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ABSTRACT The Cooperative Adaptive Cruise Control (CACC) is considered to be an effective method
to improve traffic flow. However, the comfortability and economy need to be paid more attention to
besides stability and safety. In this paper, a CACC strategy is proposed for an electric vehicle platoon
to improve the economy, following performance, safety, and comfortability characteristics, based on the
model predictive control (MPC) with simulated annealing-particle swarm optimization (SA-PSO) algorithm.
Firstly, the braking force distribution strategy of electric vehicles is designed to improve the efficiency of
regenerative braking. Secondly, based on the variable vehicle spacing with fixed time headway, a vehicle
platoon following strategy is established to meet the following performance and safety. Thirdly, an MPC
controller is used to control the states of the vehicles in the platoon to satisfy the performance. A multi-
objective function of the MPC controller is established, including the economy, following performance,
comfortability, and safety of the vehicles in the platoon. The SA-PSO algorithm effectively solves the
problem of the discrete variables in the objective function. Simulations are conducted to validate the
sufficient conditions of the economy, following performance, comfortability, and safety. Simulation results
demonstrate that the economic efficiency of the CACC strategywith the economic index is 16.5% higher than
that of the existing ACC strategy. Meanwhile, the other characteristics can also meet the control requirement.

INDEX TERMS Cooperative adaptive cruise control, simulated annealing, particle swarm optimization,
vehicle platoon, electric vehicle, model predictive control.

I. INTRODUCTION
With the development of the automotive industry and the
growth of social car ownership, the contradiction between
the increasing number of road vehicles and the restriction of
urban traffic and highway load is also intensifying. Drivers
need to know more about their driving environment to plan
the driving route better and improve driving safety and
comfortability. In this context, it is necessary to introduce
advanced driver assistance systems (ADAS) into automotive
technology. There are two primary development directions
of ADAS: one is to realize the interconnection from vehicle
to vehicle (V2V), vehicle to infrastructure(V2I), and from
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infrastructure to vehicle (I2V); the other is to realize the
adaptive cruise control (ACC). Cooperative adaptive cruise
control (CACC) can be regarded as a combination of the V2V
and ACC [1], [2].

The cooperative adaptive cruise control (CACC) problem
is the extension of the adaptive cruise control (ACC) problem.
The ACC strategy adjusts vehicle driving state according to
the front situation. When no following target exists, the vehi-
cle will cruise at the speed set by the driver. When the target
exists, the controller will correct the speed according to the
safety distance to achieve the following-up condition. How-
ever, it’s easy to cause a time delay as the rear vehicle identi-
fies the state changing of the previous vehicle.When numbers
of vehicles turn onACCmode in the same lane, the time delay
of accumulation leads to the oscillation of vehicles. CACC
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can solve the time delay. Based on intelligent vehicle path
planning and driving behavior planning, the vehicular net-
working technology and intelligent transportation technology
are introduced to establish real-time information interaction
between different vehicles in the platoon to achieve the over-
all optimal driving strategy of the platoon [3], [4].

The driving control strategy with the ACC system in
traffic flow has been extensively studied. Goñi-Ros et al.
designed an ACC controller for a single vehicle to reduce
traffic congestion by adjusting the control parameters such
as the desired time interval and space range [5], [6].
Spiliopoulou Anastasia et al. used a predictive algorithm
controller to estimate fuel consumption at different traffic
scenarios in nonlinear and linear systems [6]–[8]. Andreas
Weißmann et al. designedMPC controllers to get the states of
the vehicle in every predictive horizon and adjusted the accel-
eration and velocity to follow the optimal trajectory [9]–[12].
Wu Yunkai et al. designed the MPC algorithm in fault diag-
nosis and tolerant control [13], [14].

The essence of CACC is that vehicles drive in platoon
mode and communicate with each other simultaneously [15].
The advantage of CACC is that it can significantly opti-
mize the driving speed profile and make the driving pro-
cess more stable [16], [17]. Lidstrom, K, et al. developed a
longitudinal controller that uses information exchanged via
wireless communication with other cooperative vehicles to
achieve string-stable platooning [18]. Liu, Yonggui, et al. pro-
posed two distributed control protocols in which consider not
only lateral control but also longitudinal control [19]. Shet,
Rahi Avinash, et al. investigated the performance of cruise
controls with respect to safety, reliability, passenger comfort
and expanded the adaptive cruise control and cooperative
adaptive cruise control to a new controller specifically aiming
at higher passenger comfort [20]. Li, Ye, et al developed a
control strategy of an integrated system of cooperative adap-
tive cruise control (CACC) and variable speed limit (VSL) to
reduce rear-end collision risks near freeway bottlenecks [21].
Zhu Yuanheng et al. transformed the non-uniform CACC
problem into the error dynamic adjustment problem using
the dynamic parameter estimation, and proposed an adaptive
optimal control method based on the online data learning
optimal feedback [22]. Chang Ben-Jye et al. proposed a
vehicle group cooperative adaptive driving (CAD) method
based on mobile edge computing, which effectively avoided
the vibration phenomenon in platoon [23]. The CACC sys-
tem designed by Milanes Vicente et al. is composed of two
controllers: one for managing the proximity to the front
vehicle and the other for adjusting the vehicle joining the
platoon [24].

