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ABSTRACT Tracking a fast-moving sound source in the air in an acoustic way has rarely been seen in the
current literature. The speed of the source in the air is often not negligible compared to the speed of sound in
the air. Time-varying propagation distance and noticeable Doppler effect also bring difficulties to traditional
tracking methods with the time difference of arrival (TDOA) and direction of arrival (DOA). In this paper,
we propose a particle filtering framework with relative Doppler stretch. We utilize the propagation delayed
measurement (PDM)model and correct the posterior probability in traditional particle filter with propagation
delayed state being a bridge. This method avoids the complex pre-processing of the raw acoustic signals.
The simulation results show that the algorithm has an expected performance and is superior to the existing
methods. The whole tracking process which starts from raw signals is shown for the first time, and the
key factors affecting the pre-processing of the raw signals that are not mentioned in other articles are also
discussed in this paper.

INDEX TERMS Moving sound source, relative Doppler stretch, particle filter, propagation delayed state.

I. INTRODUCTION
For most source tracking scenarios, radar is the most consid-
ered. However, for a low-altitude aircraft or a ground vehicle,
such as an unmanned aerial vehicle, a helicopter or a tank,
the requirements for radar devices will become expensive
and complicated. If the source has the anti-radar capability,
the performance will significantly reduce. Thus, a passive
acoustic tracking method for the moving source is proposed
in this paper as a supplement or an alternative to the above
scenarios.

Acoustic methods have been widely used in stationary or
slow-moving source tracking and localization [1]–[3]. The
state-of-the-art deep learning is also used to adapt to
the complex acoustic environment [4], [5]. However, when
the velocity of a moving source cannot be ignored com-
pared to the speed of sound in the air, the received acoustic
signals radiated by the source will be greatly distorted due
to Doppler effect. The time difference of arrival (TDOA),
which is commonly used to locate a stationary or slow-
moving sound source, will not work in such a situation
with distorted signals. To extend this method to fast-moving
source positioning and tracking, a new method was proposed
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to compensate for the TDOA error caused by the Doppler
effect [6], [7]. In [6], [7], the wideband cross-ambiguity
function based on continuous wavelet transform was used
to jointly estimate the relative time scale and time delay
between two sensors. However, due to the retardation effect,
the signals received at the same time instant by different
microphones correspond to the signals emitted in different
positions for a moving sound source. Thus, observation time
intervals for different microphones should be different so that
the signals from the same source position can be included
in the observation, which brings trouble to the sound source
tracking. To this end, Genescà et al. [8] proposed a method
that the signals from each microphone could be synchronized
to compensate for the retardation effect. With this method,
the relative Doppler stretches from seven microphones were
directly calculated through the one-dimensional wideband
cross-ambiguity function with equal observation time inter-
val. Based on the previous work, Martín et al. [9], [10]
used the Simple Genetic Algorithm (SGA) to search for
the position of the source and carried out the simulation
study with the takeoff-climb-out data extracted from the
database of the FAA’s Integrated Noise Model (INM) for a
Boeing 737-400. Next, a radio-controlled airplane local-
ization is experimentally tested in [11]. The simula-
tions and experiments showed a good performance.
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Similarly, considering that the acoustic signals are distorted
in amplitude and frequency, if the Doppler effect can be
removed, the signals can be used to estimate TDOA directly.
This method was called de-Dopplerization [12]. So far, time
domain and frequency domain de-Dopplerization were devel-
oped to recover signals, but the velocity should be known
accurately before de-Dopplerization, which was difficult in
passive tracking.

Besides TDOA, the direction of arrival (DOA) is another
measurement to estimate the position of the sound source.
In [13], the authors used a planar five-element array to
estimate the angle and range of the aircraft in each time
interval. In [14], the authors used distributed sensors to locate
the vehicular sources with DOA. In [15], the authors pro-
posed a method that could adapt to multi source tracking
with DOA batches. In [16], the moving acoustic source was
located by intersecting azimuth lines with double arrays.
Nevertheless, the DOA of a fast-moving sound source is
highly-dynamic. There were a few studies about the highly-
dynamic DOA estimation with dynamic compressive sens-
ing [17], [18]. Because dynamic compressive sensing is a
difficult time-varying optimization problem, it is difficult to
get satisfactory results. In [17], a weighted L1 minimization
algorithm is proposed to improve the performance by utiliz-
ing the DOA changing scope as a prior information. However,
the preprocessing is still complex and time-consuming in
tracking process.

