
Received November 5, 2020, accepted November 18, 2020, date of publication December 8, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043187

Reverse Checking of Quantum Algorithm Execution
CHANG LIU , (Senior Member, IEEE)
School of Electrical Engineering and Computer Science, Ohio University, Athens, Athens, OH 45701, USA

e-mail: liuc@ohio.edu

ABSTRACT Verification of quantum computation is critical because undesirable interference and noise
are major technical hurdles in quantum computing. We propose an approach for reverse checking of
computation results that takes advantage of quantum teleportation and reversibility of unitary quantum
gates. The main idea is to preserve the quantum state after the computation ends and before the result is
measured, so that quantum teleportation can be performed to ‘‘save’’ the quantum state before the readout.
After that, the computation is reversely performed in the reverse order of gate operations. The end result
shouldmatch the original input. Any discrepancywould be proof of errors during computation or verification.
The advantage of this approach is that the reverse computation circuit can be automatically generated and
performed and that the error rate obtained reflects what happened during the actual computation. In addition,
this approach leads to a potential way to reduce error rates in the future by discarding results from individual
shots of the execution with detected errors.

INDEX TERMS Quantum computing.

I. INTRODUCTION
Because of the unobservable nature of qubits, the result of
quantum computation is obtained through statistical mea-
surement. In other words, even though quantum computation
can be powerful and precise in nature, the result can only
be associated with high probability, not certainty. To further
complicate the matter, interference is a major technical obsta-
cle in all current physical realizations of quantum computa-
tion. Even the best implementations of quantum computation
today are still very noisy, so much so that Preskill referred
to the immediate goal of the quantum computing community
as the Noisy Intermediate-Scale Quantum (NISQ) technol-
ogy [1]. Verification of quantum computation therefore is
critical before quantum computers can be used to solve any
real problems [2].

Current verification techniques are often realized through
significantly more additional qubits and/or additional quan-
tum circuit gates employed just for this purpose, which neces-
sarily requires additional computational resources (often a lot
more qubits) and/or additional computational time. We pro-
pose an on-the-fly checking technique that only minimally
delays the availability of results because the checking is per-
formed after the algorithm is complete. It only requires two
times more qubits than what was needed for the original algo-
rithm at any given time. This technique takes advantage of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

fact that quantum computation is inherently reversible. All
unitary gates in quantum circuits can be reversed. Therefore,
after the original computation ends, the quantum circuit,
including the data preparation circuit, is reversed. The output
is used to compute the input backwards, which should all
be |0〉 as is the case for most quantum algorithms before data
preparation. Regardless, in all cases, the output should match
the original classical input.

While the reversibility of unitary gates in quantum circuits
is common knowledge, the application of this principle in
error checking and possibly error rate reduction in the future
is novel.

To make the content of this paper more accessible to soft-
ware engineering practitioners, in the next section we intro-
duce the basics of quantum computing in a self-containedway
understandable to an average software engineer or a software
engineering researcher, without the need to understand the
underlying quantum physics. After that, reverse checking
and an example on IBM Quantum Experience [3], [4] are
presented. Related work and future work are discussed in the
end.

II. QUANTUM COMPUTATION: A PRIMER FOR
SOFTWARE ENGINEERS
Quantum computation was built on a clear, well-defined
computational model of qubits based on quantum mechan-
ics theories [5]. To a software engineer, the key to under-
stand the power of quantum computing is the mathematical

228702 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6721-1959
https://orcid.org/0000-0003-0586-090X

C. Liu: Reverse Checking of Quantum Algorithm Execution

model of qubits, not various physical realization methods
of qubits, such as electrons in superconductors [6],
photons [7], [8], trapped ions, anyons [9], or any other
forms of particles exhibiting quantum behaviors. Quantum
entanglement, the no-cloning theorem, the Heisenberg uncer-
tainty principle, the quantum observer effect, and other quan-
tum properties can all be deduced from this mathematical
model. From that perspective, there is nothing weird or
counter-intuitive about quantum computing. They all follow
the rule of math.

