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ABSTRACT Path planning and navigation is a very important problem in robotics, especially for
mobile robots operating in complex environments. Sampling based planners such as the probabilistic
roadmaps (PRM) have been widely used for different robot applications. However, due to the random
sampling of nodes in PRM, it suffers from narrow passage problem that generates unconnected graph.
The problem is addressed by increasing the number of nodes but at higher computation cost affecting
real-time performance. To address this issue, in this paper, we propose an improved sampling-based path
planning method for mobile robot navigation. The proposed method uses a layered hybrid Probabilistic
Roadmap (PRM) and the Artificial Potential Field (APF) method for global planning. We used a decompo-
sition method for node distribution that uses map segmentation to produce regions of high and low potential,
and propose a method of reducing the dispersion of sample set during the roadmap construction. Our
method produces better goal planning queries with a smaller graph and is computationally efficient than the
traditional PRM. The proposed planner called the Hybrid Potential based Probabilistic Roadmap (HPPRM)
is an improved sampling method with respect to success rate and calculation cost. Furthermore, we present a
method for reactive local motion planning in the presence of static and dynamic obstacles in the environment.
The advantage of the proposed method is that it can avoid local minima and successfully generate plans
in complex maps such as narrow passages and bug trap scenarios that are otherwise difficult for the
traditional sample-based methods. We show the validity of our method with experiments in simulation and
real environments for both local and global planning. The results indicate that the proposed HPPRM is
effective for autonomousmobile robot navigation in complex environments. The success rate of the proposed
method is higher than 95% both for local and global planning.

INDEX TERMS Probabilistic roadmap, artificial potential field, motion planning, path planning, dynamic
obstacle avoidance, robot navigation.

I. INTRODUCTION
Autonomous mobile robot navigation and planning has
gained much interest in recent years for different applications
where the robot has to operate in challenging and harsh envi-
ronments. It is a fundamental problem for robot navigation
in areas such as search and rescue, deep-sea explorations,
mining, and service robots in industries, homes, and offices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang Hu .

Motion planning for such robots is, therefore, crucial for the
safety, inspection, and monitoring of harsh environments and
in areas where human exploration is not possible. In mobile
robots, path planning is a technique to find a collision-free
path in a known or unknown environment from any speci-
fied location to the given goal position. It is a fundamental
problem in robotics, and numerous solutions in the past have
been proposed to solve motion planning for different types
of robots such as industrial manipulators, unmanned aerial
vehicles (UAV), unmanned ground vehicles (UGV), and very
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recently autonomous driving vehicles [1], [2]. Path planning
techniques are also prevalent in computer graphics and game
design, where a path needs to be constructed between differ-
ent points. When planning paths, different parameters such
as the obstacle and map boundaries and vehicle’s motion
constraints should be carefully taken into consideration to
accomplish the final goal. The problem is challenging, and
the complexity grows exponentially with the size of the
environment or the configuration space (C-space). Moreover,
conditions such as static or dynamic environment, wholly
and partially unknown environment, adds to the complexity
of solving the path planning problem. In the case of an
unknown environment, the robot has to perform localization
and mapping simultaneously while exploring the environ-
ment and commonly called the SLAM problem in robotics
[2]. Whereas planning in a completely known environment
where the position of the obstacles are static and do not
change over time is relatively more straightforward, planning
under dynamic and completely unknown environment with
uncertainty is a challenging and an active area of research in
robotics community.

The work in this paper presents a solution for mobile
robot navigation and path planning in complex environments
with static and dynamic obstacles. Our proposed method
uses a sampling-based probabilistic roadmap (PRM) planner
for global planning combined with a classical reactive local
planning using the artificial potential field (APF) method
for efficient path construction. Our proposed method, called
the Hybrid Potential based Probabilistic Roadmap (HPPRM),
can eliminate some of the drawbacks of PRM and APF in
planning paths in cases such as the narrow passages, bug-
traps, and local minima problem where these traditional
methods generally fail to produce a solution. We also present
an improved local planning for APF using virtual force that
is more robust to avoiding the deadlock conditions, and plan
paths in the presence of dynamic obstacles. We present a
layered planner that can generate paths with fewer nodes and
is computationally efficient with a higher success rate.

II. BACKGROUND AND RELATED WORKS
Path planning can be treated as a sub-problem of the
broader motion planning family where the goal is to find
a collision-free path from a start configuration to the goal
configuration without considering the dynamics, control
inputs, motion constraints, and duration of motion [1], [3],
[4]. In terms of scope, the planning algorithms are clas-
sified into global path planning and local path planning.
Global planning methods (hierarchical paradigm) generates
a collision-free path of the mobile robot in a known map.
Global planning methods find a completion path, which
means they tend to produce a complete path if it exists other-
wise outputs failure. They are very effective in static envi-
ronments and are convergent in nature. Classical roadmap
methods such as the Voronoi diagrams [5], [6], visibility
graphs [7], [8], adaptive roadmaps, virtual force field (VFF)
[9], and virtual field histogram (VHF) [10], [11] are some

of the popular methods. On the other hand, local planning
is based on a reactive paradigm and highly depends on local
sensing rather than knowing the complete map. Because the
environment is unknown, local planning invokes the robots
to sense the obstacles in the vicinity and tightly act based on
this learned information. The reactive planning needs to be
fast and work in real-time to avoid unknown obstacles that
can be static or dynamic. For global planning, such situations
generally result in failure. For e.g., whenmoving on a planned
global path, an unforeseen obstacle is placed in the planned
path, re-planning is required to avoid hitting the obstacle [12].
Planning in a dynamic environment can be computationally
expensive as the map needs to be updated at each step. Many
robotic applications combine the advantages of both the local
and global methods to present a complete solution to the
navigation problem [13].

Artificial Potential Field or APF method first introduced
by Khatib [14] in 1986 is a classical reactive local naviga-
tion method inspired by the potential energy in nature, such
as the gravity or magnetic field for motion. Utilizing this
method, a point robot in the configuration space can move
under the influence of repulsive and attractive potential fields
generated by the obstacles and target position. The approach
has been widely used in the robotics community and is
known for its mathematical elegance, real-time performance,
and simplicity to determine the path from start to goal in
minimum computation time. Earlier works on the potential
field include [15] that presented search-based planning using
the potential field to guide the search. Other series of work
described in [16]–[19] discussed the potential field function
with a unique local minima and construction of navigation
functions. Despite the many advantages of APF due to its
simplistic model, there are some disadvantages. One major
problem with APF is that the robot can get stuck in the local
minima of the potential field at a point in the map that is far
from the actual goal even if there exist a motion plan. Such
local minima occur in themap due to the distribution of obsta-
cles and the potential field generated by them.When the robot
navigates in such a potential field, there are chances of getting
caught in the local minima. To counter this problem many
researchers have proposed different strategies to avoid local
minima trap in APF with several improvements [20]–[24].
Other researches for avoiding local minima by adopting force
distribution were presented in [21], [25]–[28]. Approaches
similar to APF that are popular are the Virtual Field His-
togram (VFH) [10], [11] and EnhancedVFH+ [29] where the
uncertainty from the sensor are modeled in histogram grids
generated by the distance information from ultrasound sensor
or range sensors. Unlike other obstacle avoidance algorithms,
VFH considers the shape and dynamics of the robot, such as
steering and control for navigation [9], [11]. APF and VFH
can both work effectively in static and dynamic obstacles
in limited conditions. Other planning methods considering
dynamic obstacles in uncertain environments have been pre-
viously presented in works like [13], [30]–[32]. A recent
interesting work by Ayawli et. al. presented VD-CGT based
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planning in dynamic environment using Voronoi diagram and
computational geometry where a small rectangular region
is used around the robot to check for collisions [33]. Col-
lision check based on virtual obstacles was presented in
[34]. Distributed obstacle information sharing for collision
detection and navigation in complex scenarios using single
and multiple-robot systems is presented in [35], [36].