In fact, there has rarely been a satisfactory acoustic track-
ing frame for a moving source in the air. The tracking frame
contains two problems, one is that the speed of a moving
source cannot be neglected, the other is that source motion
and observation time do not match due to the time-varying
distance. Both will cause numerous errors in tracking without
compensation. The authors [19]–[21] proposed a propaga-
tion delayed measurement particle filter (PDM-PF) to find a
solution. They changed the traditional state transition model
and measurement model. The time delay and time delayed
state were added to form an augmented state vector, then
they predicted the current state from the delayed augmented
state. The simulation experiment was carried out to show
its performance with DOA, yet they assumed that the DOA
estimation error was in a small range without building the
relationship between the raw acoustic signals and tracking
performance. Moreover, obtaining an accurate DOA for a
moving source is not easy as mentioned above.

Therefore, this paper proposes an algorithm to overcome
the above limitations. We use randomly distributed micro-
phones to collect signals and directly calculate the relative
Doppler stretch of the signals received by each pair of micro-
phones without compensating for the retardation effect. Then
a general particle filter framework based on the method of
propagation delayed state is constructed to track the fast-
moving source with relative Doppler stretch.

The structure of the rest of the article is as follows.
Section II describes the acoustic characteristics of a mov-
ing sound source. Section III introduces the framework of

the method proposed in the article. Section IV shows the
basic settings of simulation. The results discussions are
also included in this section. Finally, conclusions are placed
in Section V.

II. ACOUSTIC CHARACTERISTICS OF A MOVING
SOUND SOURCE
A. A SOUND FIELD GENERATED BY A MOVING
SOUND SOURCE
When the size of the source is much less than the sound-
propagation path-length, the size of the source is assumed to
be ignored. Thus, the source can be regarded as a monopole
sound source radiating noise in a spherical manner in the
entire trajectory. In addition, the sound propagation model is
considered an ideal propagation model without the effect of
temperature.

Considering M randomly distributed microphones,
according to [10], the sound pressure signals received by the
microphone m(m = 1, . . . ,M ) at time t is

qm (t) =
(

c
c− ‖v‖2 × cos (θm (t − τm))

)
×

(
s (t − τm)

4πrRm (t − τm)

)
(1)

where v is the velocity of the source, ‖.‖2 denotes the vector
2-norm, s(t) is the sound source strength, τm is the propaga-
tion time of the acoustic signal to the microphone direction
vector and the vector of the sound wave propagation direc-
tion pointing to the microphone m,Rm represents the sound-
propagation path-length to the microphone m, and c is the
speed of sound propagating in the air which is 344m/s in this
article.

Let the distance from the initial position to the source
be R0, the sampled signals are

qm (k1t) =

(
c

c− |v| × cos (θm (k1t − τm))

)
×

(
s (k1t − τm)

4πRm (k1t − τm)

)
,

(
k ≥

⌈
R0
c1t

⌉)
(2)

where k represents the number of samples,1t is the sampling
interval, and d•e denotes rounding up.

B. RELATIVE DOPPLER STRETCH (RDS)
As shown in Figure 1, the sampling interval and motion inter-
val do not match due to the variation of the path-length Rm.
In a short time period, T , the sound radiation characteristics
and velocity v of the moving source can be assumed constant.
From time t to time t + T , if the displacement of the moving
source is much less than the sound-propagation path-length,
i.e., ‖v‖2×T � Rm, the angle θm can be considered constant.

