the i-th local
model of the fuzzy system, the following Lemma is derived.
Lemma 4: Consider the system (13) and suppose e(0) = 0.

If there exist matrices Pµ = (Pµ)T and P+µ = (P+µ )
T , scalars

ρ > 0, χ > 0 and 0 < τ < 1, such that[
(Aclµ )

TP+µA
cl
µ − τPµ (Aclµ )

TP+µB
cl
µ

(Bclµ )
TP+µA

cl
µ (Bclµ )

TP+µB
cl
µ − ρPd

]
< 0 (14a)

(τ − 1)Pµ + (Ccl
µ )

TCcl
µ < 0 (14b)

ρ − χ < 0 (14c)

Then ex(k)T ex(k) < χ is satisfied for 1d(k)TPd1d(k) ≤
1, ∀k ≥ 1 and the system (13) is ISS.

Proof: Given in the Appendix.
It should be emphasized that inequalities (14a), (14b),

(14c) are a bilinear matrix inequality (BMI) problem which
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is difficult to solve. Through the analysis of the formula (28),
we can find that the parameter τ plays the role of decay rate
of the closed-loop system. To solve the BMI problem to reach
the minimization of the upper bound χ , we can do a line
search over 0 < τ < 1 or resort to PENBMI toolbox [41].
Remark 5: Lemma4will be transformed to the result in [42]

where an RPI set is identified for linear systems, if we add the
condition τ + ρ = 1 into the LMIs. The value of ρ will be
decreased during the minimization of χ , when considering
the constraint of (14c).

To derive the feedback controller gains, the observer gains
and the upper bound χ , the following Theorem 2 is given for
the closed-loop system (13).
Theorem 2: Considering fuzzy system (13) and suppose

e(0) = 0, if there exist positive-definite matrices Xi (or Xk ),
positive-definitematrixQ, matricesGj,Fj,Hm, scalars ρ > 0,
χ > 0 and 0 < τ < 1, such that the following minimization
is feasible

min
Q,Gj,Fj,Hm,ρ,τ

χ (15)

subject to (16a)-(16e)

−Xk 0 0 0 AiGj + BiFj
∗ −Q 0 0 0
∗ ∗ −Xk 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −τ (Gj + GTj − Xi)
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Bi 0
Q− HmBi 0

0 0
0 Q
0 0
−τQ Q− BTi H

T
m

∗ −ρPd


< 0 (16a)

[
(τ − 1)In Xi

Xi −In

]
< 0 (16b)

ρ − χ < 0 (16c)

where i, j, k,m ∈ NL+. Then, the system (13) is ultimate
bounded corresponding to the control law (8b), where the
aux-controller gain Kµ =

∑L
j=1 µj(ν)Kj with Kj = FjG

−1
j ,

and the observer gain Lµ =
∑L

m=1 µm(ν)Lm with Lm =
Q−1Hm are obtained.
Proof: Given in the Appendix.
Remark 6: The positive matrix Pµ = diag{Rµ, Q} is used

to construct a partial piecewise Lyapunov function, which
is less conservative than that using a common Lyapunov
function. The reason for applying the common Lyapunov
function Q is that the disturbance estimation error region can
be constructed by a fixed ellipsoid set.
Remark 7: The upper bound χ we obtained is determined

by the chosen of ‖1d(k)‖Pd ≤ 1 whose volume is influenced
by the weight matrix Pd . In practice, the determination of Pd

should be in accordance to the plant characteristics and oper-
ation environment, where the larger the compact set volume,
the more conservative the controller design will be, and vice
versa.

In terms of Theorem 2, the aux-controller and the distur-
bance observer are elaborately designed, and system state
x(k) can be regulated converging to the tube centered at the
nominal state x̄(k) while k goes to infinity. The remaining
work is to design a robust MPC to regulate the nominal state
x̄(k) to the set-point value.

IV. ROBUST FUZZY MPC
The remaining unsolved issue of the composite control law
(8) is the nominal control input ū which mainly determines
the tracking performance of the system. Since the scheduling
signal can be measured at the sampling instant, quasi-min-
max RMPC [19], acknowledged as an efficient controller
whose first control action, can be designed with full consid-
eration of the model, and it will be redesigned for the fuzzy
nominal model (7) with piecewise Lyapunov function.

A. SOLUTION OF THE TIGHTENED CONSTRAINTS
In this subsection, the tightened constraints for the RMPC
will be calculated. Obviously, it is difficult to achieve the
optimal control performance by designing the predictive con-
troller under the original constraints (X, U). As stated in
Remark 3, the existence of lumped disturbances d(k) causes
tighter constraints for the state X and control input U of
the RMPC. Therefore, the tightened constraints (X̄, Ū) are
required to be calculated first.