In recent years, sampling-based planning (SBP) methods
are gaining much interest because of its efficiency and suc-
cess rate. Sampling-based methods are unique in the sense
that planning occurs by the connectivity of the C-space
through deterministic or random function sampling. These
functions build a graph or tree of all the possible feasi-
ble motions of the robot in the C-space [37]. Probabilistic
RoadMap (PRM) [38] and Rapidly Random Exploring Trees
(RRT) [39], [40] are the most popular sampling-based plan-
ners. The former is a C-space planner that usesmultiple-query
planning, while the RRTs uses a tree representation for
single-query planning in the C-space. The key idea of the
PRM is to randomly distribute the nodes across the C-space
and then connect these nodes using a simple local planner
and straight lines to form a graph roadmap. By connecting
the free space (Cfree), the PRM is successful in finding faster
paths by reducing the search to a graph. However, PRM
does not perform well in narrow configuration spaces due
to the random sampling that distributes nodes with constant
density in Cfree thereby reducing the volume spanned by the
narrow spaces as compared to the total Cfree [41]. Solution to
this problem includes sampling more densely near obstacle
boundaries since points in narrow passages lie close to the
obstacle. But this is not always true and results in many
points distributed away from narrow passage resulting in
broken roadmaps [42]. A similar problem exists with the
RRT, and many researchers have proposed variants to these
planners to overcome this problem. For instance, the RRT*
algorithm [43] is a variation of the original single-tree RRT
that continually rewires the search tree for the shortest path
search. Bidirectional RRT [44], [45] uses a bi-directional tree
search for faster route planning. Similarly, [46], presented
Lazy PRM, an improved PRM that minimizes the number of
collision checks performed during the planning and therefore
minimizes the running time of the planner. [47] presented
improved connectivity of the roadmap by connecting previ-
ously generated connected components. PRM* an optimal
variant of the original PRM algorithm was presented in [44].
The connection radius in PRM* is chosen as a function of
number of sampling nodes. This makes the connection radius
to decrease with the increase in the number of samples ensur-
ing an optimal path between start and goal position. Also,
PRM* is asymptotically optimal algorithm whereas PRM is
only probabilistic complete. SBP methods uses a local plan-
ner for moving from one node to another on the constructed
roadmap. The planning problem performs by finding the sim-
ple path from the start node to the roadmap and consequently
from the roadmap to the goal node. Search based algorithms
such as the Dijkstra [48] and the A* [49] algorithm are

commonly used methods that find the minimum-cost paths
on the constructed graph. For example, the A* algorithm
operates by exploring from the node that is unexplored and
has the minimum estimated cost [50], [51]. The total cost is
estimated by accounting the weights on the edges that the
robot takes while reaching to that particular node from the
start node along with the cost-to-goal weight. These search
planners are relatively fast and can work on medium to large
scale maps. Once the plan is generated on the graph, path
smoothing methods can be used to generate a smooth trajec-
tory from start to goal by carefully considering the kinematics
of the robot platform [52], [53].

In this work, we present a navigation solution for a mobile
robot in 2D space with static and dynamic obstacles.We com-
bine local reactive and global planning for efficient naviga-
tion in complex spaces. The local reactive method is based
on the APF, and we introduce a new virtual force to the robot
system that guarantees that the robot never gets stuck into
the local minima. The new contribution of this work are: (1)
Introduction of the new virtual force for local reactive navi-
gation that works in sync with global planner. The proposed
local planning algorithm always sway the robot away from
the local minima andmoves it towards the goal. The proposed
local planner works in the presence of dynamic obstacles.
(2) HPPRM with improved sampling using potential field
to solve narrow passage problem by distributing nodes away
from the obstacles and generates path that is shorter andmuch
safer for the robot. Our method is capable of finding paths in
complex maps with a fewer number of nodes with compara-
ble computation cost. (3) We present a layered planner that
combines local reactive and global planning in presence of
dynamic obstacle with higher success rate.

The rest of the paper is structured as follows. Section III
provides the problem formulation. Section IV-A gives the
introduction to the artificial potential field method with math-
ematical formulation and introduces the virtual force based
local minima avoidance algorithm. Section IV-B gives the
introduction to the original PRM algorithm and discusses the
disadvantages of the original PRM. Section IV-C introduces
the proposed HPPRM algorithm with dynamic obstacles.
Section V presents simulation and experimental results for
local reactive navigation using the proposed virtual force and
global planning using HPPRM. We also show the results of
HPPRM in real environment considering dynamic obstacles.
Finally, Section VI concludes the paper.

III. PROBLEM FORMULATION
This section defines the formulation used in the paper and
defines the motion planning problem that is addressed for
mobile robot navigation and path planning. Let Q be the set
of sequence of an ordered list denoted as {qi = Q(i)}i∈N of
length N ∈ R, and is mapped from i ∈ N to the ith element
of Q. Also, let X ⊂ Rd and represent the given state space
and d ∈ N, d ≥ 2. Let C be the configuration space of
all possible placements of moving object. The obstacle and
obstacle-free state spaces are defined by Cobs and Cfree such
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FIGURE 1. Configuration space.

that Cobs ⊂ C and Cfree = C\Cobs. Let the initial state is
given by qinit ∈ Cfree and goal state is given as qgoal ∈ Cfree
(Figure 1). Let τ be the non-zero scalar path length such that
τ : [0, 1] → Cfree. An accurate geometric map M of the
environment is also assumed to be available to evaluate Cfree
during the motion planning. A solution path is feasible if the
connected path between τ (0) = qinit and τ (1) ∈ qgoal lies
in the obstacle-free path Cfree. Let U : R denotes the artificial
potential function. There are three main problems addressed
for path planning, namely: feasibility, optimality, and speed.
1) Feasibility: Let γf be the feasible trajectories that are rep-

resented by the cost function c(.) and finds the Euclidean
distance function between two positions q1, q2 ∈ Cfree
denoted by d(q1, q2) ∈ R in the obstacle free configura-
tion space Cfree. The aim is to find the feasible path with
minimum cost function cmin.

2) Optimality: Given that all the feasible trajectories from
the previous condition exists and an optimal path
τ (.) ∈ γf exists for the distance function c{τ (.)}min.

3) Speed: Given condition (1) and (2) are true, then find the
path from qinit ∈ Cfree to qgoal ∈ Cfree in minimum time
T ∈ R such that a set of controls u : [0,T ]→ U and the
motion satisfies x(T ) ∈ Qgoal and q(x(t)) ∈ Cfree.

IV. HYBRID POTENTIAL BASED PROBABILISTIC
ROADMAP (HPPRM)
Our proposed HPPRM method combines local and global
navigation method for robot navigation in static and dynamic
environment. First we describe the artificial potential based
local navigation method and discuss the formulation and
problems with the traditional APF. We present our solution
to overcome some of these problems using the virtual force.
Next, we describe the PRM method and the narrow passage
problem and discuss reasons for poor performance of PRM
in such scenarios. Finally, we present the HPPRM algorithm
and its mathematical formulation.

A. LOCAL NAVIGATION USING ARTIFICIAL POTENTIAL
FIELD METHOD
We first describe the local planner used for the navigation of
the robot around obstacles. In this work, the artificial potential
field (APF) method is used for the local reactive navigation of
themobile robots [14]. In this method, the robot is modeled as

FIGURE 2. Force distribution model for artificial potential field on a 2D
robot.

a moving point particle inside an artificial potential field that
uses an attractive potential function to pull the robot towards
the goal configuration and a repulsive potential function that
pushes the robot away from the obstacles. The negative gra-
dient of this potential function generates a force that can
be used to guide the robot towards the goal while avoiding
obstacles. Typically, the function consists of two components,
attractive and repulsive. The attractive potential (Ua) gener-
ated between the robot current position pr = [xr , yr ]T, and
the desired goal position, pg = [xg, yg]T, is as follows (see,
Figure 2):

Ua = cg

1− e
−‖ψg‖2

l2g

 .Eng, (1)

where, ψg is the Euclidean distance between the goal and
robot position in the space and is given by ψg

= d(pg,pr ) =
pr−pg, and cg and lg are the strength and correlation distance
for the goal destination. The first term cg acts to make the
attractive potential Ua zero when ψg = 0. The correspond-
ing force is equal to the negative gradient of the potential,
i.e F = −∇U, and is given by,

Fa = −∇Ua = −
2cgEngψg

l2g
e
−‖ψg‖2

l2g , (2)

Eng is the unit vector towards the goal destination and is given
by,

Eng =
(xg − xr )Ei+ (yg − yr )Ej

ψg . (3)

The parameter cg also defines the strength radius of a cir-
cular boundary around the goal position pg in quadratic
range. It allows the robot to move towards the goal position
because of the highly attractive force generated between the
robot position and goal position quickly. This force gradually
decreases as the robot approaches the goal and varies coni-
cally allowing the robot to slow down when it is very close to
the goal and thereby avoiding it to overshoot the goal position.

Similarly, the repulsive potential (Uo) generated by any k th

obstacle whose position is given by pko = [xko , y
k
o]

T and the
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FIGURE 3. Example of Artificial Potential Field method.

robot is given by,

Uk
o =


co

e−‖ψok‖2l2o

 .Enko, ψo
k ≤ ψi

0, ψo
k > ψi

(4)

where, ψo
k is the Euclidean distance between the k th obstacle

and robot position and is given by ψo
k = d(pko,pr ) =

pr − pko. The parameters, co, lo and ψi are the strength,
correlation distance for obstacle avoidance, and influence
distance, respectively. The repulsive potential is considered
zero if the minimum distance ψk

o is greater than the constant
factor ψi. Such a condition implies that the robot is at a large
distance from the nearest obstacle and therefore in order for
the robot to move towards the goal quickly, the repulsive
potential is made equal to zero in Equation 4. The unit vector
Eno towards the robot from the detected k th obstacle is given
by,

Eno =
(xr − xko )Ei+ (yr − yko)Ej

ψo
k

. (5)

The corresponding force generated by the negative gradient
is given by,

Fo=−∇Uo=


2coEnoψk

o

l2o

e−‖ψok‖2l2o

 .Enko, ψo
k ≤ ψi

0 ψo
k > ψi.