Then, due to Doppler effect, the frequency f dm of the signals
received by the microphone m satisfies

f dm = f ×
(

c
c− ‖v‖2 × cosθm

)
(3)
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FIGURE 1. Time relations of the sound position at emission time and
receiving time.

where f represents the frequency of the sound source. And
θm is obtained as

cosθm =
vTt−τm

(
rm − P t−τm

)∥∥vt−τm∥∥2 × ∥∥rm − P t−τm
∥∥
2

(4)

where rm represents the position of the microphone m, vt−τm
and P t−τm denotes the velocity and position of the source
respectively at time t − τm, and τm satisfies

τm =
1
c
×
∥∥P t−τm − rm∥∥2 (5)

Let dm = c
c−‖v‖2×cosθm

represents the Doppler stretch, then
the relationship between the source signals and the received
signals can be written as

qm
(
f dm
)
= Am × s (dmf ) ej2π f

d
m τm (6)

where qm(f ) and s(f ) is the Fourier transform of qm(t)
and s(t) respectively, Am is the amplitude coefficient which
is assumed constant in a short time interval. Thus, for a
microphone pair (m, n) constructed by any two microphones,
we can obtain

qn (f ) = Am,nqm
(
dm,nf

)
ej2φ(m,n) (7)

where dm,n =
dm
dn
, and φ(m, n) represents the phase

difference.
Then, according to [7], for the microphone pair (m, n),

the cross-ambiguity function of the signals is defined as

Xp (δ) =
√
δ ×

∫
qm (f )× qn (δf ) ejφ(m,n)df (8)

where δ is the relative frequency scale, p (p =

1, . . . , M(M−1)2 ) refers to the pth pair of microphones formed
by microphone m and n.
As mentioned in [11], the ambiguity function will not

be time domain restrictive if the signals have been syn-
chronized. If without synchronization, we directly use two
moduli |qm(f )| and |qn(δf )| (

∣∣ejφ(m,n)∣∣ = 1) and Equation (8)
becomes:

Xp (δ) =
√
δ ×

∫
|qm (f )| × |qn (δf )| df (9)

The maximum value of Xp(δ) will correspond to δ = dm
dn

which is also called relative Doppler stretch (RDS).
To calculate the value of Xp(δ), a 1-dimensional version of

the discrete form is used.
Let

Xp (δ) =

√
δ

LN + 1

LN∑
l=0

|qm (l1f )| × |qn (δ × l1f )| (10)

where LN is the available number of frequency bins satisfying
Nyquist sampling theorem, then LN is obtained as

LN =


⌊

fs
21f

⌋
, δ< 1⌊

fs
21f × δ

⌋
, δ ≥ 1

(11)

where fs is the sampling frequency, 1f is frequency res-
olution, and b•c denotes rounding down. For the discrete
version, resampling of the frequency axis is needed, which
is calculated by linear interpolation.

Additionally, with Equation (4), the relative Doppler
stretch can also be written as

δ =
dm
dn
=

c−
vTt−τn(rn−pt−τn)
‖rn−pt−τn‖2

c−
vTt−τm(rm−pt−τm)
‖rm−pt−τm‖2

(12)

So far, we have only focused on subsonic sources. Assum-
ing that the maximum speed of the low-altitude aircraft
is vmax , we can define the search range of δ is

[
c−vmax
c+vmax

, c+vmaxc−vmax

]
in Equation (9).

For a 2D motion source, eight scalar unknowns appear
in Equation (12) including the position and velocity of the
source at two different time t − τm and t − τn. Nevertheless,
if we know its motion model, there are only four scalar
unknowns. Thus, at least four microphones are required to
form six microphone pairs to obtain more than four relative
Doppler stretches. Besides, from Equation (12), the relative
Doppler stretch obtained from Equation (9) is corresponding
to two source states at two different moments if two received
signals have not been synchronized. Thus, when using rela-
tive Doppler stretches, a correction of the tracking model is
required.