A. QUBITS AND QUANTUM GATES
Qubits hold information in quantum computing. The quan-
tum state of a single qubit 9, denoted in Dirac notation
(a.k.a. bra–ket notation) as |9〉, can be described as a function
of pure states |0〉 and |1〉. It is commonly represented by a
unit vector of two complex number coefficients. This column
vector of size two is called a spinor and can be equivalently
expressed as a point on the surface of a unit 2-sphere named
Bloch sphere. The two coefficients represent amplitudes of
waves as qubits possess wave–particle duality.

|9〉 = α |0〉 + β |1〉 ≡
(
α

β

)
,

where |α|2 + |β|2 = 1 Frequently used quantum states
include:

|0〉 ≡
(
1
0

)
, a pure state,

|1〉 ≡
(
0
1

)
, the other pure state,

|+〉 ≡

(1
√
2
1
√
2

)
, an equal-chance superposition state, and

|−〉 ≡

(1
√
2

−
1
√
2

)
, another equal-chance superposition state

Quantum states are not directly observable. Physics laws
only allow measurements that would reveal either 0 or 1,
the chances of which are determined by the angle or the plane
of measurement and by the spinors of the quantum states.
Measurements necessarily collapse the quantum states and
turn qubits into classical bits.

A single-qubit quantum gate is a two-by-two matrix that
operates on quantum states and effectively manipulate the
spinors in Bloch spheres by rotating them around various
axes. Intuitively, this is why all unitary quantum gates are
reversible as they can be simply rotated back to the original
locations.

The resultant new quantum state |91〉 of a gate operation
is the matrix product of the gate G and the original quantum
state |90〉. Quantum computation is in essence a sequence of
quantum gate operations.

G |90〉 ≡

(
a b
c d

)(
α0
β0

)
=

(
aα0 + bβ0
cα0 + dβ0

)
=

(
α1
β1

)
≡ |91〉

A Hadamard gate H turns a qubit from |0〉 or |1〉 to a
superposition with equal chance of |0〉 or |1〉.

H =

1
√
2

1
√
2

1
√
2
−

1
√
2

 = 1
√
2

(
1 1
1 −1

)

It is easy to see that H · H =
(
1 0
0 1

)
= I , and that

H |0〉 =
1
√
2

(
1 1
1 −1

)(
1
0

)
=

1
√
2
1
√
2

 = |+〉
=
|0〉 + |1〉
√
2

H |1〉 =
1
√
2

(
1 1
1 −1

)(
0
1

)
=

1
√
2

−
1
√
2

 = |−〉
=
|0〉 − |1〉
√
2

H |+〉 =
1
√
2

(
1 1
1 −1

)
1
√
2
1
√
2

=

(
1
0

)
= |0〉 =

|+〉 + |−〉
√
2

H |−〉 =
1
√
2

(
1 1
1 −1

)
1
√
2

−
1
√
2

 = (01
)
= |1〉

=
|+〉 − |−〉
√
2

Similarly, the quantum state |9〉 of two qubits can be
described as a function of |00〉, |01〉, |10〉, and |11〉, where
|00〉 ≡ |0〉 |0〉, representing a two-qubit system in a state
where both the first qubit and the second qubit are in pure
state |0〉. The quantum state |9〉 can also be represented
by a column vector of four coefficients as in the following
formula.

|9〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 ≡

α00
α01
α10
α11

As an example,

|+〉 |0〉 = (
1
√
2
|0〉 +

1
√
2
|1〉)(|0〉) =

1
√
2
|00〉 +

1
√
2
|10〉

≡

1
√
2
0
1
√
2
0

VOLUME 8, 2020 228703

C. Liu: Reverse Checking of Quantum Algorithm Execution

B. QUANTUM ENTANGLEMENT
A Controlled Not gate (a.k.a. CX gate), which is a
double-qubit gate, can be combined with a H gate to entangle
two input pure state qubits, as shown in Figure 1. The CX
gate operates on two qubits. One is called the control qubit.
The other is called the target qubit. When the control qubit
is not |1〉, the target qubit stays the same; when the control
qubit is not |1〉, the target qubit flips. Here’s the mathematical
definition of the CX gate:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

FIGURE 1. A quantum circuit that entangles two qubits. It consists of a
Hadamard gate and a Controlled Not gate, represented by the plus sign
with a line connected to the controlling qubit. The two black icons on the
right side of the circuit represent qubit measurement.

