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ABSTRACT Object recognition has been widely investigated in computer vision for many years. Currently,
this process is carried out through neural networks, but there are very few public datasets available with
mask and class labels of the objects for the training process in usual applications. In this paper, we address
the problem of fast generation of synthetic datasets to train neural models because creating a handcraft
labeled dataset with object segmentation is a very tedious and time-consuming task. We propose an efficient
method to generate a synthetic labeled dataset that adequately combines background images with foreground
segmented objects. The synthetic images can be created automatically with random positioning of the objects
or, alternatively, the method can produce realistic images by keeping the realism in the scales and positions
of the objects. Then, we employ Mask-RCNN deep learning model, to detect and segment classes of kitchen
objects using images. In the experimental evaluation, we study both synthetic datasets, automatic or realistic,
and we compare the results. We analyze the performance with the most widely used indexes and check
that the realistic synthetic dataset, quickly created through our method, can provide competitive results and
accurately classify the different objects.

INDEX TERMS Kitchen object detection, computer vision, machine vision, deep learning, object
segmentation, image databases.

I. INTRODUCTION
Object detection and recognition through neural networks and
deep learning is a hot topic in computer vision. This is a useful
ability required in automation, for robotics or smart appli-
cations. The objects to be recognized can be quite different,
from pets such as dogs or cats, to boxes of cereals or cookies,
between others. To achieve this objective and robustly recog-
nize objects of different classes, it is necessary the system to
be trained with a large amount of images with objects of each
class in different situations.

Object recognition can be addressed by using different
techniques or methods. The use of convolutional neural net-
works (CNN) is currently broadly assumed. In [1], [2] a
study and analysis of CNN is carried out, discussing their
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performance in this type of tasks. Also in [3], the authors
provide view of how deep learning is currently an extremely
active research area. Other researchers focus on a thor-
ough evaluation of networks, of increasing depth, using an
architecture with very small (3 × 3) convolutional filters.
With these approaches, current methods achieve a significant
improvement on the configuration of the net and this is in
part gained by pushing the depth to 16-19 weight layers [4].
Some researchers focus on deep learning and its development
for the reconstruction and analysis of images. They make
image combinations so that the neural network has a better
learning [5]. Alvaro Collet et al. in [6] present MOPED,
a framework for Multiple Object Pose Estimation and Detec-
tion. They use a very robust algorithm to detect objects in
different positions within a complex scene. Other authors
focus on the recognition of text within images. They use
convolutional networks to locate and analyze the position of
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the text [7]. Another method used for the detection of objects
is shown in [8], where the authors describe an object detection
system based on mixtures of multi-scale deformable part
models. Their proposal relies on newmethods for discrimina-
tive training with partially labeled data. Experimentally, some
authors focus on the implementation of object recognition for
robotics. To facilitate this task, the robot is able to obtain a
3D map of the environment and locate the new objects [9].
Kaiming He et al. in [10] present Mask R-CNN, successor
of the Faster R-CNN [11]. This network is widely used to
recognize and track objects. They present the use of objects
with masks, improving the use of bounding boxes.

Deep CNNs belong to the best existing methods for recog-
nizing objects, but they need a large amount of labeled data
to learn. There are some public datasets, such as COCO [12]
and PASCAL VOC2012 [13], in which a great variety of
object classes are labeled. These datasets are hand tagged
and in particular by marking one by one the object mask
and the corresponding label. One of the drawbacks of using
general datasets is the low precision that is achieved if the
goal is the detection of objects in specific environments dif-
ferent than those of the training dataset. Other datasets such
as [14] focus on a specific environment, but each object is
only labeled with its bounding box. In addition, to achieve a
robust model, images with the objects to be recognized and
with different backgrounds are also very convenient. Finding
scenarios in public datasets with these specific features is
quite complicated. The creation of handcraft useful datasets
requires a large amount of time and effort of many peo-
ple, which is a very tedious task. Georgakis et al. in [15]
propose an alternative to manual labeling. They present a
method, working with the Faster R-CNN network, in which
the objects are pasted on background images. The objects
are selected from the BigBird dataset [16], and placed on
the support surfaces obtained from the background. Due to
the importance of data during neural network training, some
researchers have developed some new techniques for fast
data augmentation. These techniques are known as smart
augmentation and they work by creating a network that learns
how to generate augmented data during the training process
of a target network [17]. Dwibedi et al. [18] create a syn-
thetic dataset in a similar way, pasting the objects on the
background in a random way, although their dataset does
not focus on a specific environment. In addition, objects
are placed on backgrounds of any kind without taking into
account a specific location. This makes object recognition
worse due to the variety of scenarios. For example, a specific
dataset for the automatization of the grape selection process is
created in [19].