Denoting �x := {ex ∈ Rn
: ‖ex‖∞ < χ1/2

}, the tightened
state constraint can be determined from the calculation of
X̄ = X 	 �x . The region �x is a RPI set of state ex ,
which can be used to approximate the adverse effect of the
disturbances [39].

The tightened input constraint Ū can be determined cor-
responding to the tightened state constraint X̄. Denoting �d
as the RPI set of the disturbance estimation error state ed ,
the constraint for the estimated disturbance can be defined as
W̃ :=W⊕�d .

Reconsider the composite control law (8) for the nonlinear
system (4). The nominal control law is ū(k) = u(k)+ d̂(k)−
Kµex(k), the original input constraints u ∈ U can be guar-
anteed by satisfying the tightened constraint ū ∈ Ū for the
fuzzy nominal system. The tightened input constraint can be
calculated from Ū = U 	

(
2⊕ (−W̃)

)
where 2 = Kµ�x ,

and 2 can be solved following approach given in [27]:

2 = Co{Ki�x , ∀i = 1, 2, . . . ,L}

where Co denotes the convex hull.

Substituting Pµ =
[
Rµ 0
0 Q

]
into (29), we have

ex(k)TRµex(k)+ ed (k)TQed (k) ≤
ρ

1− τ
(17)

Since ex(k)TRµex(k) > 0, we can obtain ed (k)TQed (k) ≤
ρ/(1 − τ ). Therefore, denoting �d := {ed ∈ Rq

:
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ed (k)TQed (k) ≤ ρ/(1− τ )}, we can determine the constraint
for the estimated disturbance. It is noted that the W̃ can
also be obtained by artificially expanding the presupposed
disturbance bounded region instead of using the conservative
condition ed (k)TQed (k) ≤ ρ/(1− τ ).

B. QUASI-MIN-MAX FMPC
The purpose of the fuzzy MPC is to regulate nominal fuzzy
system (6) from an initial point (x̄(0), ū(0)) to a target point
(xs, us). Suppose that the set point (xs, us) is admissible
under the tightened constraints. The following infinite hori-
zon objective function is considered in the MPC design

J∞0 (k) =
∞∑
i=0

{
‖x̄(k + i|k)− xs‖2Q0

+ ‖ū(k + i|k)− us‖2R0

}
= ‖x̄(k|k)−xs‖2Q0

+‖ū(k|k)−us‖2R0 + J
∞

1 (k) (18)

where Q0 > 0, R0 > 0 are the state weighting matrix and
input weight matrix, respectively. Considering a piecewise
Lyapunov function V (x̄(k+ i|k)− xs) = ‖x̄(k + i|k)− xs‖2Pµ
where Pµ :=

∑L
l=1 µl(ν)Pl with positive matrices Pl ,

the fuzzy nominal model (7) can be robustly stabilized by
satisfying the following constraint

V (x̄(k + i+ 1|k)− xs)− V (x̄(k + i|k)− xs)

≤ −‖x̄(k + i|k)− xs‖2Q0
− ‖ū(k + i|k)− us‖2R0 ≤ 0

(19)

Summing (19) from k = 1 to∞ yields J∞1 (k) ≤ V (x̄(k +
1|k)− xs).
Then, the minimization of the objective function is turned

to optimization problem

min ζ (20)

subject to

‖x̄(k|k)− xs‖2Q0
+ ‖ū(k|k)− us‖2R0

+
∥∥Aµ(k|k)(x̄(k|k)− xs)
+ Bµ(k|k)(ū(k|k)− us)

∥∥2
Pµ
≤ ζ (21)

where Aµ(k|k) =
L∑
i=1
µi(k|k)Ai and Bµ(k|k) =

L∑
i=1
µi(k|k)Bi.

Denote Ū0 := Ū 	 us as the input constraints and X̄0 :=

X̄ 	 xs as the state constraints which both centered at the
origin. The peak bound of X̄0 and Ū0 can be defined as
(x̄0,min, x̄0,max) and (ū0,min, ū0,max), respectively.
Considering the steady-state point (x̄s, ūs), the constraints

of the nominal MPC state and input can be expressed as∣∣x̄ t (k + i|k)− x ts∣∣ ≤ x̄ t0,boundary, t = 1, · · · , n, i ≥ 0

(22a)∣∣ūt (k + i|k)− uts∣∣ ≤ ūt0,boundary, t = 1, · · · ,m, i ≥ 1

(22b)

ū0,min ≤ ū0(k|k) ≤ ū0,max, ū0(k|k) = ū(k|k)− us
(22c)

where x̄0,boundary := min(
∣∣x̄0,min

∣∣ , ∣∣x̄0,max
∣∣) and

ū0,boundary := min(
∣∣ū0,min

∣∣ , ∣∣ū0,max
∣∣).