Van Arem Bart et al. designed a traffic flow simulation
model called MIXIC to study the impact of the merging
scheme from four lanes to three lanes on traffic flow [25].
The results showed that compared with the vehicles without
the merging scheme, the stability and efficiency of traffic
flow are slightly improved. CACC system achieves good fuel
economy. Almannaa et al. pointed out that the CACC system

can save about 19% of vehicle fuel consumption than drivers
in longitudinal control [26]. Zhai, Chunjie, et al. proposed an
Eco-CACC strategy for a heterogeneous platoon of heavy-
duty vehicles with time delays. The Eco-CACC strategy
significantly improve the fuel economy of heterogeneous
platoon. [27]. Dannheim et al. optimized the speed and route
of the CACC system [28]. The results showed that the CACC
system has a positive impact on the overall carbon dioxide
emissions of the platoon.

Most of the above research only solves a specific charac-
teristic of the CACC system (platoon stability, fuel economy,
or safety). This paper proposes a multi-objective optimal
CACC strategy consisting of the braking force distribution
strategy, vehicle platoon following strategy, and MPC con-
troller. Compared with the current work, the main contribu-
tions of this paper are as follows:

1) Considering the influence of regenerative braking on the
economy, the braking force distribution strategy is formulated
in the CACC system;

2) An MPC strategy with multi-objective function includ-
ing following performance, comfortability, safety, and econ-
omy is proposed to improve the drivability of vehicle platoon;

3) The optimal global solution is calculated accurately in
the predictive horizon by using the SA-PSO algorithm, and
the nonlinear problem of discrete state is solved.

The remainder of this article is organized as follows.
Section II presents the longitudinal dynamics model, battery
model, and braking force distribution model of the vehi-
cle platoon. Section III presents the vehicle platoon fol-
lowing strategy, and the MPC controller is designed with a
multi-objective function and SA-PSO algorithm. Section IV
implements a simulation of an electric vehicle platoon based
on the proposed CACC strategy and compares the results of
ACC and CACC strategy. In section V, the simulation results
are discussed, followed by the conclusion of this article.

II. MODELING
This article considers a multi-objective optimization of the
platoon. The platoon consists of one lead vehicle and N
followers. This section will present the longitudinal dynam-
ics model, battery model, and the braking force distribution
model of the vehicle platoon.

A. LONGITUDINAL DYNAMICS MODEL OF VEHICLE
PLATOON
This article applies a second-order differential mode to
describe the upper-level longitudinal dynamics of vehicles in
the platoon. the upper-level longitudinal dynamics model of
the vehicle platoon at the time i can be expressed as{

ṡh (i) = vh (i)
v̇h (i) = ah (i)

(1)

where sh(i), vh (i) and ah(i) are the position, velocity, and
control input of vehicle h, respectively.

Acceleration can be written as an equation of driving
power, braking force, and resistance force. According to
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Newton’s second law, the relationship among the control
input ah(i), the desired motor output power Ph,e(i), the brak-
ing force Fh,b(i) and the resistance force Fh,r (i) can be
expressed as

ah (i) =
1
mh

(
ηh,iPh,e(i)

vh(i)
− Fh,b (i)− Fh,r (i)

)
(2)

where mh(i) is the mass of vehicle h, and the resistance force
Fh,r (i) consists of the rolling resistance and wind resistance
can be described as

Fh,r (i) = mhgf +
CdρAhv2h(i)

2
(3)

where g and f are the gravitational acceleration and rolling
coefficient. Cd , ρ and Ah are the drag coefficient, air density,
and frontal area.

1) VEHICLE STABILITY
When the speed is stable, the vehicles will maintain the
same state as the previous vehicle. The speed is same and
the acceleration is zero. All vehicles drive at the expected
position, ie {

limi→∞vh(i) = vexpect (i)
limi→∞sh(i) = sexpect (i)

(4)

where vexpect and sexpect are the expected speed and positon.