Other researchers, use 3D models to create the dataset
to train neural networks. Su et al. [20] present a dataset
through 3D models which may give many views of the
objects to be labeled. Others extract information from 3D
models which can be used to reduce noise and convert 2D
images into 3D models [21]. 3D object recognition from
arbitrary viewpoints is one of the most challenging problems

in computer vision. Some authors use 3D objects models
as the only source of information for building a multi-view
object class detector [22]. They get as much information
as possible from the parts of the 3D model, and this helps
to recognize objects later by grouping matches. However,
the creation and representation of 3D models requires very
powerful software. The training of neural networks through
dataset obtained with 3D models can have disadvantages due
to the final quality of the model. In deep CNN trained with
images obtained through 3D models, photorealistic aspects
such as the texture, position or background are not required
[23], [24]. Movshovitz-Attias et al. [25] focus on semi-
automatic dataset creation through the use of synthetic data.
They generate a large labeled car dataset densely rendered in
viewpoint space and they investigate the effect of rendering
parameters on estimation performance to show realism. Some
authors propose to model complex visual scenes using a non-
parametric Bayesian model to learn from weakly labeled
images [26]. The model learns the appearance of objects and
attribute classes thanks to the weak image annotations of
objects and attributes. Then, the model allows to describe
and to recognize objects in the scene using their attributes.
In [27] the authors propose FlickNet, which is able to explore
different combinations of locations on feature maps and
randomly select hidden units to classify images. FlickNet
learns of each location in the feature maps and generates
a localization map which identifies the object. The authors
of [28] propose a Constrained CNN, which uses a different
loss function and can be easily implemented into the gradient
descent optimization.

Another approach for training neural networks utilize
directly a virtual environment. In [29], [30] a virtual pedes-
trian is created and the network robustness is checked in
the real world, obtaining satisfactory results. There are also
methods capable of cloning real to virtual worlds to create a
fully tagged dataset. Within this virtual dataset, objects can
be created and tracked [31].

Many applications of deep learning techniques have
appeared in the last decade. Some of them focus on general
applications and others on specific ones. They need a pre-
training of the neural network. Here, we focus on the gen-
eration of a dataset for object recognition in general scenes
and particularly in kitchens. It is a common place in every
home where countless actions are carried out and where the
development and improvement of applications can help the
users. Our method to generate the dataset allows the labeling
of the masks of the objects with good results. It produces
precise segmentations, unlike others which only include the
label with bounding box [14].

Our main goal is to achieve a method to quickly create
reliable synthetic datasets. They are implemented on the
Mask-RCNN neural network model to perform instance seg-
mentation for any application and particularly for kitchen
objects. The synthetic datasets are based on the segmenta-
tion and labeling of real objects and their overlaying in real
kitchen backgrounds. We address this task with two different
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methods: the first one creates the realistic dataset manu-
ally mixing images of foreground objects with background
images, and the second one automatically places the objects
on the backgrounds. We also use different processing tech-
niques (geometry operations, filtering) over both datasets.
This allows to obtain different scenarios by changing condi-
tions such as the luminosity or movement distortion. So the
detection of objects on videos with different environments is
more robust. Both synthetic datasets are tested and compared
to each other and validated with a handcraft labeled dataset.
Most of the datasets currently available are labeled manually,
thus achieving total reliability in training, but this requires a
lot of time. In summary, the interest of the paper is to bring to
light a procedure to create synthetic datasets with images of
typical general scenes, and particularly kitchens with objects
involved in cooking processes. The main contribution of
the proposal is a method to generate extensive and versatile
datasets with a precise object segmentation, not only with the
bounding box but also the object mask. It will allow to reduce
the time to create useful specific datasets, and it can be a
first step in the automation of learning in application focused
environments.