(6)

The net overall repulsive potential from all the obstacles
around the robot can then be calculated as,

Uo =
∑
k

Uk
o, (7)

and, the net repulsive force from all the obstacles is given
by,

Fo = −∇
∑
k

Uk
o =

∑
k

Fk
o . (8)

The net overall potential generated by the attractive and
repulsive potential is given by the force Utot and is computed

as,

Utot = Ua + Uo

= cg

1− e
−‖ψg‖2

l2g

 .Eng +∑
k

co

e−‖ψok‖2l2o

.Enko. (9)

The net overall potential force is then given by,

Ftot =−∇Utot = −∇Ua −∇Uo

=−
2cgEngψg

l2g
e
−‖ψg‖2

l2g −
2coEnoψk

o

l2o

e−‖ψok‖2l2o

.Enko. (10)

In general, the APF algorithm generates a smooth function
over the robot’s configuration space (Cspace) that has higher
values near the obstacles and lower values when the robot
is further away from the obstacles. The forces acting on the
robot under the influence of the obstacle and goal are depicted
in Figure 2. The net total force Ftot moves the robot around
the obstacles and towards the goal. The influence of the
different parameters when drawing the potential is explained
in Figure 3. When pg = (7, 3), cg = 5, and lg = 8, the
attractive potential (Ua) is generated as shown in Figure 3a.
When the obstacle position is po = (3, 7), co = 5, and lo = 1,
the repulsive potential is generated as shown in Figure 3b. The
combined attractive and repulsive potential (Utot ) is shown in
Figure 3c. The gradient of the potential field represent the
force vector which departs from the obstacles and into the
goal position is as shown in Figure 3d. It shows the influence
of the circular regions with respect to the distance to the
obstacles. The outward force magnitude from the obstacles
are stronger near the obstacles and weaker near the goal
position thereby creating a force under the influence of which
the robot can move down the slope and reach the destination
safely, without hitting any obstacle.

The APF method works in real-time and performs best in
environments where the obstacles are well distributed and
wide enough with clearance for the robot to navigate around
[21], [54], [55]. Moreover, since both the fields are indepen-
dent of each other, it exhibits parallelism. Despite the effi-
ciency of the APF method in finding the goal, there are many
challenges when implementing it in the real environment, and
it has been addressed in various literatures [56]–[58]. One of
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FIGURE 4. APF deadlock cases: (a) Goal-robot in line, (b) Symmetric
obstacle, (c) Obstacle near the goal.

the main drawbacks is that the robot can get trapped in a local
minima or deadlock position. This problem occurs when the
attractive and repulsive forces generated by the goal and the
obstacles nullify each other. These situations are depicted in
Figure 4, and shows different cases where the robot might
get trapped into local minima and did not find the goal.
The deadlock situation can occur mainly when (a) the robot
position and the goal position are collinear and equidistant
to an obstacle (robot-obstacle-goal) position, (b) when the
robot is around symmetrically arranged obstacles along the
robot-goal line, and (c) when the goal position is very near to a
large obstacle also called as a goal not reachable due to obsta-
cle nearby or GNRON problem [56], [59] (Figure 4(c)). This
is a very common problem with APF, and many researchers
have tried to solve it [25].

1) LOCAL MINIMA AVOIDANCE
To solve the local minima problem, we present a new
approach to avoid deadlock. To reach its local goal, it is
enough to understand the relative position of obstacles and the
goal concerning the robot i.e., the direction of the obstacles
and the angle at which the goal is positioned from the robot.
For this reason, we create a local motion planning method
based on APF in a polar coordinate system. In this method,
a robot acquires information of the surrounding environment
at regular intervals, e.g., using a scanning range sensor or
sonar sensor, and then creates an artificial potential field only
in the range of sensing. After that, the robot only moves in a
direction where the potential value is minimum. By repeating
this motion, the robot can arrive at its destination without
colliding with obstacles.

First, the Euclidean distance values from the sensor are
converted into polar coordinates and the distance to potential
function are plotted. For obstacles closer to the sensor, the
potential value becomes higher, and smaller for obstacles
that are further away. We do not consider the geometry of
the obstacles at this stage, but only see the existence and
non-existence of the obstacles. The two potentials (attractive
and repulsive) are plotted against the angle of scanning by
the sensor (θi to θg), (i ∈ 1, · · · , 180) where θg is the angle of
the goal position and the attractive potential field Fa is zero

at this angle. Similarly, for the repulsive potential field Fo
exhibited by the sensors field, the value of scanning angle
(θi) where the obstacles (θo) are present will give a high
potential. In general, as the scanning range of most range
finders and integrated sonars are wide, obstacles in the near
vicinity of the robot can be detected in one scan. As the robot
continuously moves around and gather more scanning data,
it can detect additional regions of scans where the obsta-
cles are present and move towards the goal using reactive
navigation. Figure 5a and Figure 5b shows the polar plot of
the repulsive and attractive potential field for the scanning
angle from the sensor in a real environment. In this example,
the obstacles are placed at a scan angle of 10 deg, 40 deg,
95 deg, and 170 deg with respect to the sensor position. This
is represented as repulsive peaks (red) in Figure 6a. The
goal potential is located at 80 deg (θg) and is shown as the
minimum value in Figure 6a (blue). The same goal angle
in the polar coordinate system is shown in Figure 5b close
to 80 degrees. The green line is the threshold value of δ, which
can be set for different sensor configurations. Figure 6b,
shows the combined cumulative potential for the threshold
value. The regions where the cumulative value falls below the
threshold represent open spaces in that scanning angle (θi).
The regions whose cumulative potential value is higher than
the threshold represent areas that are filled with obstacles.
Following this approach, the region at scan angle 50 deg
and 140 deg are found to be open areas, and the robot can
pass through these regions in the map easily after carefully
checking the passability. Based on the lowest potential value
in the region, the robot will choose the direction as marked
with a blue arrow in the polar coordinate plot as it is the
direction without any obstacles and closer to the goal position
(Figure 5c).

2) VIRTUAL FORCE DIRECTED LOCAL MINIMA AVOIDANCE
By constructing the potential functions for each obstacle
for the sensing angle, we can determine the open and
obstacle-rich areas in the map and program the robot to move
towards the goal. There are likewise situations when the robot
cannot completely avoid the deadlock situation because of
equal force distribution from the obstacle and goal placement.
In this condition, the robot will not move at all and get stuck in
the deadlock position. To avoid trapping into the local minima
or deadlock positions while navigating, we introduce a virtual
force in addition to the existing potential forces to the robot
that always ensures that the robot will move away from the
local minima.

In the proposed method, the new virtual force and obstacle
repulsive force are perpendicular to each other. The magni-
tude of the virtual force is proportional to the angle between
robot heading and goal position (θg). This virtual force gen-
erates a repulsive rotational control that will move the robot
from the local minima when it is trapped. The force act in
such a way that it will always direct the robot towards the
goal. Figure 7, shows the force distribution after introducing
the virtual force (Fv). When the robot detects any obstacle
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FIGURE 5. (a)Repulsive potential in polar coordinate system, (b)Attractive potential in polar coordinate system, (c) Cumulative potential in
polar coordinate system. The arrow represents the chosen direction for robot motion.

FIGURE 6. Potential value (U) vs scanning angle θi at one sensor scan.

[xo, yo]T in its sensing range, the new virtual force (Fv) is
added perpendicular to the original repulsive force Fo. The
virtual force Fv is defined as,

Fv = M (θg)
[
Fxo Fyo

]T
, (11)

where, Fxo and F
y
o are the x and y components of the repulsive

force Fo generated by the obstacle at position [xo, yo]T. And
the functionM (θg) is given as,

M (θg) = Mmax(1− eµ.θg )−1. (12)

The value of function M (θg) depends on the robot heading
angle and goal position given by θg. When the angle is zero
degrees, the value of the function M (θg) = Mmax , i.e., maxi-
mum value, and it decreases exponentially as the angle θg is
increased, reaching zero at some predefined θ that is decided
by the user. The value of µ is experimentally determined and
is based on the type of sensor.

FIGURE 7. Virtual repulsive force for local minima avoidance.

The total force from Equation 10 becomes,

F6=

{
Fa +

∑
k
(Fko + Fv) if (ψk

o ≤ ψg & ψk
o ≤ ψi)

Fa else (ψk
o > ψg).