2) PLATOON STABILITY
The spacing error is expressed as follow:

1d (i) = sh (i)− sexpect (i) (5)

The stability of the platoon can be described as:

max(
1d(i+ 1)
1d(i)

) ≤ 1 (6)

B. BATTERY MODEL
The model of battery is established by the internal resistance
equivalent model. The power of the battery Pbat is equal to
the sum of the external power Pb and the depletion of internal
resistance R. At the discharge state, the internal resistance is
the discharge resistance Rdis. At the charge stage, the internal
resistance is charging resistance Rcha. The open-circuit volt-
ageUocv and the internal resistance R are both correlated with
SOC.

Pbat = Uocv (SOC) ∗ I = I2 ∗ R(SOC)+ Pb (7)

The current can be solved by Equation (7) as follows:

I =
Uocv −

√
U2
ocv − 4Pb ∗ R(SOC)
2R(SOC)

(8)

The changing rate of SOC can be expressed as follows:

˙SOC = d(
Q−

∫ t
0 Idt

Q
)/dt = −

I
Q

(9)

where Q is the capacity of the battery.

C. BRAKING FORCE DISTRIBUTION MODEL
The braking force distribution model of the electric vehicle
includes two parts. One part is the braking force distribution
of the front and rear axle; the other part is the braking force
distribution of the motor and hydraulic. The key point is to
recycle as much braking energy as possible on the premise of
meeting the braking safety. In this paper, the target vehicles
are battery-electric vehicles driven by the front axle. The
proposed strategy distributes more braking force to the front
axle motor to get as much regenerative energy as possible.
If it is necessary for high-intensity braking, the motor braking
force should exit. Only the hydraulic system provides the
braking force to prevent the wheel from locking and making
full use of the ground adhesion conditions. To fully recycle
the regenerative braking energy of every platoon member in
the CACC mode, the braking force distribution strategy of a
single EV is designed, as shown in Fig 1.

FIGURE 1. The braking force distribution strategy of CACC mode.

When braking strength z < z1, there is no requirement for
the braking force of the front axle in ECE regulation, and
only the front axle motor provides the braking force; when
the braking strength z1 < z < z2, the braking force of front
and rear axles is distributed along the line of ECE regulation;
when the braking strength z2 < z < z3, the motor brake
force reaches the maximum, the braking force of the front
axle remains unchanged, and the hydraulic braking force of
the rear axle increases; when the braking strength z > z3,
the motor braking is abandoned, and the braking force is
distributed along the β line to ensure safety and make full use
of the ground adhesion characteristics. In the whole process
of braking force distribution, if the motor braking force is
insufficient, it is compensated by the hydraulic braking force.
The distribution of the braking force is as follows.{

Fbf = Fb
Fbr = 0 (0 < z < z1)

(10)
Fbf = Fb

(
1−

(z+ 0.04)
(
a− zhg

)
0.7zL

)
Fbr = Fb

(z+ 0.04)
(
a− zhg

)
0.7zL

(z1< z <z2)

(11)


Fbf =

Tmot_max i0
rw

Fbr =
Tmot_max i0 (1− βECE−B)

rwβECE−B
(z2 < z < z3)

(12)
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FIGURE 2. Diagram of the CACC system.

{
Fbf = Fbβ
Fbr = Fb (1− β) (z > z3)

(13)

The boundary condition is

z1 = 0.1

z2=
−
(
b+0.04hg

)
+

√
(b−0.04hg)2+2.8Tmot_maxhgL/rwM

2hgg

z3 =

[
1
2hg

√
b2 +

4hgLTmot_max
Grw

−

(
b
hg
+
Tmot_max

rw

)]
+
Tmot_max
Grw

(14)

whereFbf andFbr are the braking force of front and rear axles
of electric vehicles, Fb is the total demand braking force, hg is
the height of mass center, L is the total wheelbase, a, b are the
front and rear wheelbase, Tmot_max is the maximum regener-
ative braking torque of the motor, i0 is the speed ratio of the
main reducer, rw is the rolling radius of the wheel, βECE−B
is the upper proportion of the braking force of the front axle
to total braking force limited by ECE regulations. β is the
proportion of the braking force of the front axle to the total
braking force in the braking process. G is the weight of the
vehicle, and g is the acceleration of gravity.

III. ALGORITHM
The structure of the CACC system is shown in Fig.2. The
electric vehicle platoon is composed of n members from
‘‘host vehicle 1’’ to ‘‘host vehicle n’’. The adjacent host vehi-
cles can transmit the vehicle state through wireless signals by
the V2V technique. When a ‘‘lead vehicle’’ appears in front
of the ‘‘host vehicle 1’’ in the same lane at an appropriate
distance and the speed of the lead vehicle is lower than that
of the platoon, the platoon should reduce the speed of every
member and give a new cruising speed to accommodate the
lead vehicle. This process is similar to the following mode of

ACC. The control strategy model of this process is given in
this section.