II. DEEP LEARNING BACKGROUND
Convolutional neural networks can be used for different tasks
such as data analysis, object recognition or object tracking.
We are involved in the recognition of objects or actions
related with cooking in the kitchen environments. In the first
stage, it is necessary to perform a training of these networks
using datasets with tagged images. Our objective is to ana-
lyze the results when synthetic datasets are used. These are
validated against datasets generated with hand tagged images
which are considered as the ground-truth. Our work is based
on the application of the deep learning model called Mask
R-CNN [10] for the detection and segmentation of the objects
present in the kitchen. The goal is to locate the presence of
objects in a specific environment with their corresponding
bounding box and mask, as well as the ability to detect the
classes of the located objects in the image.

We have analyzed two different families of neural networks
to do object detection, the R-CNN Model Family and the
Yolo Model Family [32]. Comparing the network of the
YOLO family to the R-CNN family, performance differences
can be noted. The YOLO network operates at 45 frames
per second and up to 155 frames per second for a speed-
optimized version of the model. In addition, the best versions
of this network also detect the object bounding box as does
the Faster R-CNN network. Because our work is motivated
by applications that need action detection reliably, we are
interested in real-time detection of the object with its specific
shape, i.e. with its mask. Mask-RCNN is able to produce the
object’s mask using an additional branch to Faster R-CNN
that produces a binary mask representing whether or not a
given pixel is part of an object. The branch is just a Fully
Convolutional Network on top of a CNN based feature map.
This implementation comes up of the framework made by

Matterport Inc., [33] in a previous work, which is provided as
OpenSource under the MIT license. The Mask-RCNN allows
to carry out all the tasks and it is fast enough to recognize the
class and the mask of the objects.

The architecture and operation of Mask-RCNN is detailed
in [10], [34]. The first block of this architecture is made up
of three sub-blocks: Backbone that extracts feature maps of
images with convolutional layers (ResNet50 or ResNet101),
Feature Pyramid Network (FPN) [35], which controls that
the extracted high-level features are at different scales and
with information of different levels, and the Region Proposal
Network (RPN) introduced in [11]. It gives proposed regions
in which it is possible to find an object of one of the trained
classes.

Once the proposed regions have been obtained, ROI-Align
introduced in [10] is applied to fix the size of the proposed
regions of the classifier input. This is done by a bilinear
interpolation method. Each proposed region is entered into
different headers: a classifier to predict the class to which
they belong, another of regression to predict the bounding
box of the object, and another formed by a Fully Convolu-
tional Network (FCN) [36] to predict the mask of the seg-
mented object. The cost function used (1) is the sum of the
errors from the class (Lcls), the bounding box (Lbbox) and the
mask (Lmask ) [37].

L = Lcls + Lbbox + Lmask (1)

III. METHODOLOGY
We have fully analyzed the state of the art to find existing
datasets to train neural networks. The dataset necessary to
perform a specific task requires the labeled object and its
referenced mask. In this way it is possible to locate the object
on the image. There are not many public useful datasets with
this kind of characteristics.