(13)

The net force F6 generated by the introduction of virtual
force causes a rotational moment and moves the robot away
from the obstacle. This is graphically shown in Figure 7 with
the new force distribution on the robot body. The direction
of rotation (left or right) is carefully selected and chosen so
that the motion always leads towards the goal. To understand
the effect of virtual force, consider the example, as shown
in Figure 8 of local minima trap due to symmetric obstacle
configuration. The repulsive forces due to the obstacle at
position [xo, yo]T, and the attractive force generated by a goal
at [xg, yg]T on the robot body located at [xr , yr ]T position ‘A’
cancels each other. In this situation, traditionally, the robot
is called to be in the local minima. However, by introducing
the virtual force that is acting perpendicular to the repulsive
force, the generated net force F6 will rotate the robot towards
the right and away from the obstacle. Similarly, when the
robot is positioned at ‘B’, ‘C’, and ‘D’ the net force moves
the robot from the obstacle and towards the goal. The angle of
goal heading θg at each position will determine the magnitude
of the repulsive force. For E.g. when at position ‘A’, the
goal position and robot heading are in straight line (θg = 0).
Therefore, the maximum repulsive force is generated at this
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FIGURE 8. Virtual repulsive force for local minima avoidance in case of
robot-goal in line situation.

position. At positions ‘B’ and ‘C’ the magnitude of virtual
force gradually decreases, and at ‘D’ the angle is near maxi-
mum making the repulsive force negligible. At this particular
position, just by using the nearby goal’s attractive potential,
the robot can successfully reach the target position. By care-
fully determining obstacles and open areas the local minima
is avoided.

Similarly, for symmetric obstacle case as shown in
Figure 4b, where two obstacles are arranged symmetric to
each other and a possibility of the robot to be trapped at local
minima exists as shown by the red dot due to the force distri-
bution. In this case, as well, using the virtual forcemethod, the
robot can easily avoid this situation, as indicated in Figure 9.
Here the repulsive forces generated by the two obstacles are
shown by forces F1

o and F2
o. The corresponding repulsive

forces are shown by F1
v and F2

v that acts perpendicular to
the obstacle repulsive forces. The attractive force Fa and the
resultant net force F6 , acts such that the robot can tackle
the deadlock and move in a straight line between the two
obstacles to reach the goal. The results for the virtual force
directed local minima avoidance are discussed in the results
section.

B. GLOBAL PATH PLANNING METHOD
The local reactive navigation method using the artificial
potential field works well in small to medium-sized maps and
where global information is not available. However, for large
environments, local reactive navigation becomes very diffi-
cult. Hence, we build a global path planning method under
the assumption that the robot has a map of the environment
in advance and uses it to guide the robot toward the goal.
We used the multi-query probabilistic roadmap method for
global navigation. We first give a brief overview of the clas-
sical PRM technique with its advantages and disadvantages.
After that, we present our proposed hybrid potential based
probabilistic roadmap (HPPRM) method.

FIGURE 9. Deadlock avoidance in case of symmetric obstacles.

1) PROBABILISTIC ROADMAP METHOD
For global planning, we used the modified probabilistic
roadmap method. The PRM is one of the global planning
methods that determine a path from the initial state to the
global state in a given map. The PRM samples the given
configuration space into free configurations and then tries to
connect them using a roadmap for feasible motions. PRM is a
multi-query sampling algorithm and works in two phases: the
construction phase, and the query phase. At first, a roadmap
R is constructed in the free configuration space Cfree at the
construction phase. The roadmap R = (N ,E) is a unidirected
graph of sets of nodes N and a set of edges E . Here an edge
corresponds to a simple, feasible path connected by a line
segment between two nodes. These paths are also called as
local paths and are calculated extremely fast by a powerful
local planner. Initially, the roadmap R is empty. The sequence
of the construction phase are as follows:

(i) Distribute node q in the free configuration space Cfree
as shown in Figure 10a and add to N .

(ii) Check the connectivity between q and its neighbor
N (qi). If connectivity exists, a new edge (q, q′) is added
to the set of edges E as shown in Figure 10b.

(iii) Iterate (i) and (ii) V times where V is the number of all
nodes.

Next, in the query phase, the roadmap is used to solve the
individual path planning problem from a given initial state
space configuration qinit to the goal state-space configuration
qgoal. At first it tries to connect the initial and goal state-space
configuration to some nodes qinit and q′ in N . If a successful
connection is found it searches the roadmap configuration
R for sequence of edges connecting the nodes q′ and qgoal.
The connections are attempted between roadmap vertices that
are within a fixed radius r from one another. This search
can be done by depth-first search or breadth-first search
or both, e.g., A* algorithm or Dijkstra algorithm. Finally a
feasible path is obtained and concatenated to corresponding
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FIGURE 10. Construction phase: The black dots, line segments and red
objects represents nodes, edges, and obstacles, respectively.

local paths. The sequence of the query phase is as
follows:
(i) The shortest distance D called distance to goal from an

arbitrary node qn to the goal is calculated. For any pair
(q, q′) of configurations, the shortest distance D(q, q′)
can be defined as Euclidean distance and given as,

D(q, q′) = max
q∈Cfree

∥∥q− q′∥∥ . (14)

(ii) q′ is added to array of path and set as a next closest
neighbor of qinit inN (qinit) whoseD is minimum among
the neighboring node.

(iii) The shortest path from the initial point qinit to the goal
point qgoal on the roadmap is obtained by iterating the
operation ii) from the initial point until the value of D
becomes zero (Figure 11).

Algorithm 1 (Construction phase) and Algorithm 2 (Query
phase) describes the complete PRM algorithm.

PRM is a relatively simple method among the sampling-
based path planning methods, and therefore it can generate

Algorithm 1 Construction Phase Algorithm
1: N ← 0
2: E ← 0
3: qi← sample from Cfree
4: k: number of closest neighbors to choose in each config-

uration
5: N (qi)← closest neighboring nodes of q chosen from N
6: for i = 1, · · · ,V do
7: q← a node randomly sampled from free space
8: N (qi)← k closest neighboring nodes of q chosen from

N
9: for each q ∈ N (qi) do

10: if there is no collision between q and q′ from q to qi
and there is not already an edge from q to qi to the
roadmap R then

11: E ← E ∪ (q, q′)
12: end if
13: end for
14: end for
15: return R

FIGURE 11. Shortest path calculated shown by green line.

the path efficiently in terms of calculation cost. However,
there are some problemswith PRM, especiallywhen handling
narrow passages that lead to (i) unconnected and fractured
graph, and (ii) increased calculation cost concerning the
increase in the number of nodes. The unconnected problem
occurs when a path between the initial and goal points are
unconnected. This occurs due to the random sampling of
the nodes in the PRM initial stage. The nodes are generally
sampled uniformly and randomly for the whole configura-
tion space (Cfree), and therefore the possibility of sampling
from narrow and complex spaces is relatively low. Figure 12,
explains an example of this problem when the start and goal
point are s = (5, 5), and g = (95, 95), respectively. It can be
seen that PRM did not sample any nodes in the narrow region,
and therefore no connectivity between the nodes on the left
and right side of the obstacles could be generated, resulting
in failed plan.

The second problem is of increased calculation cost with
an increase in the number of nodes. Assuming the worst
case condition, the nodes and number of edges are given
as N and E , respectively. The computation cost of PRM in
the construction phase is O(N 2) at maximum. In the query
phase of the PRM cycle, the calculation cost depends on
finding the shortest path. For the Dijkstra method, the cal-
culation cost is O(N 2), and if the improved Dijkstra method
with the Fibonacci heap is used, the calculation cost is
O(E + N )logN . If we adopt the A* method for the shortest

FIGURE 12. Unconnected problem in PRM.
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path, the calculation cost is O |E|. When enough nodes are
distributed to make a path, the number of edges exceeds
the number of nodes, and therefore the computation cost
increases significantly for the number of nodes. For e.g.,
in Figure 11, if the number of nodes is increased fromN = 40
to N = 160 at intervals of 20, the calculation time will
rapidly increase with the number of nodes. This is shown
in Figure 13. Here the calculation time is the meantime
measured 20 times of successful path planning.