The control inputs of the quasi-min-max MPC can be split
into two parts, i.e.,

{
ū0(k|k), Fµ(x̄(k + i|k)− xs)

}
i≥1, where

ū0(k|k) is a free control action constrained by (22c) and the
remaining control laws rely on the feedback gain Fµ which
is constrained by (22b).

Using LMI-based approach, the optimization problem (19)
can be solved through the following theorem.
Theorem 3: For the nominal fuzzy system (7), the control

inputs
{
ū0(k|k), Fµ(x̄(k + i|k)− xs)

}
i≥1 minimize the worst

case objective function (17) if there exist a decision variable
ū0,s, general matrices Yj, Gj, positive matrices Si (or Sl) and
symmetric matrices U , X , such that the following minimiza-
tion problem is feasible

min
ū0(k|k),Gj,Yj,Si

ζ (23)

subject to (24a)-(24e)
1 ∗ ∗ ∗

Aµ(k|k)(x̄(k|k)− xs)
+Bµ(k|k)ū0(k|k)

Sl ∗ ∗

Q1/2
0 (x̄(k|k)− xs) 0 ζ I ∗

R1/20 ū0(k|k) 0 0 ζ I

 ≥ 0 (24a)


GTj + Gj − Si ∗ ∗ ∗

AiGj + BiYj Sl ∗ ∗

Q1/2
0 Gj 0 ζ I ∗

R1/20 Yj 0 0 ζ I

 ≥ 0 (24b)

[
X ∗

(AiGj + BiYj)T GTj + Gj − Sj

]
≥ 0,

Xtt ≤ (x̄ t0,boundary)
2, t = 1, · · · , n (24c)[

U ∗

Y Tj GTj + Gj − Sj

]
≥ 0,

Utt ≤ (ūt0,boundary)
2, t = 1, · · · ,m (24d)

ū0,min ≤ ū0,s ≤ ū0,max (24e)

where Xtt and Utt are the tth diagonal element of the corre-
sponding matrix, and i, j, l ∈ NL+, then the feedback gain
can be calculated from Fµ :=

∑L
j=1 µj(ν)YjG

−1
j .

Proof: The LMIs (24a)-(24e) are equivalent to the expres-
sion of (21), (19), (22a), (22b), (22c), respectively. Proofs of
Theorem 3 can be found in [6], [43] and thus are not repeated
here.
Remark 8: After the optimization of the worst case infi-

nite horizon objective, we only apply the free control action
ū0(k|k) to the plant and the existence of the feedback gain
Fµ can guarantee the stability of control strategy [19]. The
systemmatrices (Aµ(k|k), Bµ(k|k)) of (24a) are then updated
at the sampling instant according to the scheduling signal ν
measured from the plant.
In conclusion, the algorithm of the proposed DOBFMPC

is summarized as below
Theorem 4: (Recursive feasibility and Stability) The pro-

posed fuzzy MPC with disturbance rejection can asymptoti-
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Algorithm 1
Offline:
Calculate the disturbance observer gain Li=1,··· ,L and aux-
iliary feedback gain Ki=1,··· ,L from inequalities (16a)-
(16c). Compute the tightened constraints of Ū, X̄.
Online:
Step 1: Initialize the system state x(0) and assign it to the
fuzzy nominal model state x̄(0) such that the optimization
problem of (23) is initially feasible for the target (xs, us).
Also, initialize θ0 = Lµx(0) for the fuzzy disturbance
observer.
Step 2: Solve the optimization problem (23), with the
inequalities (24a)-(24e), according to the current state
x̄(k|k) to obtain the control action ū0(k|k) and evolve the
fuzzy disturbance observer (5) to get the current estimated
lumped disturbance d̂(k).
Step 3: Feed the plant with u(k) = ū0(k|k)+ us − d̂(k)+
Kµ(x(k) − x̄(k|k)) following the composite control law
Eq. (8).
Step 4: Measure the real state x(k + 1) at the next time
instant and compute the subsequent state x̄(k + 1) of
the nominal fuzzy system (7) under the control action
ū0(k|k)+ us.
Step 5: Replace (x(k), x̄(k|k)) with (x(k + 1), x̄(k + 1))
and set k = k + 1, then go to Step 2.

cally steer the system state x(k) from a feasible initial state
x(0) to the RPI set �x whose center is the admissible target
state xs.
Proof:
1) The optimization problem (23) is solved considering the

fuzzy nominal model (7) and the tightened constraints at each
sampling instant, and the external disturbances are isolated
from the solution. Therefore, the recursive feasibility can be
guaranteed if the problem (23) is feasible at the initial state
x(0) with the constraints x(0) ∈ X̄ [30].
2) In terms of Theorem 2, ‖ex(k)‖∞ < χ1/2 for all k ≥ 1.