C. PROPAGATION DELAYED MEASUREMENT (PDM) AND
PROPAGATION DELAYED STATE (PDS)
For a tracking problem, the following state space model is
considered

xTk = fTk−1,Tk
(
xTk−1

)
+ wTk−1,Tk (13)

where xTk =
[
PxTk ,V

x
Tk ,P

y
Tk ,V

y
Tk

]T
is the state vector,

fTk−1,Tk represents the state transition function, wTk−1,Tk is
Gaussian white noise satisfying wTk−1,Tk ∼ N (wTk−1,Tk ; 0;
STk−1,Tk ), STk−1,Tk is the covariance of the process
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noise, wTk−1,Tk . We assume that the transformation in
Equation (13) is invertible which satisfies

xTk−1 = fTk ,Tk−1
(
xTk
)
+ wTk ,Tk−1 (14)

We consider a general measurement model

yTk = g(xTk )+ nTk (15)

where nTk is noise and g represents the function from state
to measurement. According to section II.B, for the pth pair of
microphones, when the relative Doppler stretch, δp,Tk , is used
as the measurement, this model needs to be corrected as

δp,Tk = g
(
xTk−τm , xTk−τn

)
+ nTk (16)

where δp,Tk is also called propagation delayed measurement
(PDM), similarly, we define

xDTk =
[
xTk−τm , xTk−τn

]T
(17)

where xDTk is the propagation delayed state (PDS). The PDS is
constructed by two different delayed states from the current
state xTk . Therefore, the PDS establishes the relation between
the current state and the PDM like a bridge.

With Equation (5) and (14), the problem of obtaining PDS
is shown as xTk−τm = fTk ,Tk−τm

(
xTk
)
+ wTk ,Tk−τm

τm −
1
c

∥∥PT−τm − rm∥∥2= 0
(18)

where PT−τm is composed of the position parameter in the
state vector xTk−τm . This kind of numeric root-finding prob-
lem can be solved with the Newton-Raphson method when
the model is known in Equation (14).

III. PROPAGATION DELAYED STATE PARTICLE FILTER
WITH RELATIVE DOPPLER STRETCH (PDS-PF-RDS)
As can be seen above, the tracking model is non-linear and
non-Gaussian, thus, the particle filter is used here to provide
the optimal solution.

The particle filtering algorithm is a form of recursive
Bayesian filter. It is a non-linear filtering algorithm based
on the Bayesian formula to realize state predictions and
state updates. The main idea is to use a group of random
samples (particles) to describe the posterior probability
distribution, adjust the weight of each sample through the
measurement model to approximate the actual probability
distribution, and use the weighted average of the samples
as an estimate of the current state, which is applicable for
arbitrary non-linear, non-Gaussian systems.

A. SAMPLING IMPORTANCE RESAMPLING (SIR) PARTICLE
FILTER
For a typical particle filter, for example [22], the sampling
importance resampling (SIR), the sampling framework is
expressed as follows:

1) Initialization. Sampling N particles {x(i)Tk , i = 1,
2, . . . ,N } from the initial prior probability with uniform
weight.

2) Prediction and updating. Predicts the new set of particles
{x(i)Tk } according to state transition model, the weight {w(i)

Tk }

corresponding to {x(i)Tk } is updated as

w(i)Tk = P
(
yTk | x

(i)
Tk

)
(19)

3) Estimation. The current state estimate can be obtained
as

XTk =
N∑
i

w̃(i)Tk × x
(i)
Tk (20)

where w̃(i)Tk is the normalized weight, i.e., w̃(i)Tk =
w(i)Tk∑N
i w

(i)
Tk

.

B. PROPAGATION DELAYED STATE PARTICLE FILTER
In our case, when relative Doppler stretches are used, the
measurements can be shown as

yTk =
[
δ1, . . . , δp, . . . , δM(M−1)

2

]T
(21)

where δp represents the relative Doppler stretch of the
pth pair of microphones. The relative Doppler stretches are
considered to be independent of each other. Based on the
SIR particle filtering framework, the weight {w(i)

Tk } of the
particle i should be

w(i)Tk =

M(M−1)
2∏

p=1

P
(
δp | x

(i)
Tk

)
(22)