Therefore,

CX ((H |0〉) |0〉)) = CX (|+〉 |0〉))

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
√
2
0
1
√
2
0

=

1
√
2
0
0
1
√
2

 =
1
√
2
|00〉 +

1
√
2
|11〉

≈ 0.707 |00〉 + 0.707 |11〉

This means equal chance for |00〉 and |11〉 and no chance
for |01〉 and |10〉. In other words, the two quits are maximally
entangled. This is consistent with the state vector and the
histogram in Figure 1.

Entanglement can also be achieved by applying a con-
trolled phase gate on two |+〉 superposition states. Because
controlled phase gates are symmetry and do not distinguish
their two inputs, they can be used to create massively entan-
gled cluster states.

A controlled phase shift (by π radians) gate is:

CP =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

|+〉 |+〉 = (

1
√
2
|0〉 +

1
√
2
|1〉)2

=
1
2
|00〉 +

1
2
|01〉 +

1
2
|10〉 +

1
2
|11〉

=
1
2
(|00〉 + |01〉 + |10〉 + |11〉)

CP(|+〉 |+〉) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

1
2
1
2
1
2
1
2

=

1
2
1
2
1
2

−
1
2

≡

1
2
(|00〉 + |01〉 + |10〉 − |11〉)

=
1
2
(|0〉 |+〉 + |1〉 |−〉)

The vectors here are not normalized to unit vectors for
simplicity.

This shows that the resulting state is an entangled state if
the first qubit is measured in the standard basis and the second
qubit is measured in the sign basis of |+〉 and |−〉.

C. QUANTUM TELEPORTATION
Quantum teleportation sends the complete information of a
qubit to another one. Due to the quantum no-cloning theo-
rem, the original qubit has to be destroyed through measure-
ment for this to happen. Nevertheless, there is a well-known
method to use quantum entanglement to achieve quantum
teleportation. Suppose Alice has a qubit (q00 in Figure 2)
to teleport to Bob. Alice and Bob need to each have one
of an entangled pair of qubits (q01 and q02 in Figure 2).

228704 VOLUME 8, 2020

C. Liu: Reverse Checking of Quantum Algorithm Execution

FIGURE 2. A quantum teleportation circuit [10] that teleports qubit q00 to
q02 and the histograms of the execution results. The first histogram
showed the result from an IBM Q simulator. The second histogram
showed the result from a physical IBM Q quantum computer.

The H gate and the CX gate to the left of the dotted line are
used to establish this entanglement. The CX gate is repre-
sented by a connection between two qubits. The control qubit
is connected through a solid dot. The target qubit is connected
through a dot with a plus sign.

Next, the second CX gate and the second H gate (which
are to the right of the dotted line) are used to prepare for the
teleportation. After that, Alice reads out her two qubits (and
thus makes them collapse). The classical readout is sent to
Bob so that Bob can use them as the control qubits to perform
a Controlled Not operation and a Controlled Z operation on
his qubit q02. The resulting qubit would be identical to Alice’s
original qubit q00. The first histogram in Figure 2 is from
a noiseless simulator. Notice that q02 readout is always 0.
The second histogram is from a physical IBM Q quantum
computer and shows a significant noise level, as indicated by
the four columns on the right with q02 being 1.
Here is how quantum teleportationworkedmathematically.

The three-qubit system starts as |90〉 = |000〉. After the
entanglement of two qubits, it becomes

|91〉 =
1
√
2
|000〉 +

1
√
2
|011〉 .

The second CX gate does not change anything because
q00 is |0〉. The second H gate turns q00 to a superposition.

The new state of the system becomes

|92〉 = (
1
√
2
|0〉 +

1
√
2
|1〉)(

1
√
2
|00〉 +

1
√
2
|11〉)

=
1
2
(|000〉 + |011〉 + |100〉 + |111〉).

The readout on q01 is then used to control a Not operation
on q02, turning the state into

|93〉 =
1
2
(|000〉 + |010〉 + |100〉 + |110〉).