Thus, we have ‖x(k)− xs‖ ≤ β(‖x̄(0)− xs‖ , k)+χ1/2 since
x(k) = x̄(k)+ ex(k) for all k ≥ 1.

Consideringβ(·, k) is aKL-function, thusβ(‖x̄(0)−xs‖ , k)
→ 0 as k → ∞. Then, we have ‖x(k)− xs‖ ≤ χ1/2 as
k →∞.

Thus, the system state x(k) will be eventually driven to the
set xs ⊕�x , where �x = {x ∈ Rn

: ‖x‖∞ < χ1/2
}.

C. SET-POINT TRACKING DISCUSSION
In this section, some treatments to improve the tracking per-
formance of the system are given when the set-point of the
system is not reachable due to tightened constraints. In the
above strategy, the target set-point is assumed to be fixed and
admissible. In case of operating point change, due to the exis-
tence of the tightened constraints X̄ and Ū, the target set-point
may be unreachable which was revealed in [44]. To improve

the feasibility region of the target set-point, the following
approaches can be adopted:
1)Decrease the sampling time as Remark 2 stated. The RPI

set �x and �d will be smaller than that designed under a
larger sampling time since the deviation in disturbance will
be smaller at two sampling instants.
2) Introduce an artificial steady-state point (x ′s, u

′
s) to

evolve the perturbed system to the neighborhood of the
desired steady point (xs, us). The artificial steady point, which
can be determined through minimizing the deviation to the
desired steady point through optimization computation, is an
admissible tracking point [31].

Considering the fuzzy nominal system (7), (x ′s, u
′
s) can be

obtained by solving the following quadratic programming:

min
x ′s,u′s

((
x ′s − xs

)T Qs (x ′s − xs)+ (u′s − us)T Rs (u′s − us))
s.t. (I − Aµ)x ′s − Bµu

′
s = 0

ūmin ≤ u′s ≤ ūmax

x̄min ≤ x ′s ≤ x̄max

where (x̄min, x̄max) and (ūmin, ūmax) are the peak bound of
tightened constraints X̄ and Ū, respectively, Qs = QTs > 0
and Rs = RTs > 0 are symmetric weighting matrices.
3) Note that the lumped disturbances of the system come

from two aspects: internal disturbances and external distur-
bances. The amplitude and rate of external disturbances are
difficult to be intervened, but the internal disturbances can be
intervened by changing the variation of set-point from fast
step variation to slow ramp variation. Both the disturbances
d(k) and1d(k) can be reduced since the disturbances coming
from the modelling error or/and uncertainties can be limited
to a smaller bound between the two neighboring setpoints.
Remark 9: Reducing the sampling time will inevitably

bring an additional computational load, if the computation
is limited, we can resort to other two approaches. For pro-
cess control, engineers usually take the third approach, e.g.,
a ramping power reference input is adopted into the boiler-
turbine unit so that the internal disturbance derivation caused
by model uncertainties is reduced.

V. SIMULATION RESULTS
Two simulation examples are given in this section to demon-
strate the efficiency of the proposed DOBFMPC. The simula-
tions are carried out under Matlab R2017a environment using
the Yalmip toolbox [45].

A. NUMERICAL EXAMPLE
The first example is designed to validate the disturbance
rejection performance of the DOBFMPC. A second-order
perturbed discrete fuzzy system [25] is considered in this
example:

Rule1 : If x1(k) is M1, then

x(k + 1) = A1x(k)+ B1(u(k)+ d(k))

Rule2 : If x1(k) is M2, then

220638 VOLUME 8, 2020



J. Zhu, S. K. Nguang: Fuzzy MPC With Enhanced Robustness for Nonlinear System via a Discrete Disturbance Observer

FIGURE 2. Membership functions of the numerical example.

x(k + 1) = A2x(k)+ B2(u(k)+ d(k))

where

A1 =
[
−0.5 2
−0.1 1.1

]
,A2 =

[
−0.19 0.5
−0.1 −0.2

]
,B1 =

[
4.1
4.8

]
and B2 =

[
3
0.1

]
.