A. VEHICLE PLATOON FOLLOWING STRATEGY
The platoon spacing means the minimum safe distance
between two adjacent vehicles in the platoon. If the spacing
between two vehicles is less than the safe spacing, it is prone
to cause collision or driver’s panic. If the spacing between the
two vehicles is much larger than the safe spacing, the platoon
will be cut off easily. The vehicle spacing is the sum of
two-part: the fixed spacing and variable spacing. Fixed spac-
ing simply considers that the safe distance of two adjacent
vehicles is fixed independent of vehicle speed and external
environment. In this case, the fixed spacing is difficult to meet
the actual needs. The safe distance in the variable spacing
can be calculated by headway τ , vehicle speed vh and the
constant distance d0, which meets the actual needs of drivers.
The strategy of headway can be divided into fixed headway
and variable headway. Fixed headway determines headway
as a fixed value, which can be selected according to different
drivers’ driving habits. The variable headway strategy consid-
ers headway as a function of various driving state parameters.

The adaptive cruise system adopts the algorithm of variable
vehicle spacing with fixed time headway.

ddes (vh) = τvh + d0 (15)

where τ = 1, d0 = 20.

B. VEHICLE PLATOON STATE PREDICTIVE CONTROL
STRATEGY
The information transceiver module of all vehicles in the
platoon shares the real-time information with the CACC con-
troller through various sensors. The CACC controller calcu-
lates and transmits the desired longitudinal acceleration to the
vehicle dynamics control module to realize the acceleration.
Then the vehicle states information is updated and feeds
back to the CACC controller. In the process of driving, the
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vehicle dynamics controller orders the motor to output the
expected torque. In vehicle braking, the vehicle dynamics
controller distributes the motor braking force and hydraulic
braking force according to the received control information.
In this way, the closed-loop control is achieved; meanwhile,
the performances of the electric vehicle should be taken into
account in the control process.

According to the preset starting mode or the driver’s pedal
input at the starting process, the first vehicle in the electric
vehicle platoon obtains the desired acceleration au. As the
input of the model, there is a time delay from the expected
acceleration au to the actual acceleration ah of the vehicle
system, and the transfer function of the control state equation
is ah = Kau/(τ s + 1). Where the parameter K is the gain,
and τ is the time constant. These two parameters can be
obtained by system identification and parameter calibration
of the actual vehicle.

In this paper, theMPC algorithm is used to control the state
of all vehicles in the platoon. The cost function and constraint
conditions are set according to the predictive target to get
the optimal solution of the model. The specific steps are as
follows:

For the lead vehicle, only the current states are trans-
mitted to the platoon through the sensor. The future states
are unknown due to the driver. The future states should be
predicted as the input of the MPC controller in the predictive
horizon. Select the vehicle distance sf , vehicle speed vf ,
vehicle longitudinal acceleration af as the state variables xf ,
i.e. xf =

[
sf vf af

]T . The discrete state-space equation can
be expressed as follows in the predictive horizon:

xf (i+ 1) = Af xf (i) (16)

Af =

 1 Ts T 2
s /2

0 1 Ts
0 0 1

 (17)

Let Af denote the state parameter coefficient matrix. The
general formula to use the states of the current vehicle xf (i)
to forecast the states xf (i+ k) at the time i+ k is

xf (i+ k) = Akf xf (i) (18)

The host vehicles share their information with each other.
The states of lead vehicle and host vehicles are known to the
host vehicles. Hence, the states are used as input to the MPC
controller. The MPC controller outputs the control variables
to host vehicles keeping the characteristics of the platoon.

For the first vehicle (subscript 1) in the platoon. Select
the vehicle distance sh(1), vehicle speed vh(1), vehicle lon-
gitudinal acceleration ah(1) and change rate of longitudinal
acceleration j(1) as the state variables xh(1), i.e. xh(1) =[
sh(1) vh(1) ah(1) j(1)

]T , take the expected acceleration of this
vehicle au(1) as control variable u(1). i represents the marked
value at every sampling time. The discrete state-space equa-
tion can be expressed as follows:

xh(1)(i+ 1) = A′(1)xh(1)(i)+ B
′

(1)u(1)(i) (19)

A′(1) =


1 Ts T 2

s /2 0
0 1 Ts 0
0 0 1− Ts/τ 0
0 0 −1/τ 0

 (20)

B′(1) =


0
0

TsK/τ
K/τ

 (21)

u(1) = au(1) (22)

The first vehicle of the platoon needs to achieve the objec-
tion to follow the front vehicle. Due to that, the movement
of the front vehicle is uncertain; the parameters in the state
space function of the first vehicle should be set as many as
possible to predict the vehicle state precisely. The initial state
is known from the second vehicle to the last vehicle in the
electric vehicle platoon to simplify the state space function.