The two underlined digits are flipped as a result. Because
q00 is 0, the last Z gate does not do anything in this case. In the
end, q02 becomes 0, matching the original q00. This explains
how the teleportation worked when q00 started as |0〉. For
more general cases, refer to the calculation in [5] (p. 27).

III. REVERSE CHECKING
We propose an approach to reversely check the result of
quantum computation. Next, we explain this approach in
two cases.

A. REVERSE CHECKING OF A ONE-QUBIT SYSTEM
For arbitrary computation on a one-qubit system, after the
computation is completed, a quantum teleportation can be
applied to preserve the quantum state after the readout. The
readout from the teleportation operation can then be used as
the result of the computation. There is only a delay of two gate
operations (a CX gate and a H gate) in obtaining this result.
After that all gate operations in the original computation can
be reversed one by one. The end result should be the same
as the original input, which is typically |0〉. If it matches,
the computation result is checked and can be trusted with
more confidence. Note that it is still possible for interference
to cancel out and leave a matching result. If not, an error
in either the original computation or the verification has
occurred for sure. An error rate can be computed to indicate
the noise level.

To test this approach, we performed a three-gate random
unitary operation on a single qubit on IBMQ. The three gates
were randomly selected from the following gates through
Python code: X ,Y ,Z ,H , and T .

Since H · H = I , applying H again reverses it. The X , Y ,
Z gates are Pauli-X , -Y , -Z gates and are rotations through π
radians around the x-, y-, and z-axes, respectively. Therefore,
applying them again also reverses the gate operations. The
T gate, a.k.a. the π8 gate, is a π4 rotation around the z-axis. Its
inverse T † is a−π4 (45 degree) rotation around the z-axis. It is
obvious that applying T eight times would rotate the quantum
state 360 degrees and back to the original. T and T † gates are
commonly used in fault-tolerant quantum computation.

T =
(
1 0

0 e
iπ
4

)
,

T †
=

(
1 0

0 e−
iπ
4

)
,

VOLUME 8, 2020 228705

C. Liu: Reverse Checking of Quantum Algorithm Execution

T · T †
=

(
1 0
0 1

)
= I2

T⊗4 =
(
1 0

0 e
iπ
4

)⊗4
=

(
1 0
0 eiπ

)
=

(
1 0
0 −1

)
= Z

T⊗8 =
(
1 0

0 e
iπ
4

)⊗8
=

(
1 0
0 ei2π

)
=

(
1 0
0 e0

)
=

(
1 0
0 1

)
= I2

In the example execution shown in Figure 3, Z ,H ,T were
selected by a random number generator in a Python library.
Based on the calibration profile of the IBM Q Burlington
computer as shown in Figure 4 and Table 1, the average
readout error rate was about 4.93%; the average single-qubit
error rate was about 0.0533%; the average CNOT error rate
was about 1.37%. In the example quantum circuit in Figure 3,
there were a total of three measurement gates, three CNOT
gates, and nine single-qubit gates. The error rate of the entire
computation according to the calibration profile should be
1 − (1 − 0.0493)3 ∗ (1 − 0.0137)3 ∗ (1 − 0.000533)9 =
0.179509201, or about 17.95%.

FIGURE 3. A randomly generated three-gate quantum circuit with the
on-the-fly reverse checking circuit. The result on the top was from a
noiseless IBM Q simulator. The result on the bottom was from a physical
IBM Q Quantum Computer named IBM Q Burlington.

At the end of the three-gate computation, q10 was tele-
ported to q12. Qubit q10 was then measured to obtain the
result of the computation. We then reversed the computation

FIGURE 4. IBM Q Burlington architecture, a screenshot from IBM Q.

to perform the reverse of the three gates in reverse order as
T †,H ,Z . After that, we checked the result, as shown in the
two histograms in Figure 3. The histogram on the left was the
result from an IBM Q simulator, which was noiseless. It was
clear that q12 was always 0 in the end, matching the initial
value of q10. The error rate was 0. Therefore, there were no
noise or errors detected.

B. REVERSE CHECKING OF A N-QUBIT SYSTEM
For an arbitrary algorithm using n qubits, one can do the
same for each of the qubits in the system simultaneously
after the computation ends but before the result were mea-
sured. If an algorithm involves non-reversible measurement
operations, our approach will have to be modified to remain
effective. Specifically, before any measurement operation,
a quantum teleportation must be performed to ‘‘save’’ the
full state of the qubit so that it can be used in the reverse
computation.