The COCO dataset [12] is one of the most popular in object
segmentation. This has more than 200k labeled images and
80 different object classes. However, few of these classes
are usually useful for specific applications, particularly for
the environments considered here (kitchens). To create a
specific dataset with the images labeled in the desired format,
different methods have been used. Firstly we start by hand-
labeling real images using the VGG Image Annotator tool
(VIA) [38] developed by the Visual Geometry Group of the
University of Oxford. The creation of the handcraft labeled
dataset consumes a lot of time and motivates the development
of an application to create synthetic datasets quickly. We use
the handcraft dataset to validate the synthetic datasets and
to show the robustness of our proposal. We can develop two
different datasets with a tradeoff between realism and speed
generation. Later, we compare the results with both datasets
checking if the network classifies the objects correctly.

A. HANDCRAFT LABELED DATASET
To create the manual labeled dataset, images of real kitchens
with typical objects used in the cooking process are acquired.
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FIGURE 1. Examples of images labeled with the VIA tool. A similar
process is used for all the images of the handcraft labeled dataset.

Given the images, the objects belonging to each of the desired
classes are labeled. Each object is segmented with its mask
and the corresponding label of its class. Fig. 1 shows exam-
ples of the process.

The process of image labeling is very hard and time-
consuming, even when only a class label per image is
required. Each object is labeled and segmented with a mask
to define its location. The labeling of images similar to
Fig. 1 takes about 15-20 minutes. We tagged 81 images with
10-12 objects per image. Once the labeling of the images
is done, the training begins applying transfer learning in
the Mask-RCNN model from the weights trained with the
COCO dataset and is validated by 20 real images that have
been tagged in the same way. In this way and despite the
small number of training images, the results are quite good.
However, one of the biggest problem in this dataset is that the
real images used only can have the selected classes to train
the network. In other case the network may mistake the not-
labeled classes with the background and those classes can
not be identified. Additionally, to improve the results or to
include an additional class to the dataset, it is necessary to
invest a lot of time in the image tagging.

B. SYNTHETIC DATASET
Once evidenced that the manual labeling of real images
is very time consuming and unfeasible in real situations,
an application to create a synthetic dataset is proposed.
We developed this application to create synthetic scenes in
Python. The application attaches segmented objects, such
as knifes, pots, potatoes, etc. over backgrounds that can be
countertops, glass-ceramic hobs or even whole kitchens. The
addition of objects can be fully automatic (generating unreal-
istic images), or realistic (attaching the objects realistically).
In the first case, the dataset is generated automatically. It is
only necessary to mark the classes and number of objects.
The application also scales and orients them. In the realistic

FIGURE 2. Example of backgrounds used for the development of the
synthetic dataset. With these backgrounds we generate the automatic
synthetic dataset and the realistic synthetic dataset.

synthetic dataset this is controlled manually, while the objects
are placed on the backgrounds. But in both datasets the
conditions are similar. Also, in both cases the class labels
and the masks of the objects are directly stored. During
the insertion of the objects, the necessary parameters, i.e. the
scale of the object and its position, are saved to generate the
masks. These parameters and the class labels are stored in a
JSON (JavaScript Object Notation) format file. Therefore the
image annotations occupy very little space. Fig. 2 shows some
examples of backgrounds used for the creation of synthetic
images. All background images and the foreground objects,
have been obtained from Google images (www.google.com).

FIGURE 3. Example of objects and their masks used in the developed
application to generate synthetic datasets.

In Fig. 3 we show some objects extracted from the original
images with white background (left) and the masks of objects
placed on the black background (right). These images of
foreground objects are searched in public image datasets. The
object mask is automatically separated from the background
by thresholding. All the object classes selected usually appear
in the kitchen. The classes of objects are knife, person, potato,
bottle, pan and pot. Objects like knife, person or bottle have
quite clear geometric differences, but other objects such as
pan and pot are really similar in geometry, color and size.
Also, we take images where the objects are in a great variety
of positions. This helps the network because a better learning
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FIGURE 4. Example of synthetic realistic images created through the
application. Note that the objects are placed in appropriate locations and
naturally introduced in the scene. The parameters and labels of the class
of each object seen on the image are stored in a JSON file.