C. HYBRID POTENTIAL BASED PROBABILISTIC
ROADMAP (HPPRM) ALGORITHM
In this section, we present an improved Hybrid Potential
based Probabilistic Roadmap (HPPRM) method to overcome
the problems discussed in the previous section. The proposed
method uses the artificial potential field method and map
segmentation to improve the sampling of nodes during the
PRM process. The outline of our proposed method is as
follows:

1) First, a potential map is created for a given map based
on the obstacle information. The equation to generate the
repulsive potential field Uo is the same as that described
in Equation 4. Note that, here, we only use repulsive

Algorithm 2 Query Phase Algorithm
1: N (qinit) ← k closest neighboring nodes of qinit} chosen

from N
2: N (qgoal)← k closest neighboring nodes of qgoal chosen

from N
3: N ← {qinit} ∪ {qgoal} ∪ N
4: set q′ to be the closest neighbor of qinit in N (qinit)
5: repeat
6: if D(qinit, q′) 6= 0 then
7: E ← (qinit, q′) ∪ E
8: else
9: set q′ to be the next closest neighbor of qinit in

N (qinit)
10: end if
11: until a connection was successful or N (qinit) is empty
12: set q′ to be the closest neighbor of qgoal in N (qgoal)
13: repeat
14: if D(qgoal, q′) 6= 0 then
15: E ← (qgoal, q′) ∪ E
16: else
17: set q′ to be the next closest neighbor of qgoal in

N (qgoal)
18: end if
19: until a connection was successful or N (qgoal) is empty
20: P← shortest path (qinit, qgoal,R)
21: if P is not empty then
22: return P
23: else
24: return failure
25: end if

FIGURE 13. Relation between number of nodes and calculation cost in
PRM.

potential for obtaining regions of obstacles. Here Uo
takes a real number from [0, 1], and the value is stored
into all grids.

2) Next, we decompose the potential map into equal
mx and my grids in x and y directions, respectively
(Algorithm 3).

3) Each grid area is classified into two areas, and the total
number of nodes to be placed in each region is decided.
The total potential value of each area given as TP(i, j),
where (1 < i < mx , 1 < j < my) is calculated as,

TP(i, j) =

iX
mx∑

k= 1+(i−1)X
mx


jY
my∑

l= 1+(j−1)Y
my

p(k, l)

 , (15)

where, X and Y are the number of nodes in x-direction
and y-direction in the givenmap, and p(k, l) is the poten-
tial value at a grid (k, l). Next, we define the median
value of the total potential TP(i, j) as a global threshold
as below,

TG = median (TP(i, j)) . (16)

The areas whose TP(i, j) > TG are defined as ‘high
potential’ regions, and the areas whose TP(i, j) < TG
are defined as ‘low potential’ regions. Coefficients a and
b are added to high potential and low potential regions
respectively, where a and b satisfies the following rela-
tion,

a = 1+ k, b = 1− k(0 < k < 1), (17)

Multiplying a and b to meanNum = V/(mxmy) depend-
ing on the region, we finally get the number of nodes in
each region as,

numNodes(i, j)=


aV
mxmy

at high potential region

bV
mxmy

at low potential region

(18)

4) Node distribution:We define the mean potential value of
each region as LocalThreshold(i, j), and distribute the

221752 VOLUME 8, 2020



A. A. Ravankar et al.: HPPRM: HPPRM Algorithm for Improved Dynamic Path Planning of Mobile Robots

FIGURE 14. HPPRM process, (a) Map environment, (b) Repulsive potential map, (c) Grid decomposition, (d) High (H) and low (L) potential area
classification, (e) Node distribution based on potential, (f) Roadmap construction by PRM, (g) Node distribution in original PRM.

Algorithm 3 HPPRM - Map Decomposition and Node Dis-
tribution
1: U0← Repulsive potential
2: V ← Number of nodes
3: (mx ,my)← Decomposition of grids in x and y direction

4: TP(i, j)← Sum potential of each grid
5: TG(i, j)← Global potential threshold
6: for mx × ny areas do
7: calculate TP(i, j)
8: end for
9: TG(i, j)← median(TP(i, j))

10: meanNum← V/(mxmy)
11: for mx × my areas do
12: if TP(i, j) > TG(i, j) then
13: numNodes(i, j)← a× meanNum;
14: else
15: numNodes(i, j)← b× meanNum;
16: end if
17: end for

nodes to the grids whose potential value is less than
LocalThreshold(i, j).

5) The method to connect the nodes by edges and query
phase is same as the original PRM.

The complete process of the proposed HPPRM is shown
in Figure 14 and explained in Algorithm 3 and Algorithm 4.
The complex map region with obstacles in red is shown in
Figure 14a. The corresponding potential map of the obstacles

Algorithm 4 HPPRM - Sampling Algorithm
1: V ← Number of nodes
2: (mx ,my)← Decomposition of grids in x and y direction

3: TP(i, j)← Sum potential of each grid
4: TG(i, j)← Global potential threshold
5: for mx × ny areas do
6: calculate TP(i, j)
7: for k = 1 to numNodes(i, j) do
8: while True do
9: n← randomly choose from the area
10: if occgrid(n) 6= TP(i, j) then
11: print
12: end if
13: end while
14: end for
15: add n to roadmap as a new node
16: end for

is given in Figure 14b. Next, the potential map decomposition
into equal mx and my grid regions in respective x and y direc-
tions is shown in Figure 14c. Based on the calculated total
potential for each region TP(i, j), and the global threshold TG,
regions of ‘high potential’ and ‘low potential’ are marked on
the map as H and L, respectively and shown in Figure 14d.
Next, node distribution based on the mean potential value of
each region as LocalThreshold(i, j) is calculated, and nodes
are distributed to high potential and low potential regions,
and the result is shown in Figure 14e. The node-edge joining
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and query phase of the original PRM on the new distributed
nodes is presented in Figure 14f. For comparison, the node
distribution on the samemap for the original PRM is shown in
Figure 14g. The random distribution of nodes in the original
PRM resulted in areas where no nodes are dispersed. This
results in a unconnected graph, and therefore the PRM fails
to produce any results. From the results, it can be seen that
for the proposed method, the nodes distribution is improved
based on the obstacle position.

D. HPPRM WITH DYNAMIC OBSTACLES
Path planning generally considers obstacles in the map to be
static. However, in real environments, the obstacle position
is not fixed and may change with time. Such changes occur
when obstacles are displaced, or new obstacles are added
to the environment. In such situations, the robot needs to
replan its path considering such dynamic changes. In our
case, dynamic changes refer to obstacles that are displaced
and not part of the initial map used for path planning,
e.g., boxes or chair added during the planning phase. Other
types of moving dynamic obstacles, such as humans and
animals, are not considered in our research work. Avoidance
considering dynamic obstacles has been previously studied
in [52], [60], [61].

FIGURE 15. Flowchart of the layered planner.

HPPRMcan generate effective path planningwith dynamic
obstacles in the map. For this purpose, HPPRM adopts a
layered planning method for tackling dynamic obstacles that
appear during the planning phase. The flowchart of the lay-
ered planner is presented in Figure 15. It is divided into
two planning layers, the global planning layer, and the local

FIGURE 16. Deformation and replanning in dynamic environment.

planning layer. In the global planner, the HPPRMfirst creates
the potential map of the obstacles using the global map infor-
mation and then creates the roadmap for the PRM. If there are
no dynamic obstacles in the scene, the PRM planner follows
the path and reach the goal. The local planner, on the other
hand, uses sensor information for reactive local navigation.
If during the global planning, dynamic obstacles are detected
by the planner, the potential map is updated with new obstacle
information. The robot continuously checks the accessibility
to the next local goal. If it can access the next local goal,
the robot continues to follow the path. If not, it then checks
whether the space between the obstacles are wide enough
for the robot to pass through. When the robot can pass
around the obstacles, it uses the localmotion planningmethod
and deforms its path to avoid the obstacle, as described in
Figure 16. Otherwise, a new path is planned considering the
given map and dynamic obstacle since it is difficult move
in the direction of the earlier planned path. The process is
iterated until the robot reaches the goal position.

V. RESULTS
In this section, we summarize the simulation and real exper-
iment results for virtual force directed local reactive naviga-
tion and the proposed HPPRM for global planning.

A. LOCAL PLANNING USING VIRTUAL FORCE
In this section, we present the results of local reactive naviga-
tion in the simulation environment. Simulation tests were per-
formed on five sample maps with different levels of obstacle
density. The test also includes the local minima trap config-
uration for confirming the validity of the method. The local
planning results are given in Figure 17. Map A and B show
the situations where the local minima trap occurs in the case
of traditional APF. By using the virtual force configuration,
the robot could successfully avoid getting into the deadlock
and arrive at the goal from the test results. In map B, due to
the cumulative forces generated from the potential field, the
robot could pass the narrow passage (symmetric obstacles)
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FIGURE 17. Simulation results of local reactive planning using the virtual force. (a) Map A (Deadlock), (b) Map B (Symmetric), (c) Map C (complex 1),
(d) Map D (complex 2), (e) Map E (circles).