The membership functions are given as

M1(x1) =
1

1+ exp(−2x1)
, M2(x1) = 1−M1(x1)

which are shown in FIGURE 2. The system input satisfies
|u(k)| ≤ 0.8 and the disturbance d(k) satisfies d(k) = 0.2(1−
e−0.25k ), k = 1, . . . ,∞ where |d(k)| ≤ 0.2 and |1d(k)| ≤
0.05.

The weighted parameters for the RMPC are Q0 =

diag{2, 1} and R0 = 0.01. The disturbance region is approx-
imated as E(Pd ) = {1dTPd1d ≤ 1, Pd = 400}.

Following the algorithm scheme in Section IV Part B,
parameters of the proposed approach can be obtained. More
details are presented here. By doing a rough line search with
an step of ±0.1 around initial τ0 = 0.5, scalar τ = 0.7
is obtained by solving the inequalities (16a)-(16c); scalar
τ = 0.67 is finally chosen by carrying out same procedure
with the step of ±0.01. Meanwhile, the controller gains are
obtained; and the peak error state ‖ex‖∞ < χ1/2

= 0.3093
and the estimation error RPI set �d = {ed (k)TQed (k) ≤
1.5282, Q = 400} can be determined. Then, the disturbance
estimation bound |ed | < 0.0618 and auxiliary control bound∥∥Kµex∥∥∞ < 0.1079 can be obtained from the computation.
Thus, a tightened input constraints |ū(k)| ≤ 0.8−0.2−0.1079
−0.0618 = 0.4303 can be found.

The control target is to drive the state from x(0) = [1,−2]T

to the origin. A tube-based MPC (TMPC) developed in [33]
is used for comparison and the control performance is shown
in FIGURE 3. It can be observed that asymptotic stability
can be achieved by the proposed DOBFMPC in the presence
of disturbance, while the TMPC cannot achieve satisfactory

FIGURE 3. System states of the proposed DOBFMPC compared with
TMPC.

FIGURE 4. Control inputs of the proposed approach (dashed marked:
uaux boundary; inner edge of red region: ū boundary; outer edge of red
region: u boundary).

results. The input constraint is not violated during the simula-
tion as shown in FIGURE 4, where the tightened input bound-
aries are marked with red region and the aux-controller input
(abbreviated as uaux) is constrained into the dashed mar- ked
region. The disturbance observer estimates the disturbance
with a relatively small error as shown in FIGURE 5, where
the estimation error is bounded into a dashed marked region.
The evolution of system states encircles nominal states with
the peak normwhose boundaries are marked with a red region
in FIGURE 6.

B. BOILER-TURBINE UNIT
The second simulation is done on a 160MWe oil-fired sub-
critical power plant model to show the strength of the pro-
posed DOBFMPC in case of model-plant mismatches. The
schematic diagram of the power plant is shown in FIGURE 7.
The plant is mainly composed by two parts, i.e. the boiler
and turbine. The basic working principle of the power plant
is energy conversion. The chemical energy stored in the fossil
fuel is transformed into thermal energy of the steam through
the combustion and heat transferring in the boiler, the steam
is then expanded through the turbine, converting its thermal
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FIGURE 5. Disturbance and the estimated disturbance (dashed marked:
ed boundary).

FIGURE 6. Evolution of error states ex (inner edge of red region: ‖ex ‖∞).

FIGURE 7. Typical schematic view of boiler-turbine (red arrows: steam
flow; blue arrows: water flow; black arrows: fuel flow).

energy into mechanical rotational energy, finally the energy
is transformed into electric power through the coaxially con-
nected turbo-generator.

For the boiler-turbine unit control, the presence of
unknown disturbance may cause the deterioration of the
tracking performance. In [46], a nonlinear disturbance rejec-

tion ability, inherited from a sliding mode disturbance
observer, was achieved for the control of the unit with the
premise of slow-tracking demand. In recent works [31],
disturbance observer and FMPC are designed individually.
It was assumed that the disturbances were accurately esti-
mated and then cancelled from true plant to obtain nominal
model. The FMPC was designed on the nominal fuzzy model
but considering the original input constraints coming from the
valve physical limitation. It is obviously to see that the input
constraints for the FMPC calculation should be tightened due
to that the estimated disturbances are one part of the control
compensation. Also, the observation error is not considered
through the whole control design. In this section, we develop
the proposed DOBFMPC into the control of boiler-turbine
unit with the consideration of model-plant mismatch, and the
sampling error causing from the selection of the sampling
time is further considered.