can be achieved. This increases the robustness of the neural
network because in real cases the position of the objects
may change a lot. Background images and all the objects
positioned on them are common to both datasets. With all
these objects and background images, the application begins
to create useful synthetic images to train neural networks that
can work with the mask of the objects. The quality of the
images is given by the scale and position of the objects with
respect to the background. This positioning and scaling of
the objects is what makes one dataset take longer to generate
than the other. Some of the images created with the described
application in a realistic way are shown in Fig. 4. In these
images, the scales and orientations of the objects on the
background are maintained, in order to obtain more realistic
results. In Fig. 5 some images are shown with the objects
automatically fitted and giving results which do not look at
all as in real images. As it can be seen in Fig. 4 and Fig. 5 the
quality of the images in the realistic dataset is much better
than in the automatic dataset.

Using the described application, the time to generate real-
istic images takes approximately 10-15 seconds per image
and is easy to do. The automatic dataset, which combines
the background images with the objects randomly placed
and scaled is much faster. The application works automati-
cally and the user only has to select the number of images,
the number objects per image and the allowed percentage
of occlusion between objects. The process to generate the
automatic dataset is approximately 1 minute for 350 labeled
images (0.15 seconds/image). Both synthetic datasets (realis-
tic or automatic) are a very good improvement over handcraft
labeled dataset, that takes up to 1200 seconds per image,
because they reduce their generation time considerably.

The synthetic images are of all kinds to achieve richer and
more varied datasets. We show some images of occlusions

FIGURE 5. Example of synthetic automatic training images created
through the application. Note that the induced objects appear in
unnatural places with inappropriate scale. The parameters and class
labels of of each object seen in the image are stored in a JSON file.

FIGURE 6. Example of some of the occlusions found in the automatic
synthetic dataset (top) and realistic synthetic dataset (bottom). Top: Since
the objects are randomly distributed, these occlusions are also random.
The maximum allowed level of occlusion can be modified with a
parameter. Bottom: These occlusions appear similar to those we can find
in reality.

in the automatic synthetic dataset (Fig. 6 - top), and some
images of the realistic synthetic dataset (Fig. 6 - bottom).
We validate these datasets with the handcraft labeled dataset
and we test the model with real images so we can verify how
it works in real situations. These images have objects used
to train the network and others that have not been used in the
training. This allows to check the robustness against unknown
objects that look similar. Table 1 contains the information of
the synthetic training datasets. It shows the number of images
and object instances for each object class. Information about
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TABLE 1. Information of the objects included in the Synthetic dataset.

FIGURE 7. Flow diagram of the proposed process to develop the realistic synthetic dataset and the automatic synthetic dataset. We show the
process to create the datasets. The validation and the comparison with the handcraft labeled dataset allows to test the performance.

the images and objects instances used for validation are also
shown.

IV. EXPERIMENTAL VALIDATION
Once the handcraft labeled dataset and the synthetic datasets
have been created, we tested their performance. We start
training our neural network with the datasets independently.
The three datasets to train the network are: (i) the hand-
craft labeled dataset (81 images), which is created from the
images manually labeled, and by marking each object one by
one with its mask in the image, (ii) the automatic synthetic
dataset (319 images) which is createdwith foreground objects
that are placed randomly on the background image, (iii) the
realistic synthetic dataset (319 images) which is made by
positioning the objects in the background image in a realistic
way. Once the network is trained independently with each
of them, the results are examined with respect to the same
images and the results are checked. The generic configuration
of the network with all the available parameters have been
analyzed and the configuration to obtain better results has
been proposed. In Fig. 7, we present a flow diagram with the
process to generate all datasets. We depict the initial images
of the objects and the backgrounds, and how we create the
datasets until the final comparison.