TABLE 1. Local reactive navigation path length and execution time(s) (Simulation Test), Proposed vs TAPF.

right through the narrow gap and reached the goal. Map C,
D, and E present a varying levels of obstacle density and the
proposed method could find the goal successfully in all the
cases. In all the test environments, the start and goal positions
are fixed at (0, 0) and (0, 350), respectively. The value of
parameter cg was determined from Equation 1. The value
of cg is kept low when obstacle density is high, such that
the priority is for obstacle avoidance. However, keeping a
large value of cg is not beneficial in dense obstacle scenario
as it may lead to robot hitting the obstacle. Therefore we
varied the value of cg for each configuration before the exper-
iment. For the experiment tests the value of cg ranges from
[0.5, 2.1]. The robot checks the passability by calculating
the attractive and repulsive potential from the obstacles and
determines the open areas by using the method described in
Figure 6 (Section IV-A1). The mean path lengths (dmean) and
mean execution time (Tmean) for each environment is listed
in Table 1. The simulation tests were performed 30 times,
and the mean path length and execution time along with the
success rate (Sr ) for both the proposed and traditional APF
method (TAPF) were recorded. The motion model of the
robot in the simulation test is omnidirectional, meaning it can
move in 360-degree regions. The success rate of the proposed
method in all the five environments was over 95%, whereas
for the TAPF, the simulation failed in most environments as
the robot collided into obstacles or got stuck at local minima.
The mean path lengths and execution time are also smaller
for the proposed method than the TAPF. Moreover, using the
virtual force, the robot will always escape the local minima

trap by carefully selecting open spaces by thresholding the
repulsive and attractive potentials at each step of sensor mea-
surement.

B. EXPERIMENTS IN REAL ENVIRONMENT: LOCAL
REACTIVE NAVIGATION WITH VIRTUAL FORCE
The local reactive navigation using virtual force was tested
in a real environment with varying obstacle densities and
local minima trap configurations. Tests were performed in
three environments with an actual robot. Performance was
evaluated on 3 parameters namely: mean path length (dmean),
mean execution time (Tmean), and success rate (Sr ). The three
test environment are shown in Figure 18. A grid map of the
environment was constructed using the 2D laser range sensor
(LRF), and the obstacle information during the motion was
sensed using the LRF sensor. Figure 19 shows the results of
the local reactive navigation using virtual force. The actual
trajectories of the robot plotted on the gridmap of the environ-
ments are shown in Figure 20. The trajectories of the robot are
shown in blue (Figure 19) and green (Figure 20), respectively.
Table 2, shows the performance evaluation of the test in a
real environment. The tests were conducted 15 times for each
environment, and the mean path length and average execution
time with success rate were recorded. The value of cg = 1.2,
cg = 1.9, and cg = 2.1 were selected for Environment 1,
Environment 2, and Environment 3, respectively. The values
are determined experimentally. Again, in the real environ-
ment test, the proposed method’s success rate is higher than
95%. The mean path lengths and execution time is also
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TABLE 2. Real environment local reactive navigation path length(m) and execution time(s), Proposed vs TAPF.

FIGURE 18. Real test environment for the improved virtual force directed APF local navigation.

FIGURE 19. Real local reactive navigation results.

shorter compared to the traditional method. In many test runs,
the TAPF could not complete the total run due to crashing into
obstacles. Such test runs were excluded from calculating the
mean values.

C. DYNAMIC OBSTACLE TEST
We tested the proposed method on randomly moving obstacle
with varying speed and obstacle numbers. The simulation
test environment consists of a single map with 8 large static
obstacles. Tests were done with 8, 15, 30, 45 and 60 moving
obstacles in the map. The obstacles are generated randomly
with respect to their positions in the map and move with dif-
ferent velocities in each simulation run. The simulations were
performed on MATLAB and Python programming language.
The global planner is used to construct an initial path for
the robot and reactive local navigation is performed as the
robot encountersmoving obstacles during the navigation. The
robot recalculates the path towards the goal by calculating
the difference between current heading and goal heading.
APF around the obstacles is constructed and virtual force

directed local reaction method is used to avoid collision with
the moving obstacles.

Figure 21 shows the navigation result of the robot
with 50 dynamic obstacles shown in red. The robot start
position (0.2,2) and the goal position (0,-2) are represented
by yellow and green circles, respectively. All the obstacles
are randomly generated and are modeled to pass through the
static obstacles. Moreover, every dynamic obstacle exhibit its
own repulsive field while moving.

Firstly, PRM algorithm is used to generate the roadmap
from start to goal position and the global path is calculated.
A repulsive potential field around the static and dynamic
obstacles is produced and a low potential path towards the
goal is calculated. At each step of the iteration, the robot
checks the new repulsive force mainly generated by the
dynamic obstacles in the map and a cumulative force is cal-
culated based on the virtual force directed reactive navigation
policy discussed earlier. The gradient of the calculated force
vector determines the velocity at which the robot should cross
the dynamic obstacle. By continuously following this policy,
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FIGURE 20. Actual trajectories plotted on the grid map of the test environment.

TABLE 3. Path planning result in dynamic environment.

the robot is able to reach the goal position. The velocity plot of
robot during the navigation is shown in Figure 22. Maximum
velocity during the simulation run was 1.23 m/s while the
average velocity during the run was 0.58 m/s. The variation in
velocity during the entire run from start to goal confirms the
APF response as it gets closer to the goal approaching zero
velocity. Also, the virtual force creates sudden transitions in
the velocity to overcome hitting the dynamic obstacle during
its motion. The complete trajectory of the robot with final
obstacle position is shown in Figure 21 with start and goal
positions denoted by ‘S’ and ‘G’, respectively.

A comparative analysis of the dynamic obstacle simulation
test was done with three well known methods, the traditional
APF (TAPF) [14], PRM [38], and A* algorithm [49]. A total
of 250 simulations were done for each of the method and the
mean path length (Dmean), mean calculation time (Tmean), and

success rate Sr (%) were calculated. The results are described
in Table 3. From the results, TAPF performs fairly well
when the number of obstacles are lower but the performance
deteriorate as the number of obstacles increases. Since TAPF
depends on the potential field distribution for safe naviga-
tion, increased number of obstacles generate low potential
areas in the map resulting in failure. This results in longer
duration to complete the planning and in many cases hitting
the obstacle. The PRM algorithm exhibits a similar results
with a faster calculation cost. For PRM test, the number of
nodes were fixed at N = 100, and hence the same roadmap is
used with different number of obstacles. During the dynamic
navigation the switching of nodes for recalculated path results
in longer time to complete the mission. When obstacles are
increased to over 45, in most cases the robot cannot complete
the planning due to collision or robot stuck situations. The
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FIGURE 21. Trajectory (green) for the robot during the navigation.

FIGURE 22. Velocity plot of the robot. Average velocity (0.58 m/s).

A* algorithm is computationally efficient in finding faster
plan due to its heuristic characteristics but exhibits poor
performance as the number of obstacles increases. Here the
recalculation of heuristic cost to reach the goal increases as
the number of obstacle increases. In comparison the proposed
method generated most number of successful planning in
all cases with a success rate of 94%, 82%, 76%, 72%, and
67%, respectively for different number of obstacles. With
the virtual force assisted APF, the algorithm can avoid robot
trapping scenarios effectively giving higher success ratio as
compared to other methods. The time cost and mean path
length are also the best among other methods.

D. HPPRM-EFFECTIVENESS
Wepresent the effectiveness of the proposedHPPRMwith the
original PRM mainly with respect to complex maps and nar-
row regions. As mentioned earlier, PRM suffers from uncon-
nected problem in narrow areas since there are not enough
nodes distributed in the narrow space, and many nodes are
distributed in the open regions of the map. Furthermore,

increasing the number of nodes will result in higher com-
putation cost and our goal is to keep the nodes as few as
possible for faster plan generation. Using HPPRM, the nodes
can be distributed in narrow spaces since there must be more
than one node in each region. Also, because our method uses
the grid regions’ potential values and divides them into high
and low potential regions, nodes can be distributed with more
confidence. For complicated maps with many obstacles, it is
relatively difficult to join the edges with only a few nodes.
On the other hand, it is easier to connect edges in regions with
fewer obstacles. Therefore our method can solve the narrow
region problem of PRM without increasing the number of
nodes. Using potential field distribution and proposed node
distribution method, a path can be found with fewer nodes,
even in relatively low potential areas. The proposed method
puts relatively more nodes at turning areas than straight areas
based on the region potential value. Owing to this node dis-
tribution based on potential field, the nodes get closer to each
other, and we can avoid the disconnected problem associated
with the original PRM.

To test the connectivity of HPPRM in narrow spaces,
we tested our proposed algorithm on four maps, as given
in Figure 23. The four environment maps (complex map,
corridor map, narrow map (1), and narrow map (2)) typ-
ically represent narrow passages where PRM suffers from
connectivity problem. In all the four maps, same number of
nodes N = 70 with start = (5, 5), goal = (95, 95) are used.
The result is described in Figure 24. In all the cases, with
node N = 70, the original PRM failed to produce results
in maximum trial runs. On the other hand, HPPRM could
successfully find the path in narrow spaces with a higher
success rate than the original PRM. The node distribution
using potential field generates nodes at narrow spaces, and
the final path is then calculated using the PRM method.