The primary target of boiler-turbine unit control is to adjust
the power output to meet the demand of the grid, mean-
while the steam pressure should be guaranteed within an
appropriate range for the safe operation of the plant. During
the operation, there are strict constraints due to the physical
properties of the actuators.

The mathematic model of the boiler-turbine unit [47] is
given as follows:

Ṗ = −0.0018u2P9/8 + 0.9u1 − 0.15u3
Ė = (0.073u2 − 0.016)P9/8 − 0.1E
ρ̇f = (141u3 − (1.1u2 − 0.19)P)/85

(25)

where state variables P, E , and ρf denote drum pressure
(kg/cm2), electric power (MW ), and water-steam density
(kg/m3), respectively. The inputs variables u1, u2 and u3
represent the valve opening degree of fuel flow, steam con-
trol, and feed-water flow, respectively, which are constrained
within the interval [0,1]. Several typical operating points of
this boiler-turbine unit are shown in TABLE 1.

Denoting the state variables as x = [x1, x2, x3]T :=
[P,E , ρf

]T and considering the external disturbances, mod-
eling errors, the dynamics of the boiler-turbine can be rewrit-
ten as:

ẋ = Abx + Bb(u+ d) (26)

where d is the lumped disturbance, and

Ab =

 0 0 0
−0.016P1/8 −0.1 0
0.19/85 0 0

 ,
Bb =

 0.9 −0.0018P9/8 −0.15
0 0.073P9/8 0
0 −1.1P/85 141/85

 .
Choosing the steam pressure as the scheduling signal,

the membership functions of the fuzzy boiler-turbine system
model can be expressed as [47]:

µ1(P) =
Pmax − P

Pmax − Pmin
, µ2(P) =

P− Pmin

Pmax − Pmin
(27)
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TABLE 1. Typical operating points of the model.

FIGURE 8. Response of the boiler-turbine unit states with different
sampling time.

where Pmin and Pmax are set to be the steam pressure value
from the operating conditions #1 and #7 in TABLE 1, respec-
tively.

Replacing the steam pressure P with Pmin and Pmax,
respectively, we achieve the final T-S fuzzy model

ẋ =
2∑
i=1

µiAix +
2∑
i=1

µiBi(u+ d) (28)

Suppose that the plant is operated at initial state xs =
[108, 66.7, 427.8]T , then at t = 40s, 200s and 400s, the set-
points change to [130, 105, 355.5]T , [108, 66.7, 427.8]T and
[130, 105, 355.5]T respectively. After a long operation of
the boiler-turbine unit, equipment wear and furnace ash will
cause model mismatch. To show the robust performance of
the proposed approach, a severe model-plant mismatch is
considered in the simulation that at t = 360s, all coefficients
of the plant model (24) are reduced to 70% of their original
values. The parameters of the DOBFMPC are set as:

FIGURE 9. Control inputs of the boiler-turbine unit with different
sampling time.

FIGURE 10. Estimated disturbances of the discrete DOB with different
sampling time.

Q0 = diag{100, 200, 10},R0 = diag{1, 1, 1} and |d(k)| ≤
[0.1, 0.05, 0.1]T . Taking into account the operating environ-
ment and the computational burden, the sampling range is
suggested to be from 1s to 8s. To show the impact of the
sampling time, two DOBFMPCs developed with different
sampling times are compared and the results are shown in
FIGUREs 8-11.
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FIGURE 11. State errors from the plant to nominal model with different
sampling time (inner edge of yellow region: ‖ex ‖∞ of case 1; inner edge
of red region: ‖ex ‖∞ of case 2).

Case 1: Set Ts = 2s and suppose the rate of the dis-
turbances are bounded to |1d(k)| ≤ [0.05, 0.01, 0.05]T .
Choosing τ = 0.63, Pd = diag{400, 10000, 400} and solv-
ing the inequalities (16a)-(16c), the peak error state ‖ex‖∞ <

χ1/2
= 0.97 can be obtained. Then, the tightened input

constraints |ū(k)| < [0.87, 0.89, 0.86]T can be computed.
Case 2: Set Ts = 4s and suppose the rate of the dis-

turbances are bounded to |1d(k)| ≤ [0.1, 0.02, 0.1]T .
Choosing τ = 0.63, Pd = diag{100, 2500, 100} and solving
the inequalities (16a)-(16c), the peak error state ‖ex‖∞ <

χ1/2
= 1.66 can be obtained. Then, the tightened input

constraints |ū(k)| < [0.85, 0.88, 0.84]T can be computed.
For a comparison, the robust fuzzy model control (RFC)

method presented in [47] is carried out here in which an anti-
windup strategy is adopted to prevent the windup caused by
the saturation of the actuators.