A. EXPERIMENTAL CONFIGURATION
Our model uses the ResNet101 network as Backbone to carry
out the feature extraction. As starting point, we have used

transfer learning with the pre-trained weights on the COCO
dataset [12]. The most relevant hyperparameters chosen for
the training were: learning rate 0.001, weight decay 0.9 and
a batch size of two images on an NVIDIA Titan XP GPU.
The network has been trained in three different stages: the
first, training only the headers during 60 epoch, the second,
training from stage 4 and up in the ResNet101 model for
30 epoch, and in the third, training the complete network with
a learning rate reduced by one factor of 10, for fine-tune of
weights during 15 epoch. For additional details on the Mask-
RCNN network, we refer the reader to [10], where the authors
explain how the different layers work, all the parameters that
make up its configuration and the process followed to locate
the object’s masks.

In the training, data augmentation has been used to avoid
the overfitting of the network and to give variability to the
training examples. Data augmentation was done using Python
library imgaug [39].With this library the number of images to
train the network can be easily increased. This augmentation
converts the set of images in a larger set adding images
slightly altered. This modification of the images improves the
recognition of objects since it distorts and varies the luminos-
ity and position of the objects. We have also performed some
global operations on the image and some additional individ-
ual modifications on each object. This makes the synthetic
dataset to have even more variability during the training.

The network has been trained using the following modes
of data augmentation to the objects: Gaussian filter, Blur
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FIGURE 8. Example of modes of data augmentation applied to the
objects in the synthetic dataset (top), and example of modes of data
augmentation applied in both datasets (bottom).

filter, Linear Contrast filter and Sigmoid Contrast filter
(Fig. 8 - top) and the following modes of data augmenta-
tion to the complete images: Affine, Flip left or right, Flip
up or down and Cropped (Fig. 8 - bottom). We only make
object augmentation thatmodify its color or sharpness. On the
other hand, another type of augmentations is made on the
image, such as the rotation or the flip of the complete image.
All the used augmentations techniques create a more robust
model in any situation. For example, pans and pots are placed
face down after washing to allow the water to dry or, perhaps,
the position of the camera is not always the same.

FIGURE 9. Example of images used for testing the training of the neural
network with both datasets.

Once the network has been trained and using data aug-
mentation on the images, we obtain the trained weights of
both synthetic datasets. These weights are tested on a set of
images obtained from real kitchens. These are new images
that have not been used in the training or in the validation of
the network. The test images have the same classes of objects,
pan, pot, bottle, knife, person and potato. Also, other objects
orange, fork, nut. . . are introduced on these images, to check
false positives. In Fig. 9 some examples of the images used
to perform the test weights during the training of the network
can be seen. This allows to visually compare both datasets
and check the efficiency as shown in the following section.

B. ANALYSIS OF THE EXPERIMENTAL RESULTS
A comparison between the results obtained with the model
trained with realistic images and the model trained with
automatically generated images is presented. Both datasets

to train the Mask RCNN have the same number of images
and have been validated in the same conditions. Furthermore,
the variation in the total number of objects appearing in the
datasets does not exceed 13%. We can observe in Table 1,
that the number of object instances is greater for some classes
in the automatic dataset and for other in the realistic dataset,
which makes the comparison fair enough. This comparison
has been performed by calculating the mean Average Preci-
sion metric (mAP) defined in PASCAL VOC 2012 competi-
tion [13] on the validation set. This metric uses a threshold
value of Intersection Over Union (IoU) of 0.5 (50%). As it
can be seen in Table 3, the Average Precision (AP) of each
class has been calculated and the average of all of them is
shown as the mAP. Also, the comparison is made using the
same Mask RCNN configuration during the training of the
two datasets (automatic and realistic dataset).