Figure 5 shows an example two-qubit algorithm using the
CX , H , T , and S gates. The addition of the CX gate here
is important because it is a two-qubit gate, different from
the one-qubit gates used in the previous example. CX is

FIGURE 5. A six-qubit quantum circuit for two-qubit computation and
four-qubit on-the-fly reverse checking circuit. q[0] and q[1] were for the
original computation. q[0] was teleported to q[3] and q[1] to q[5] for
reverse checking. The result from an IBM Q simulator showed that
q[2] and q[5] were both 0 in the end. q[0] is the one that is furthest to the
right on the state. The vertical lines with two solid dots on both ends are
an alternative representation for Controlled Z gates.

228706 VOLUME 8, 2020

C. Liu: Reverse Checking of Quantum Algorithm Execution

TABLE 1. Calibration profile of the IBM Q Burlinton 5-Qubit quantum computer (from IBM Q).

reversible by applying it again.

CX · CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4

The S gate is a π
2 phase shift gate, equivalent to T 2. S can

be reversed by the S† gate, which is a −π2 phase shift gate.

S =
(
1 0
0 i

)
, S† =

(
1 0
0 −i

)
, S · S† =

(
1 0
0 1

)
= I2

CX , H , T , and S gates form a universal gate set, which
means any other two-qubit gates can be approximated to
arbitrary accuracy through a combination of these gates [5]
(p. 188).

The result of the example two-qubit algorithm in Figure 5
was preserved with two quantum teleportation operations
(q[0] to q[2] and q[3] to q[5]). Then reverse checking was per-
formed by applying the H , S†,T †, and CX gates on the cor-
responding qubits (q[2] and q[5]) in reverse order. The result
of the 6-qubit system should have 26 = 64 states. The actual
histogram from a IBM Q simulator indicated that 48 of those
states, where q[2] or q[5] were not 0, were never reached.
It showed that all 16 remaining states had significant chances.
This confirmed that the noiseless simulator did perform the
computation without introducing any noise. Unfortunately,
at the time of the writing, we only had access to 5-qubit
physical quantum computers and were not able to perform
this experiment on a physical quantum computer with at least
six qubits. We did run simulator-based experiments of reverse
checking of three-qubit and four-qubit algorithms, as listed in
the Appendix.

IV. RELATED WORK
In the strictest sense, verification is to prove the result of an
algorithm to be correct. This is difficult to do for quantum
algorithms because they are specifically designed to solve
hard problems not feasible to solve on classical computers.
This means that one cannot simply run a classical computer

side-by-side with a quantum computer working on the same
problem and use the classical output to verify the quantum
output, because the classical computer would not be able to
keep up as the size of the input grows.

Efforts have been made to use different approaches to
mitigate this problem. Verification of quantum algorithms
typically require one or more separate computers, either
quantum or classic, connected through classical or quantum
communication channels [2], [11], [12]. Some used a smaller
quantum computer for the verification. Some used interactive
proof systems where there were a verifier and a prover.

In [13], the verification of the algorithm was performed
on a classical supercomputer simulator capable of simulating
the evolution of the full quantum state for smaller numbers of
qubits (up to 43 qubits). For larger numbers of qubits, Google
data centers were used to collectively simulate the quantum
state using a hybrid algorithm. Positive outcomes for smaller
inputs helped build confidence to trust the quantum algorithm
when it was applied to larger inputs (53 qubits) that could not
be effectively verified on classical computers.

Mahadev [12] proposed a measurement protocol for a
classical verifier to use a quantum prover as a trusted mea-
surement device to perform the verification. The goal was
to interactively verify the result of an efficient quantum
computation.

In our approach, we focus on undesirable interference and
noise detection and do not perform verification in its strictest
sense. In fact, our approach does not have the capability to
detect any errors in the logic of a quantum algorithm. What it
can detect effectively is noise levels and errors introduced by
the quantum computer, not in the algorithm design. In other
words, we check algorithm execution results, but not the
algorithm design itself. What we do check is as critical in
quantum computing because today’s quantum computers all
suffer from noise issues.