The system response shown from FIGURE 8 illustrates
that the target states can be tracked with no offset even in
the presence of severe model-plant mismatch. In spite of
the usage of anti-windup strategy, the RFC method performs
large overshoot performance, while the proposed method
shows the strong ability of dealing with input constraints.
Through the simulation verification, without the control input
constraints, the RFC exhibits outstanding performance. How-
ever, the controller designed in this paper incorporates input
constraints in the design process which is also one of the
advantages of model predictive control. We can also discover
that the proposed approach designed with smaller sampling
time has better control performance where the disturbances
coming from the fuzzy modeling error and the model-plant

mismatch. Also, the different disturbance changing rate in
terms of sampling time influences the observer error and
further the control performance. For the same step change
of the set-point, the control inputs of the two cases shown
in FIGURE 9 are different in cases of modeling mismatch
and no mismatch, but the output responses of the boiler-
turbine system are similar owing to the help of disturbance
compensator and the aux-controller. Comparatively, the RPC
method obviously shows a greater overshoot output response
when modelling mismatch occurs, which can be further
observed from the control inputs. It should be stressed that
input tightened constraints calculated offline keep the control
input satisfying constraints during the whole simulation. The
control inputs of the RFC are constrained by the limitation of
the actuators.

The estimations of equivalent disturbances are illustrated
in FIGURE 10, where the modeling errors shown before t =
360s are small and subsequently, the perturbations caused by
model-plant mismatch increase significantly. Thus, model-
plant mismatch, which poses a challenge to control perfor-
mance, cannot be ignored in the field of process control.
FIGURE 11 shows that due to the suppression effect of aux-
controller, the state errors (ex) between nominal model states
and true plant states are kept within a peak norm bound where
the boundaries of case 1 are marked with yellow color region
and the red color region for case 2. Furthermore, we can find
that case 2 with larger sampling time behaves larger state
error boundary than that in case 1. Therefore, reducing the
sampling time helps improve the control performance which
is in accordance to Remark 4.

VI. CONCLUSION
This paper proposes a novel DOBFMPC approach for non-
linear system in the presence of disturbance and various
constraints. To reject the unknown disturbance, a fuzzy DOB
is developed to estimate the disturbance where the distur-
bance estimation error is further considered to enhance the
robustness by an aux-controller. The fuzzy DOB and the aux-
controller are jointly designed, so that the minimization of
disturbance positively invariant set can be achieved. Tight-
ened constraints are calculated to guarantee the recursive fea-
sibility of RMPC in an optimal way. Simulation results show
that the proposed DOBFMPC strategy can effectively drive
the state of the system to the target set-point with satisfactory
transient response.

APPENDIX
Proof of Lemma 4: Multiplying

[
e(k)T 1d(k)T

]
and its

transpose from both side of (14a), respectively, we have

e(k + 1)TP+µe(k+1)−τe(k)
TPµe(k) < ρ1d(k)TPd1d(k)

(29)

Then denoting V (k) := e(k)TPµe(k),W (k) := τ−k+1V (k)
and multiplying (29) with τ−k , we have W (k + 1) −
W (k) < τ−kρ1d(k)TPd1d(k). Summing the inequality
from sampling instant 0 to k − 1 yields W (k) − W (0) <
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ρ
∑k−1

i=0 τ
−i1d(i)TPd1d(i). Due to that1d(i)TPd1d(i) ≤ 1

and e(0) = 0, we can get W (k) < ρ
∑k−1

i=0 τ
−i. Using

0 < τ < 1 and W (k) = τ−k+1V (k), one has V (k) <
ρ
∑k−1

i=0 τ
k−1−i

= ρ
∑k−1

i=0 τ
i
≤ ρ/(1− τ ). Thus, inequality

(29) implies

e(k)TPµe(k) ≤
ρ

1− τ
(30)

Combining (14b) and (14c) into a single inequality matrix
and considering Pd > 0, one has[

(τ − 1)Pµ + (Ccl
µ )

TCcl
µ 0

0 (ρ − χ )Pd

]
< 0 (31)

Multiplying
[
e(k)T 1d(k)T

]
and its transpose from both

side of (31), respectively, one can obtain

ex(k)T ex(k) < (1− τ )e(k)TPµe(k)

+ (χ − ρ)1d(k)TPd1d(k) (32)