E. HPPRM- EVALUATION
We evaluated the effectiveness of the HPPRM onmean calcu-
lation time tmean(s), success rate Sr (%), andmean distance for
the path dmean on four environments and compared it with the
original PRM by changing the number of nodes. HPPRM is
a probabilistic complete method as it uses the original PRM,
however it is not asymptotically optimal. On the other hand
PRM* is asymptotically optimal [44]. Therefore, to test the
optimally complete solution we also made tests by combining
potential method with the PRM* algorithm and naming it
HPPRM*. PRM* is an optimal variant of the original PRM
algorithm with the only difference that the connection radius
r is used as a function of number of nodesN that have already
been placed. This allows the connection radius to decrease
with the increase in the number of samples ensuring that
the final path connecting qinit and qgoal is optimal. The test
environments are given in Figure 23 and comprises different
scenarios. In each of the given maps, both the PRM and
PRM* has trouble with the narrow passage problem.We eval-
uated HPPRM based on mean computation time, mean path
length, and success rate with the original PRM and PRM*.
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FIGURE 23. Example environment for connectivity test of the HPPRM with N = 70, start = (5, 5), goal = (95, 95).

FIGURE 24. Results of PRM and HPPRM in test environments. The success rate of HPPRM in number of trials is over 90% for (N = 80, start =

(5, 5), goal = (95, 95)).

TABLE 4. Experiment parameters.

A total of 100 tests for each environment were performed,
and the mean values were calculated. The values of different
parameters set for the simulation is listed in Table 4.

The evaluation result for environment A (Figure 23a) is
listed in Table 5. The map is a complex environment with
many passages and straight walls. When the number of nodes
is set asN = 70, the success rate of PRM is 35.7% and that of
PRM* is 42.7%, while the success rate for HPPRM is 89.3%
and that of HPPRM* is 87.6%. The calculation cost (s) is
0.79s in PRM and 2.11s in PRM*, which is better than that of
HPPRM (0.84 s) and HPPRM*(1.80s). The total length of the
path for PRM is 449 and PRM* is 456. The path length for
HPPRM is 416 while HPPRM* is 433. When increasing the
number of nodes to N = 100, the success rate of HPPRM
and HPPRM* is higher at 88.3% and 89.9% respectively,
compared to PRM at 65.3% and PRM* at 68.1%. The mean
calculation time for HPPRM (2.76s) is higher than HPPRM*
(4.81s). The mean path length for HPPRM (427) is lower in
all cases.
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The evaluation result for environment B (Figure 23b) is
listed in Table 5. When the number of nodes are fixed at
N = 70, the success rate of HPPRM is 92.1%, HPPRM* is
90.8%, while PRM is 18.3% and PRM* is 29.1%. The mean
calculation time for HPPRM is at 2.16s, HPPRM* is at 5.50,
PRM is at 0.94s, and PRM* is at 2.17s, respectively. The path
length for HPPRM (436) is shorter than all cases. When the
number of nodes is increased to N = 100, the success rate
for the HPPRM is 98%, HPPRM* is 98.3%, PRM is 48.8%,
and PRM* is 58.1%. The mean calculation time for HPPRM
is 7.72s while that of HPPRM* is 11.94s.

Similar results are reflected in environment C (Figure 23c)
and D (Figure 23d) in all the tests. The success rate for the
HPPRM when the number of nodes is N = 100 in the case
of Environment C reaches 100%. In all cases, the mean path
length is shorter for HPPRM.

The key observations from the evaluation test are as
follows:

1) The success rate in case of HPPRM was better in all
the cases when the number of nodes were same. The rea-
son for the higher success rate in the case of HPPRM can
be related to the fact that nodes are distributed uniformly
in both the maps using the map segmentation method.
Since enough nodes are not distributed in narrow regions
in the case of PRM and PRM*, the start and goal config-
uration could not be connected by edges, and therefore
the path planning failed. Another reason for the success
of HPPRM can be attributed to the distribution of more
nodes in complex areas of the map with obstacles. At the
same time, a fewer number of nodes are distributed in
large open areas, thereby increasing the edge connec-
tivity between the nodes. For e.g. if we calculate the
distribution of nodes forN = 100with constant k = 0.3,
and (mx ,my) = (5, 5), the number of nodes in high
potential areas are 1.3× 100/(5× 5) = 5.2 ≈ 5, and in
the low potential area are 0.7× 100/(5× 5) = 2.8 ≈ 3.
Thus, we can see that more nodes are distributed in high
potential areas or near the obstacles. The third reason is
that in low potential areas that are more open or safe, the
nodes are distributed closer to each other while in a high
potential area, the nodes are further to each other and
make it easier to connect the edges. The success rate of
HPPRM* is closer to that of the HPPRM.

2) The mean calculation time(s) in the case of HPPRM is
slightly higher than PRM when the nodes are the same.
However, the mean calculation time required to achieve
the success rate is higher in case of HPPRM. The higher
mean calculation time (s) for HPPRMcompared to PRM
is due to the higher cost during the query phase. As dis-
cussed earlier in Section IV-B1, the calculation cost
largely depends on the local planner used to connect the
nodes and edges e.g., Dijkstra or A* method. When
the number of nodes are same in PRM and HPPRM,
the number of edges E are higher in case of HPPRM,
and the node distribution is closer than PRM. As the

number of edges E increases, the total cost increases
too. This is the main reason for slower performance of
HPPRM compared to PRM when the number of nodes
is same. The difference in the mean calculation time
is not that large. However, if the number of nodes are
increased, HPPRMwill be slower than the PRM. Similar
reason can be given for PRM* as there is not a lot of
difference between the two algorithm however PRM*
is computationally expensive than the original PRM.
This is because in the connection phase of PRM*, the
connection radius decreases as the number of sampled
states increases. Therefore, the computation cost for
HPPRM* is higher in all cases as it produces more edges
in the connection phase than the PRM. The success
rate for both HPPRM and HPPRM* are high. So if a
quicker solution is preferable rather than optimal one
HPPRM is the chosen method. Furthermore, we believe
that the success rate is more important for planning in
complex environments, and that result is higher in case
of HPPRM.

3) The length of the path for HPPRM is shorter in all cases.
In the case of HPPRM, we could achieve lower mean
path length because zig-zag paths are prevented as nodes
are more concentrated near the center of the narrow
passages. On the other hand, in case of PRM, nodes are
dispersed near the walls, which results in longer path
length. As straight-line paths are shorted than a zig-zag
path, the edges follow a straight-line path. Therefore,
the mean path length is better in case of the proposed
HPPRM than PRM. In the case of PRM* there is a
significant difference in the number of edges produced
than the PRM giving shorter connections between nodes
that generates a finer path. This has certain advantages
in environments with complex geometry.
Figure 25 shows the result of PRM andHPPRM in a new
map with many narrow passages and higher obstacle
density. The start and goal position is (5, 5) and (95, 95),
and the number of nodes is (N = 100). It can be seen
(blue circled regions) in Fig. 25 that the path generated
by HPPRM is centered and away from obstacles as
compared to the PRM path, which is closer to obstacles
and walls. Moreover, the node distribution in the case
of HPPRM is better due to the segmentation of regions
based on potential values. The mean path length is also
shorter since the generated path in HPPRM has less
sharp turns. We also found that with an increased num-
ber of nodes for HPPRM, the path almost follows the
center of passages implying safety for the robot motion.

F. REAL ENVIRONMENT TEST: HPPRM WITH DYNAMIC
OBSTACLES
Path planning is generally considered assuming static obsta-
cles on the map. This means that once the planner generates
the path, the robot will follow the path and reach the goal.
However, there can be dynamic obstacles in the map that
should be avoided by the robot during the planning phase.
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TABLE 5. Evaluation result for Figure 24.

FIGURE 25. Key comparison between PRM and HPPRM in a complex narrow passage map (N = 100).

HPPRM can plan a path in the presence of dynamic obsta-
cles. By dynamic, we mean obstacles that were not present
before the planning and were later added to the static map.
Traditionally the PRM would fail in such a case, as the plan
is already built, and there is no additional check for dynamic
obstacles added on the map. In such situations, the robot
would collide with the obstacles, and the navigation will
fail. It is also essential to consider such dynamic elements
during the planning since the robot might have to return to
the original position after completing the task, and therefore
planning based on dynamic obstacles is crucial for safe robot
navigation. We considered the dynamic obstacle scenario in
the real environment and tested the feasibility of HPPRM to
deal with safe planning under dynamic obstacles.