If verification in general is considered to be result checking
in the large (i.e. checking the result for the entire compu-
tation), quantum error correction can be considered result
checking in the small. Quantum error correction (e.g. quan-
tum stabilizer codes) is a way to deal with noise and maintain
the correct quantum state for individual qubits [14]. This
is often done on the hardware design level and takes place
in a black box from the perspective of quantum software

VOLUME 8, 2020 228707

C. Liu: Reverse Checking of Quantum Algorithm Execution

Listing. 1. Python code for reverse checking of a three-qubit quantum algorithm.

programmers. Our approach does not check or correct indi-
vidual qubits as in most quantum error correction work.
We look for errors and measure error rates for the entire
algorithm on the quantum program level. Our approach can
be used in combination with those qubit-level error correction
mechanisms, which will be treated as part of the invisible
internals of qubits.

Shor showed how fault tolerant quantum computing can
be performed [15]. Harper and Flammia [16] discussed
fault-tolerant logical gates in the IBMQuantum experience in
the context of the 4, 2, 2-concatenated toric code [17], [18],
a type of quantum code on a lattice with boundary [19].

Attempts have beenmade to enhance quantum state preser-
vation through additional error-correcting qubits using sur-
face code architectures, e.g. parity measurement on a 5-qubit
plaquette of four data qubits plus one syndrome qubit [20].

V. FUTURE WORK
In the future, we are certainly eager to perform reverse
checking of algorithms with two or more qubits on physical
quantum computers. Separately, the current experiment was
run on IBMQExperience, 1024 shots at a time. The error rate
was calculated for all 1024 shots. The obtained error rate was
informative, but our approach currently do not help reduce the

228708 VOLUME 8, 2020

C. Liu: Reverse Checking of Quantum Algorithm Execution

FIGURE 6. A nine-qubit quantum circuit for three-qubit computation and six-qubit on-the-fly reverse checking circuit. Qubits q0, q3, and q6 were for the
original computation. Qubit q0 was teleported to q2, q3 to q5, and q6 to q8 for reverse checking. The simulation result using the IBM Qiskit Python
Package showed that q2, q5, and q8 were all 0 in the end. Out of 29 = 512 states, only 1

23 of that, or 64 states, were possible, as shown in the histogram.
Qubit q0 is the one that is furthest to the right on the state.

error rate. In the future, one potential way to improve this is
to run the reverse verification one shot at a time. If the reverse
computation outcome matches the original input, the original
computation result will be accepted; if the verification out-
come does not match the input, the computation result can be

discarded. This way, instead of learning and having to accept
an error rate of 18.848% as in our example in Section III,
we can discard 18.848% of the result with detected errors
and use only the remaining ones as the result of the entire
computation. While it is still possible for errors to remain,

VOLUME 8, 2020 228709

C. Liu: Reverse Checking of Quantum Algorithm Execution

the error rate could be dramatically reduced, which we plan
to work on next to demonstrate.

VI. SUMMARY
In summary, we presented a unique approach for one-the-fly
checking of quantum algorithm results based on quantum
teleportation and reverse quantum gate operations. An exper-
iment on IBM Q showed that this approach measured actual
error rates reliably. In the future, we may be able to improve
error rates by refining this method.

APPENDIX
The Python code in Code Listing 1 using the IBM Qiskit
package was used in the experiment. The number of qubits is
controlled by the variable qubitNumber. It can be set to four
or another bigger number instead of three, as long as one has
the computational resource to perform the simulation or the
actual computation. The result of the three-qubit experiment
is presented in Figure 6. We have also performed reverse
checking of a four-qubit algorithm. That result is not included
due to space constraints. The experiments were performed on
Google Colaboratory at https://colab.research.google.com/.

ACKNOWLEDGMENT
Krerkkiat Chusap assisted in performing an experiment for
the reverse checking of a three-qubit algorithm.

REFERENCES
[1] J. Preskill, ‘‘Quantum computing in the NISQ era and beyond,’’ Quantum,

vol. 2, p. 79, Aug. 2018.
[2] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, ‘‘Verification of quantum

computation: An overview of existing approaches,’’ Theory Comput. Syst.,
vol. 63, no. 4, pp. 715–808, May 2019.