The handcraft labeled dataset (81 images) is created as
a ground-truth for the validation of the synthetic datasets
and it is done using the same labeled class objects. The
results obtained with the realistic dataset are better than the
results obtained with the automatic one. This difference can
be clearly seen in the extreme case of the potato class. The
automatic dataset has a value of 0.07 AP while the realistic
dataset achieves a value of 0.91 AP (Table 3). This shows
that the Mask R-CNN network learns from the realism of
the images, i.e. the position and scale of the objects in the
environment. By analyzing the realistic dataset we can see
how some classes aremore difficult to be detected than others,
for example knife which may have different shapes, or pot
and pan which may be very similar. In the Table 2 the false
positives and the true positives obtained with both models can
be observed for all the analyzed classes. The true positives are
those in which the neural network hits the class of the object
it predicts. Instead, false positives are those where the neural
network is confused in the class of the object. There are two
different false positives, the first type is when the neural net-
work does not succeed in the class of an object that has been
trained and, for example, it confuses panwith pot. The second
type of false positives appears because of a confusion of a new
object (orange) with a learned object (potato).

Other well-known indexes used to evaluate how well net-
work classifies the results are precision and recall. These two
indexes can be calculated through four prediction results: true
positives (tp), false positives (fp), true negatives (tn) and false
negatives (fn). Precision indicates how many of the classified
objects in a class are correct. This index is computed as
follows:

precision =
|{relevant objects} ∩ {retrieved objects}|

|{retrieved objects}|
(2)

precision =
tp

tp+ fp
(3)

The index denoted with recall refers to the objects that
have been selected over the true set of the objects that
should have been selected. The recall is given by the
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TABLE 2. Information of the false positives, true negatives, precision, recall and F1-score of each object and of each dataset.

TABLE 3. Evaluation of the model trained in both synthetic datasets with
mAP metric.

following expression:

recall =
|{relevant objects} ∩ {retrieved objects}|

|{relevant objects}|
(4)

recall =
tp

tp+ fn
(5)

The precision and recall values for the automatic and
realistic datasets are shown in Table 2. With these indexes,
precision and recall, the value of the average precision,
AP can be calculated, as shown in the following equation (6):

AP =
∫ 1

0
p(r)dr (6)

being p and r the precision and recall respectively. After
performing the calculation of theAP, the average is computed
of all AP dividing by the total number of classes (Q). This
is known as mean average precision (mAP), which can be
computed as:

mAP =
1
Q

Q∑
q=1

APq (7)

with q = 1 . . .Q and Q the number of classes. Also we
evaluate the F1-score for each class which depends on the
value of the recall and the precision. This index is computed
with the following equation:

F1−score =
2

r−1 + p−1
= 2 ·

p · r
p+ r

(8)

The macro-averaged F1-score is computed as:

macro−averaged F1−score =
1
Q

Q∑
q=1

F1−score (9)

This index is an excellent measure because a good value
close to 1 can be only obtained if the model achieves good
values in both recall and precision. The minimum value is
zero. With this equation we can calculate the value of the
F1-score for the total of both datasets. The realistic dataset
has a macro- averaged F1-score value of 0.6051 and the
automatic dataset of 0.4807. We can see again a better result
with the realistic dataset.

It can be observed how the value of F1-score for each
class is generally higher in the realistic dataset, having great
relevance in the detection of the potato class, where the
realistic dataset gets a value of 0.64303 while the automatic
dataset gets a value of 0.09956 (Table 2). These results also
agree on those obtained from AP and mAP (Table 3) and tp
(true positives) (Table 2). On the one hand the automatic
dataset show very few tp for the potato class and a very
low mAP. On the other hand, the realistic dataset obtain a
value of tp and mAP according to the other classes. This
great variation in the case of the potato is due to the fact that
is an object with great variability in shape and size, which
makes their recognition very difficult. The realism helps the
objects in the images to have real scales and therefore better
results can be obtained with the realistic synthetic dataset.
In Table 3 we show the values of the mAP with the best
configuration. Different trials of the experiments would be
necessary only if some configuration changes are introduced.
For example, we have carried out several tests creating dif-
ferent automatic synthetic datasets and we have trained the
networkwith the same configuration as before. The automatic
synthetic datasets are created with the same backgrounds and
classes of objects, only changing the random selection to
generate the final images. These experiments allow to check
the performance of the automatic synthetic dataset and the
influence of the randomness in the position and scale of the
objects. In Table 4 we show the value of AP for each class
and each test. In this Table 4, it can be checked that the
difference between the best and the worst value of mAP does
not exceed 5%. So, the randomness of the automatic syn-
thetic dataset does not impair the performance of proposed
method.
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FIGURE 10. Examples of results obtained in the inference of the models.
The left column shows the results obtained for the model trained with the
realistic synthetic dataset. The results obtained for the model trained
with the automatic synthetic dataset are shown in the right column.