The state vector could be simplified from the second vehi-
cle to the last vehicle in the platoon. Select vehicle distance
sh(n), vehicle speed vh(n), vehicle longitudinal acceleration
ah(n) as state variable xh(n), i.e. xh(n) =

[
sh(n) vh(n) ah(n)

]T ,
expected acceleration of the vehicle au(n) as control variable
u(n), i as the marked value at every sampling time. The
discrete state-space equation can be expressed as follows:

xh(n)(i+ 1) = A′(2)xh(n)(i)+ B
′

(2)u(n)(i) (23)

A′(2) =

 1 Ts T 2
s /2

0 1 Ts
0 0 1− Ts/τ

 (24)

B′(2) =

 0
0

TsK/τ

 (25)

u(n) = au(n) (26)

The discrete state-space equation of the rear vehicles is the
same as that of the second vehicle.

Let A denote the state parameter coefficient matrix,
B denote the input parameter coefficient matrix, u denote the
input parameter, and the subscript n denote the nth electric
vehicle in the platoon. Then the general formula to use the
states of the current vehicle x(n)(i) to forecast the states at the
time i+ 1 x(n)(i+ 1) is

x(n) (i+ 1) = A(n)x(n) (i)+ B(n)u(n) (27)

The general formula to use the states of current vehicle
x(n)(i) to forecast the states after k intervals x(n)(i+ k) is

x(n) (i+ k) = Ak(n)x(n) (i)+
[
Ak−1(n) Ak−2(n) . . . A(n) I

]

×B(n)


u(n)(i)

u(n)(i+ 1)
. . .

u(n)(i+ k − 1)

 (28)

where x(n)(i) is the n-th vehicle state vector at the time i,
x(n)(i + 1) is the n-th vehicle state vector at the time (i + 1),
and x(n)(i+k) is the n-th vehicle state vector after k intervals.
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When n = 1, A(1) = A′(1),B(1) = B′(1); otherwise A(n) = A′(2),
B(n) = B′(2).
For a specific vehicle in the platoon, the initial state is

known. The states in the next predictive horizon can be pre-
dicted according to equation (19) - (28). The corresponding
optimal control can be carried out according to the predic-
tion results. The next time, according to the same predic-
tion method, the predictive horizon can be pushed back one
time-step, and this step will run continuously. The prediction
model can output the vehicle state at any time in the future
predictive horizon.

C. ESTABLISHMENT OF OBJECTIVE FUNCTION AND
CONSTRAINT
According to the above method, the moving distance, speed,
and acceleration of all platoon vehicles are obtained in the
predictive horizon. For the adjacent vehicles in the platoon,
the adaptive cruise objective function can be designed accord-
ing to the kinematic parameters in state vectors. For the
platoon composed ofN electric vehicles, a set of (N − 1) cor-
responding objective functions can be created, which can be
weighted to get the overall objective function of the platoon.

The objective function includes three indices: the following
performance index, the comfortability index, and the econ-
omy index. k is the sequence number of a specific time
interval in the predictive horizon.

The following performance index of the platoon ltrack ,
including vehicle spacing and vehicle speed, is calculated by

l ′track(n) (k) = wd (1d (k))2 + wv(1v (k))2 (29)

1d (k) = s(n−1) (k)− s(n) (k)− ddes
(
v(n) (k)

)
(30)

1v (k) = v(n) (k)− v(n−1)(k) (31)

ltrack =
∑N

n=2

∑P

k=1
l ′track(n)(k) (32)

where l ′track(n) (k) is the following performance index at the
time k; 1d (k) is the distance error between two vehicles at
the time k; 1v (k) is the speed error between two vehicles
at the time k; s(n−1) (k) and s(n) (k) is the driving distance of
the front car and the rear car at the time k , which is given
by the model prediction algorithm; v(n) (k) and v(n−1)(k) is
the driving speed of the rear car and the front car at the
time k , which is given by the model prediction algorithm;
ddes

(
v(n) (k)

)
is the expected spacing corresponding to rear

vehicle speed v(n) (k), i.e. ddes
(
v(n)(k)

)
= τv(n)(k) + d0; wd

is the weight of distance error and wv is the weight of vehicle
speed error in the total objective function.