1) SYSTEM SPECIFICATION
A differential drive robot was used for the experiment. The
robot used is the Pioneer P3DX from Adept Mobile Robotics

FIGURE 26. (a) Differential kinematics model (b) Pioneer P3DX robot.

Inc. Figure 26b shows the robot model used for the exper-
iment. It is equipped with a 2D SICK LMS111-LRF with
a maximum range of 20 m, angular scanning resolution
of 270 degrees, and 0.36 degrees/pitch. A 3D vision sensor
(Asus Xtion Pro Live) is also used for recording RGB and
depth images. All computations were performed on a robot
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PC running 64-bit Ubuntu Linux 16.04 operating systemwith
Intel Core i7 processor and 8 GB of RAM. All programming
was done on MATLAB and Kinetic version of the Robot
Operating System (ROS), a softwaremiddleware for robotics.
Prior to testing the navigation and planning, a grid map of the
environment was built by utilizing the wheel odometry and
LRF scan data.

2) MOTION MODEL OF DIFFERENTIAL DRIVE ROBOT
It is important to consider the motionmodel of the differential
drive since its motion will be different from the simulated
omnidirectional point robot that has been considered so far
in the simulation tests. We first derive the motion model of
the differential Pioneer P3DX robot. The differential drive
configuration consists of two independently driven wheels
of radius r and one or more low friction castor wheels for
balancing the robot in a horizontal plane. Let the distance
between the two wheels be 2d and let (xr , yr ) represent the
robot coordinate frame halfway between thewheels, as shown
in Figure 26a. If u denotes the configuration of the robot
kinematic motion model given by u = (φ, xr , yr , θL , θR),
where φ is the heading angle that the robot body makes with
the global coordinate frame (x, y). The parameters, θL and
θR are the rolling angles of the left and the right wheels,
respectively. The kinematic equation of the differential drive
robot is given by,

u̇ =


φ̇

ẋr
ẏr
θ̇L
θ̇R

 =


−r/2d r/2d
r
2
cosφ

r
2
cosφ

r
2
sinφ

r
2
sinφ

1 0
0 1


[
vL
vR

]
, (19)

where, vL and vR is the angular speed of the left and right
wheel, respectively and the positive angular speed corre-
sponds to the forward motion of the wheel. The control
value for each wheel lies in the interval [−vmax, vmax]. The
simplified control scheme for the differential drive system
ignoring the rolling angles of the two wheels become,

u̇ =

 φ̇ẋr
ẏr
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−r/2d r/2d
r
2
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r
2
cosφ

r
2
sinφ

r
2
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]
. (20)

3) HPPRM-DYNAMIC ENVIRONMENT
In this section, we present the HPPRM performance in a
dynamic environment. In a dynamic environment, HPPRM
uses the combined local reactive and global navigation lay-
ered planner to overcome the obstacles in the map and reach
the goal position. The environment setup for the real test is as
shown in Figure 27a. The dimensions of the map are given in
Figure 27b. The process of HPPRM with dynamic obstacles
is as follows:
1) The potential map and the PRM path is generated for the

given map with a start and goal positions.

FIGURE 27. Dynamic obstacle test environment.

2) The robot initiates the plan and follows the path along
the generated planner trajectory.

3) When the robot is about to take the first turn at point ‘A’,
a new dynamic obstacle is added to the map (shown as
blue box, Figure 27b). The obstacle position in the map
is sensed using the 2D LRF.

4) The potential map with a new obstacle is updated, and
the robot checks for the accessibility to the next local
goal using the node information available. It searches
for the nearest nodes in the vicinity to continue using the
planned path. If the robot is able to access the next local
goal, it checks for the passability of the robot to pass
around the obstacle. If the path is not passable, it replans
the path since it is difficult to find a new path in the
direction of the planned path anymore.

5) The robot follows the new path, and once again at point
‘B’ in the map, another dynamic obstacle is added which
the robot senses using the LRF sensor.

6) Step 4 is repeated, and a new plan is generated consid-
ering the passability test.

7) Robot reaches the goal position following the new path.

The initial motion planning policy generated by the PRM
with no dynamic obstacle information is shown in Figure 29a.
The number of nodes, start and goal positions are N = 120,
start = (50, 50), and goal = (250, 280) respectively. The
green trajectory represent the generated path for PRM. The
updated PRMpath with the potential map and dynamic obsta-
cles is shown in Figure 29b, and the new path generated on the
PRM nodes is shown in Figure 29c on the grid map of the test
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FIGURE 28. Sequence of events for the dynamic obstacle test, (a) Robot starts from initial position (50,50), (b)-(c) First dynamic obstacle (A) added at
the first open space, (d)-(e) Robot takes the new path towards goal, (f) Second dynamic obstacle (B) added to the map, (g)-(k) Robot takes the new
path to goal.

FIGURE 29. (a) PRM result without considering dynamic obstacles. (b) HPPRM with dynamic obstacle. (c) Actual plan on the grid map of the test
environment.

environment. The sequence of adding the dynamic obstacles
to the map during the robot run is shown in Figure 28.

For the original PRM, once the roadmap is constructed and
the path is generated, the plan is set for the robot. The planner
will not consider any new obstacles added to the map, and the
robot will collide with the obstacle at position ‘A’ as shown
in Figure 29c. The HPPRM uses mixed reactive navigation
combining global and local planners. Therefore, when a new
obstacle is detected on the global path, the planner switches to
the local reactive planner and replans its path to avoid the col-
lision with the obstacle. In Figure 29b, when the robot reaches
the position (95,130) at point ‘1’ from the start position it

senses an obstacle in the path by scanning the environment
using the LRF sensor. The robot decides its behavior based on
the local sensor information gathered during the local motion
planning. The potential value measured at this position is
shown in Figure 30a. The direction towards the goal of check-
point ‘4’ is 18.2 degrees. Considering the parameters for the
robot width, the passability test fails to directly approach
the checkpoint ‘4’ around the obstacle. The only open space
that the robot can take is at 90 degrees to 230 degrees.
Therefore, the robot moves to the direction of open space
at 180 degrees and replans the motion to point ‘2’. From
checkpoint ‘2’ to ‘4’, the motion is a straight-line with an
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FIGURE 30. Potential values calculated at (a) checkpoint 1, and
(b) checkpoint 4 as shown in Figure 29b.

FIGURE 31. Force distribution around the obstacles and robot trajectory
shown in blue in dynamic obstacle environment test.

intermediate node in between. The robot follows the renewed
path until it reaches checkpoint ‘4’. At this point (168,162),
a new obstacle is detected, and the direction towards the
goal is at 253.8 degrees. The cumulative potential values are
shown in Figure 30b. Based on the sensing data, there is a
single opening space between 40 degrees to 130 degrees and
this region also has a lower potential which is closer to the
goal; therefore the robot moves in the direction of 96 degrees
towards checkpoint ‘5’ based on the potential gradient plotted
at point ‘4’. A new route towards the goal is calculated, and
the robot continues towards the goal. Potential force vectors
around the obstacles are presented in Figure 31. The size
of the arrows represent the magnitude of force generated by
the obstacle. The blue color represents the trajectory taken
by the robot during the dynamic obstacle experiment. The
colors represents the total potential from the start to the goal
position. The robot trajectorymostly follows the low potential
areas as indicated by force vectors in the figure. Since the new
map is updated with the dynamic obstacle positions, if the
goal and start positions are reversed, the robot can easily come
back to the original position following the HPPRM map.

VI. CONCLUSION
In this paper, we present an improved sampling based path
planning method for mobile robots in complex environment
using the artificial potential method. A new sampling strategy
that combines probabilistic roadmap (PRM) and the artifi-
cial potential field for node distribution in narrow spaces is

presented. By segmenting regions of the map into areas of
high and low potential the node distribution of the PRM is
improved significantly. A layered path planner combining
reactive local and global planners that allows the robot to
plan the trajectories on the map in presence of dynamic
obstacles without suffering from the local minima problem is
presented. A virtual repulsive force is introduced for avoiding
the local minima trap problem when navigating in areas
with static and dynamic obstacles. A comparative analysis of
the proposed method with state of the art methods both in
real and simulation environments is performed for speed and
path length. From the results, we can say that the proposed
HPPRM is superior to the original PRM in terms of shorter
path length and success rate. A success rate of over 95%
is achieved for both local and global planning. It performs
better than PRM in narrow passages and generates paths that
are safer and shorter by utilizing node dispersion using the
potential field values. In addition, navigation method was
tested for local and global planning using simulation and real
experiments, and in all the cases the proposed method pro-
duced higher success rate and better plans. In future, we plan
to expand our algorithm formulti-robot scenarios with forma-
tions of different number of robots and geometrical shapes.
Future work also includes expanding the proposed algorithm
for outdoor environments.
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