Finally, in table 5 we compare the results of the real-
istic synthetic dataset (319 training images and 81 valida-
tion images) and the handcraft labeled dataset (81 training
images and 20 validation images). Looking at the table it can
appreciated how the handcraft labeled dataset is the one that
gives the best performance. The differences between both

TABLE 4. Evaluation of different automatic synthetic datasets with mAP
metric.

TABLE 5. Comparison between the realistic synthetic dataset and the
handfcraft labeled dataset with mAP metric.

are not relevant (around 10%) but if we analyze the results
with respect to the time to create them, the realistic syn-
thetic dataset would be a better option. In addition, we must
take into account the variability of images that can be made
with the synthetic datasets. The handcraft labeled dataset
has the disadvantage of needing real images which in our
case, includes the necessity of having a variety of different
kitchens.

In Fig. 10 some examples of the segmentation obtained by
the two trained models are shown. The left column shows
the results obtained with the model trained with the realis-
tic synthetic dataset and the right column shows the results
obtained with the automatic synthetic dataset. For instance,
it can be seen how in the third image of the left column the
pot is found and no false positives are produced. However
in the right image the network says that an orange is a
potato, thus producing a false positive. The fifth image shows
how the recognition of objects obtained using the realistic
synthetic dataset is better than the obtained from using the
automatic dataset. Finally in the last images we can see that
the realistic dataset does not produce any false positives. Note
that the alternative of automatic dataset performs correctly
except for a couple of classes that yields poor values of the
mAP (Table 3).

V. CONCLUSION
In this paper, we have proposed new ideas to facilitate the
training of models for the recognition of different objects
that are present in a kitchen during the cooking process.
Eventually, our objective is the recognition of these objects
in real situations. We have adopted the neural model Mask
R-CNN which has been widely used in the last few years
for instance segmentation. Due to the scarce or null availabil-
ity of public datasets for some applications and particularly
with kitchen objects, our own datasets have been developed.
Labeling images by hand is the first choice, but this needs
to invest an unfeasible amount of time. For this reason, we
have developed two approaches for synthetic dataset gener-
ation to train the model, and we use real images handcraft
labeled to validate it. We have developed an application that
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generates realistic data images that greatly reduces the cost
of labeling, and we have generated images with automatic
placement of kitchen objects which takes negligible labeling
cost. We have compared and analyzed the results obtained
with the generated datasets.Note that a comparison between
the synthetic dataset and the handcraft labeled dataset can-
not be fair enough because the time necessary to create a
handcraft labeled dataset, with the same characteristics as
synthetic dataset, is unaffordable when particular applica-
tions are involved. However, the results show that spending
less time to generate datasets we can get competitive perfor-
mance to train neural networks. The results are promising,
achieving good performance with a small amount of data. The
application developed to create the synthetic dataset opens
up a wide range of possibilities in this field. It also allows
us to introduce new object classes on the dataset with little
additional cost.

As future work, we propose to test the behavior of both
synthetic datasets in other networks like YOLO. We have to
change the configuration of both networks to further analyze
the advantages and disadvantages. Also, we consider the
possibility of creating training images from 3D models. This
allows to automate and collect a large number of views of
the same object, since an important problem in learning is to
find images of objects with different views to robustly train
the neural model. We are also studying the detection different
kind of actions inside the kitchen, such as putting the pan, salt
the meat or turn on the countertop, etc.
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