The vehicle comfortability index is lconfort including vehi-
cle acceleration and acceleration change rate. The calculation
formula is

l ′confort(n)(k) = wc(a(n)(k))
2
+ wj[(a(n) (k)− a(n) (k − 1))]2

(33)

lconfort =
∑N

n=1

∑P

k=1
l ′confort(n)(k) (34)

where lcofort(n)′ (k) is the comfortability index value at the
time k; a(n)(k) and a(n) (k − 1) is the acceleration value of

FIGURE 3. The look-up table of the RBS system.

a platoon member at the time k and k − 1; wc and wj are the
weight of the acceleration and acceleration change rate of the
vehicle in the total objective function.
leconomy is the vehicle economy index, including the regen-

erated energy of the vehicle braking process. The calculation
principle is:
P(v(n) (k) , z

(
a(n) (k)

)
, SOC (k − 1)) is the power recycled

by the RBS systemwhen a platoonmember brake in a specific
time interval, which is determined according to looking up
the table by the vehicle’s speed v(n) (k), braking intensity
z
(
a(n) (k)

)
at the time k and SOC of the previous moment

SOC (k − 1). Braking intensity z
(
a(n) (k)

)
is

z
(
a(n)(k)

)
= a(n)(k)/g (35)

SOC is a continuously changing value. SOC (k) is calcu-
lated by SOC (k − 1) at the last moment. Firstly, interpolate
the charge and discharge voltage uchg (k) of the battery at the
time k according to SOC (k − 1). Secondly, interpolate the
charge and discharge power Pbat (k) of the battery at the time
k according to SOC (k − 1), z

(
a(n) (k)

)
and v(n) (k) as shown

in Fig.3; Pbat (k) /uchg (k) is the charge and discharge cur-
rent at the time k . The change of SOC is calculated by the
current value, sampling time, and total capacity of the battery;
thus, the SOC at the time k can be obtained:

SOC (k) = SOC (k − 1)+
Pbat (k)
uchg (k)

∗ Ts/(3600Q) (36)

where Ts is the length of the time interval.
where we is the weight of the economy index in the total

objective function, l ′economy(n) (k) is the economy index value
at the time k , then

l ′economy(n) (k) = we
[
P(v(n) (k) , z

(
a(n) (k)

)
, SOC (k−1))

]
Ts

(37)

leconomy =
∑N

n=1

∑P

k=1
l ′economy(n)(k) (38)

The objective function is the sum of the three indices:

l = ltrack + lconfort + leconomy (39)
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Constraint: Restraint range of distance error between the
front and rear vehicles

1dmin≤d(n−1) (k)− d(n) (k)−ddes(v(n) (k)) ≤ 1dmax (40)

where d(n−1) (k) and d(n) (k) are the distance driven by the
front vehicle and the rear vehicle at the time k; ddes(v(n) (k)) is
the ideal spacing according to the rear vehicle speed v(n) (k);
1dmin and1dmax is the lower and upper limit of the allowable
range of the distance error between two adjacent vehicles in
the platoon.

Restriction range of speed difference between two adjacent
vehicles

1vmin ≤ v(n) (k)− v(n−1) (k) ≤ 1vmax (41)

where v(n) (k) and v(n−1) (k) is the speed of the rear and front
vehicle at the time k;1vmin and1vmax is the lower and upper
limit of the allowable range of vehicle speed error for adjacent
vehicles in the platoon.

Acceleration constraint of a single-vehicle

amin ≤ a(n) (k) ≤ amax (42)

where a(n) (k) is the acceleration value of a single-vehicle at
the time k; amin and amax is the maximum deceleration and
acceleration of a single-vehicle.

Single vehicle acceleration variation constraint

1amin ≤ (a(n) (k)− a(n) (k − 1))/Ts ≤ 1amax (43)

where a (k) and a (k − 1) are the acceleration of a
single-vehicle at the time k and k − 1; 1amin and 1amax is
the lower and upper limit of the acceleration variation.