[3] S. J. Devitt, ‘‘Performing quantum computing experiments in the cloud,’’
Phys. Rev. A, Gen. Phys., vol. 94, no. 3, Sep. 2016, Art. no. 032329.

[4] Y. Wang, Y. Li, Z.-Q. Yin, and B. Zeng, ‘‘16-qubit IBM universal quantum
computer can be fully entangled,’’ NPJ Quantum Inf., vol. 4, no. 1, p. 46,
Dec. 2018.

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[6] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, ‘‘A quantum engineer’s guide to superconducting qubits,’’
Appl. Phys. Rev., vol. 6, no. 2, Jun. 2019, Art. no. 021318.

[7] H. J. Briegel, ‘‘Versatile cluster entangled light,’’ Science, vol. 354,
no. 6311, pp. 416–417, Oct. 2016.

[8] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. V. D. Nest,
‘‘Measurement-based quantum computation,’’ Nature Phys., vol. 5, no. 1,
p. 19, 2009.

[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, ‘‘Non-
abelian anyons and topological quantum computation,’’ Rev. Mod. Phys.,
vol. 80, no. 3, p. 1083, 2008.

[10] A. Asfaw, L. Bello, Y. Ben-Haim, S. Bravyi, L. Capelluto, A. C. Vazquez,
J. Gambetta, S. Garion, L. Gil, S. D. L. P. Gonzalez, D. McKay,
Z. Minev, P. Nation, A. Phan, A. Rattew, J. Shabani, J. Smolin, K. Temme,
M. Tod, and J. Wootton, Learn Quantum Computation Using Qiskit. 2019.
[Online]. Available: https://qiskit.org/textbook/

[11] S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, ‘‘Experimental verifi-
cation of quantum computation,’’Nature Phys., vol. 9, no. 11, pp. 727–731,
2013.

[12] U. Mahadev, ‘‘Classical verification of quantum computations,’’ in Proc.
IEEE 59th Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2018,
pp. 259–267.

[13] F. Arute et al., ‘‘Quantum supremacy using a programmable superconduct-
ing processor,’’ Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[14] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad,
J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri,
and D. J. Wineland, ‘‘Realization of quantum error correction,’’ Nature,
vol. 432, no. 7017, pp. 602–605, 2004.

[15] P. W. Shor, ‘‘Fault-tolerant quantum computation,’’ in Proc. 37th Conf.
Found. Comput. Sci., Oct. 1996, pp. 56–65.

[16] R. Harper and S. T. Flammia, ‘‘Fault-tolerant logical gates in the IBM
quantum experience,’’ Phys. Rev. Lett., vol. 122, no. 8, Feb. 2019,
Art. no. 080504.

[17] A. Y. Kitaev, ‘‘Fault-tolerant quantum computation by anyons,’’ Ann.
Phys., vol. 303, no. 1, pp. 2–30, Jan. 2003.

[18] B. Criger and B. Terhal, ‘‘Noise thresholds for the [[4, 2, 2]]-concatenated
toric code,’’ Quantum Inf. Comput., vol. 16, nos. 15–16, pp. 1261–1281,
2016.

[19] S. B. Bravyi and A. Y. Kitaev, ‘‘Quantum codes on a lattice
with boundary,’’ 1998, arXiv:quant-ph/9811052. [Online]. Available:
https://arxiv.org/abs/quant-ph/9811052

[20] M. Takita, A. D. Córcoles, E. Magesan, B. Abdo, M. Brink, A. Cross,
J. M. Chow, and J. M. Gambetta, ‘‘Demonstration of weight-four parity
measurements in the surface code architecture,’’ Phys. Rev. Lett., vol. 117,
no. 21, Nov. 2016, Art. no. 210505.

CHANG LIU (Senior Member, IEEE) received the
Ph.D. degree in information and computer science
from the University of California at Irvine, USA,
in 2002.

He is currently a Professor of Computer
Science with Ohio University. His research inter-
est includes software engineering and its applica-
tions in various domains, including learning and
medical applications.

228710 VOLUME 8, 2020