Taking 1d(k)TPd1d(k) ≤ 1 into account, inequality (32)
can be written as

ex(k)T ex(k) < (1− τ )e(k)TPµe(k)+ (χ − ρ) (33)

Substituting inequality (30) into (33), we have

ex(k)T ex(k) < χ (34)

Considering (τ − 1)Pµ + (Ccl
µ )

TCcl
µ < 0, the condition

0 < τ < 1 implies (τ − 1)Pµ < (τ − 1)Pµ + (Ccl
µ )

TCcl
µ < 0

and thus Pµ > 0.
From (14a), it hence holds that(
Aclµ
)T

P+µA
cl
µ − Pµ <

(
Aclµ
)T

P+µA
cl
µ − Pµ + (1− τ )Pµ

=

(
Aclµ
)T

P+µA
cl
µ − τPµ < 0.

In conclusion, Aclµ is Schur stable with the satisfaction of

V (k) = e(k)TPµe(k) > 0, e(k)T
((
Aclµ
)T P+µAclµ−Pµ) e(k) <

0. Then, the system (13) is ISS.
Thus, we finish the proof.
Proof of Theorem 2: In terms of Lemma 4, we have the

following proof procedures
1) Following inequality −GTX−1G ≤ X − GT − G

and multiplying diag{I , I , I , I , (GTj )
−1, I , I } and its trans-

pose from both sides of (22a), respectively, then, taking Kj =
YjG
−1
j , Lm = Q−1Hm into account, one has

−Xk 0 0 0 Ai + BiKj
∗ −Q 0 0 0
∗ ∗ −Xk 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −τX−1i
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Bi 0
Q− QLmBi 0

0 0
0 Q
0 0
−τQ Q− BTi L

T
mQ

∗ −ρPd


< 0 (35)

Denoting µi(ν) as µi, it holds that

L∑
i=1

L∑
j=1

L∑
m=1

µiµjµm

×



−Xk 0 0 0 Ai + BiKj
∗ −Q 0 0 0
∗ ∗ −Xk 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −τX−1i
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Bi 0
Q− QLmBi 0

0 0
0 Q
0 0
−τQ Q− BTi L

T
mQ

∗ −ρPd


< 0 (36)

Denoting Ri := X−1i and multiplying diag{I ,Q−1, I ,Q−1,
I , I , I } from both side of (36), one has

−Xk 0 0 0 Aµ + BµKµ
∗ −Q 0 0 0
∗ ∗ −Xk 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −τRµ
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Bµ 0
Iq − LµBµ 0

0 0
0 Q
0 0
−τQ Q− BTµL

T
µQ

∗ −ρPd


< 0

Using the Schur complement, the upper inequality can be
written as

Aµ+
BµKµ

Bµ 0

0 Iq − LµBµ 0
0 0 0
0 0 Iq


T 

X−1k 0 0 0
0 Q 0 0
0 0 X−1k 0
0 0 0 Q



Aµ+
BµKµ
0
0
0

Bµ 0
Iq − LµBµ 0

0 0
0 Iq

+
−τRµ 0 0

0 −τQ Q− BTµL
T
µQ

0 0 −ρPd

 < 0

(37)

VOLUME 8, 2020 220643



J. Zhu, S. K. Nguang: Fuzzy MPC With Enhanced Robustness for Nonlinear System via a Discrete Disturbance Observer

Denoting Pk =

[
Rk 0
0 Q

]
and considering Aclµ =[

Aµ + BµKµ Bµ
0 Iq − LµBµ

]
and Bclµ =

[
0
Iq

]
, we have

[
(Aclµ )

TPkAclµ 0
0 (Bclµ )

TPkBclµ

]
+

[
−τPµ (Aclµ )

TPkBclµ
∗ −ρPd

]
< 0

(38)

Noticing P+µ =
∑L

k=1 µk (ν
+)Pk , the inequality (16a)

holds.
2) Considering Ccl

µ =
[
In 0

]
and substituting Pµ =[

Rµ 0
0 Q

]
into (14b), we have

[
(τ − 1)Ri + In 0

0 (τ − 1)Q

]
< 0 (39)

Since τ < 1 and Q > 0, the above inequality is equivalent
to (τ−1)X−1i +In < 0. Using the Schur complement, it holds
that [

(τ − 1)X−1i In
In −In

]
< 0 (40)

Multiplying diag{Xi, I } from both sides of (40), the
inequality (16b) holds.
3) In terms of Lemma 4, if (16a), (16b) and (16c) hold, the

upper bound of ex can be found, i.e., ‖ex‖∞ < χ1/2.
The proof of Theorem 2 is completed.
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