The constraint can be written as penalty function C :

C(n) (k) =

{
0 if meet the constraint
+∞, otherwise

(44)

C (k) =
∑N

n=1
C(n) (k) (45)

D. OBJECTIVE FUNCTION SOLUTION
It is necessary to use the look-up table to obtain the regen-
erative braking power under the current speed and braking
intensity for the economy index, a nonlinear discontinuous
objective value in the objective function. It is difficult to
use the conventional quadratic programming algorithm to
solve it. In this case, the heuristic algorithm can solve the
problem according to the probability method. This paper
uses the simulated annealing and particle swarm optimization
algorithm (SA-PSO) to solve the objective function. Steps are
as follows:

Step 1. Initialize every particle parameter. The acceleration
value of every vehicle in the platoon constitute a particle
population p1 = {a1, a2, . . . , aN }, population size N equals
the number of platoon members. Random update factor c1,
annealing rate λ, the maximum number of iterations imax and
the minimum fitness value dstop are set during initialization,
where dstop is set to a large constant;

Step 2. Set the fitness function. Take the objective function
as a part of the fitness function; another factor is the constraint
set as penalty function C(k). Calculate and record the fitness
value of the initialized particle under the fitness function, and
dstop equals to this fitness value, the corresponding particle
population is recorded as pg. The fitness function J is

J (k) =
N∑
n=2

l ′track (k)

+

∑N

n=1
(l ′confort (k)+ l

′
economy(k)+ C(k)) (46)

J = ltrack + lconfort + leconomy =
∑P

k=1
J (k) (47)

dstop = min J (48)

Step3. Determine the initial temperature t0 = dstop;
Step4. Use random update factor c1, acceleration range and

population pg (i) to get a new set of the particle population
pg(i+ 1), and i self-increasing 1, until reach imax :

pg(i+ 1) = pg(i)+ c1[amin, amax]N (49)

Step5. Record the adaptation value dtemp at the current
temperature, if dtemp ≤ dstop, then accept and equal pg to
the population set pf corresponding to dtemp. If dtemp >

dstop, then accept pf = pg(i + 1) with the probability
exp[− dtemp−dstop

t ], or accept pg unchangedwith the probability

(1− exp
[
−
dtemp−dstop

t

]
), i.e

P
{
pf = pg(i+ 1)

}
= exp[−

dtemp − dstop
t

] (50)

P
{
pf = pg(i)

}
= 1− exp[−

dtemp − dstop
t

] (51)

Step 6. Return to step 4 until i reach imax , then given i = 1
and pg (i) = pf .
Step 7. Conduct cooling operation (tk+1 = λtk );
Step 8. Cooldown and return to step 4 until the minimum

temperature is reached, and output the particle and optimal
global value at this time.

IV. SIMULATION
The CACC strategy proposed in this article is compared
with the CACC and ACC strategy by simulation. The
CACC control strategy is embedded in Matlab / Simulink
as S-function. The vehicle kinematics model of the platoon
composed of four electric vehicles is established for simu-
lation in Simulink. All vehicle in the platoon correspond to
the same parameters, and the setting parameters are as shown
in Table 1 and Table 2:

Fig.6 and Fig.7 are the longitudinal cruise speed and
acceleration graphs of the platoon composed of four elec-
tric vehicles in the CACC mode with the economy index.
Fig.8 and Fig.9 are graphs of the longitudinal cruise speed and
acceleration of the same platoon in the CACC mode without
the economy index. Fig.10 is the graph of cruise speed and
acceleration of the platoon without internal communication.
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FIGURE 4. The overall diagram of vehicle platoon CACC strategy.

TABLE 1. Vehicle parameter setting.

Comparing the speed graphs in the three cases of Fig.6,
Fig.8, and Fig.10, the result shows that the following per-
formance of the CACC mode on vehicle speed is better than
the ACC mode: the speed of the CACC mode with economy
index and the CACC mode without economy index do not
appear overshoot, and the following performs well, and the
safety of the platoon is achieved; however, in the ACC mode,
the apparent overshoot and response delay of the speed will
cause the spacing fluctuation between the vehicles in the
platoon. If acceleration and deceleration frequently change
during the process, the driving spacing tends to be dangerous,
and the stability will worsen.

Comparing the acceleration graphs in Fig. 7, Fig. 9, and
Fig. 11, the CACCwith economy index mode uses a heuristic
algorithm as an optimization strategy, which directly outputs

TABLE 2. Model parameter setting.

TABLE 3. SA-PSO parameter setting.

the vehicle acceleration. The acceleration has a certain degree
of fluctuation in CACC mode with the economy index.
It means that the comfortability of the vehicle in this mode
is worse than that in CACC mode without the economy
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FIGURE 5. Flow chart of SA-PSO algorithm.

index. The overshoot is the product that the rear vehicles
control the acceleration to satisfy the safe spacing and speed
error brought by the speed ahead of vehicle 1. However, the
economy of the vehicle is improved, which is obtained in
the following simulation results; The CACC mode without
economy index has better stability in acceleration and has no
overshoot and little response delay in meeting the comforta-
bility. While in the ACCmode, there are clear overshoots and
response delay in acceleration. The ACC mode has the worst

FIGURE 6. Speed profile under CACC with economy index.

FIGURE 7. Acceleration profile under CACC with economy index.

FIGURE 8. Speed profile under CACC without economy index.

performance. As the number of vehicles increasing in the pla-
toon, the acceleration of the rear vehicle becomesmore exten-
sive, and the platoon shows evident overshoot and response
delay. Once the ACC strategy receives slight disturbances
during the multi-vehicle following process, the subsequent
platoon is prone to oscillations; the stability is not guaran-
teed. The overshoots and response delay can be regarded as
instability, which brings discomfort to drivers.

Fig.11 and Fig.12 are graphs of the speed and acceler-
ation of the platoon using the CACC strategy in NEDC.
Vehicle 2-4 only have a little time delay on driving away
compared with Vehicle 1. The reason is that the states of
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FIGURE 9. Acceleration profile under CACC without economy index.

FIGURE 10. Speed & acceleration profile under ACC without platoon
communication.

vehicle 1 could not be accurately predicted when the states of
vehicle 1 undergoes a sudden change, which leads a response
delay to host vehicles. Overall, Vehicle 2-4 perform well.
It can result from Fig. 11 and Fig. 12 that the CACC strategy
shows strong following performance, stability characteristics
and completes the driving cycle without risk in a complete
driving cycle. Figure 13-15 are graphs of the change of the
distance, speed, and acceleration error between two adjacent
vehicles. It can be found that the error in Figure 13 is bigger
than Figure 14-15. The acceleration of vehicle 2-4 is planned
to achieve the performances at the same time. As a platoon,
the performances are well evaluated to reduce the error. The
speed of vehicle 1 is independent of vehicle 2-4, which leads
to a forecast bias. The forecast bias is the reason of error.

FIGURE 11. NEDC cycle speed profile under CACC with economy index.

FIGURE 12. NEDC cycle acceleration profile under CACC with economy
index.

FIGURE 13. Spacing, speed, and acceleration error of vehicle 1 and
vehicle 2 in the NEDC cycle under CACC with economy index.

Figure 13-15 show that the distance, speed error, and accel-
eration error between two adjacent vehicles are controlled
within a reasonable range. The CACC strategy completes the
driving task well since the vehicle spacing error is one of the
optimization objectives.

Table 4 shows that the economic efficiency of the CACC
strategy is 8.5% higher than that of the ACC strategy; the
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FIGURE 14. Spacing, speed, and acceleration error of vehicle 2 and
vehicle 3 in the NEDC cycle under CACC with economy index.

FIGURE 15. Spacing, speed, and acceleration error of vehicle 3 and
vehicle 4 in the NEDC cycle under CACC with economy index.

TABLE 4. Comparison of economic indicators in NEDC.

economic efficiency of the CACC strategy with the economy
index is 16.5% higher than that of the ACC strategy in NEDC.
In the CACC strategy without economy index, considering
the comfortability, safety, and following performance indices,
the max vehicle spacing error is 3.6% in NEDC. When the
economy index is added to the objective function, the vehicle
spacing error slightly expands. The reason is that after adding
a new economy index into the multi-objective optimization
function, the following index is relatively weakened; mean-
while, the ability to control the spacing of the platoon is
weakened. It is the contradiction between economy and other

characteristics. It can be optimized by adjusting the weights,
which is also the idea that can be expanded by subsequent
research.

V. CONCLUSION
In this paper, an MPC controller based on the SA-PSO algo-
rithm is proposed for the CACC system of electric vehi-
cles. The MPC controller with the SA-PSO algorithm solves
the optimization problem of nonlinear multi-objective effec-
tively. In the simulation, the CACC algorithm uses a platoon
formed by four electric vehicles to compare the result with
the ACC strategy. The results show that the CACC strategy
maintains the distance better between the adjacent vehicles
and reduces the spacing to meet the adaptive cruise demand
of the platoon. And the acceleration and speed of the CACC
strategy perform a quick response with little overshoot and
time delay. In the aspect of the economy, compared with
the ACC strategy, the CACC strategy improves the overall
regenerative braking energy of the platoon by about 16.5%
in NEDC; it brings more economic benefits to drivers. The
CACC strategy proposed in this paper improves the following
performance, economy of the platoon and ensures the safety
and comfortability of the vehicle as well. However, with
the adding of economy index, there is a little vibration in
the acceleration. The weight of multiple optimization objec-
tives could be further optimized to balance the contradiction
between comfortability and economy.

Future work should focus on the theoretical optimization
of the ideal distance between platoon members and the mod-
eling differences of individual vehicles in the platoon.
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