However, as mentioned above, the relative Doppler stretch
δp is a propagation delayed measurement which is corre-
sponding to the PDS xDTk . Therefore, with PDS being a bridge,
the posterior probability can be corrected as

P
(
δp | x

(i)
Tk

)
=

∫
P
(
δp | xDTk

)
× P

(
xDTk | x

(i)
Tk

)
dxDTk (23)

where

P
(
xDTk | x

(i)
Tk

)
∼ N

(
xDTk ; x

D(i)
Tk ; S

(i)
xTk ,x

D
Tk

)
(24)

xD(i)Tk =

[
x(i)Tk−τm , x

(i)
Tk−τn

]T
(25)

S(i)
xTk ,x

D
Tk

=

[
S(i)Tk ,Tk−τm 0

0 S(i)Tk ,Tk−τn

]
(26)

Therefore, P
(
δp | x

(i)
Tk

)
is rewritten as

P
(
δp | x

(i)
Tk

)
=

∫
P
(
δp | xDTk

)
× N

(
xDTk ; x

D(i)
Tk ; S

(i)
xTk ,x

D
Tk

)
dxDTk

(27)

The non-linear transformation of probability can be solved
by unscented transform(UT) [23]. UT can generate a set of

sigma points
{
xD(i)Tk [j] ,weight

(
xD(i)Tk [j]

)}J
j
to represent the
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probability distribution N
(
xDTk ; x

D(i)
Tk ; S

(i)
xTk ,x

D
Tk

)
. According

to UT, the estimation of p
(
δp | x

(i)
Tk

)
is

P
(
δp | x

(i)
Tk

)
≈

J=2c+1∑
j=1

weight
(
xD(i)Tk [j]

)
× P

(
δp | x

D(i)
Tk [j]

)
(28)

where c is the dimension of the state xD(i)Tk . It is difficult to

calculate the complex probability P
(
δp | x

D(i)
Tk [j]

)
directly.

We should use another likelihood function to describe it.
The likelihood function need show the peak corresponds to
likely PDS (i.e., a larger likelihood function value will be
treated as a more likely PDS than a smaller value). If we
use the Gaussian likelihood function

(
δp; δ̄p

(
xD(i)Tk [j]

)
; σ 2

p

)
,

the estimation of δp will be a time-consuming searching
process due to the small searching step and repeated process
of resampling in Equation (9) and σp can only be determined
through iterating. Thus, a pseudo-likelihood function is pro-
posed to describe the probability distribution P

(
δp | x

D(i)
Tk [j]

)
.

The function is

p
(
δp | x

D(i)
Tk [j]

)
=

{
XDp

(
δ̄p

(
xD(i)Tk [j]

))}r
(29)

XDp
(
δ̄p

(
xD(i)Tk [j]

))
=

∫
|qm (f )| ×

∣∣∣qn (δ̄p (xD(i)Tk [j]
))∣∣∣ df

(30)

where p(x
D(i)
Tk [j]) represents the relative Doppler stretch

formed by the two delayed states in xD(i)Tk [j], the exponential
weight r is used to strengthen the main lobe peak and reduce
the side lobe peak so that the likelihood function is closer
to the true value. The closer to the true relative Doppler
stretch (RDS), the greater value of the likelihood function and
the greater weight. The pseudo-likelihood function does not
require a search to find the peaks but imposes a weight on the
possible state proportionally.

One cycle of the PDS-PF-RDS is depicted in Algorithm I
based on the SIR particle filter.

IV. SIMULATION
This section describes the computer simulation of tracking a
2D moving sound source with four microphones, including
basic parameter settings, simulation results and discussions.

A. IMPLEMENTATION
Four microphones are used to verify the tracking ability of the
method in the 2D scene. For comparison, we choose the same
simulation scene used in [19]–[21]. The distribution of these
microphones and the source trajectory are shown in Figure 2,
and their position coordinates are shown in TABLE 1. The
size of the source is ignored. The source moves at a radius
of 500m at a constant turn rate w = −0.12rad/s. The initial
position is [−500m, 800m]T.

Algorithm 1 PDS-PF-RDS
1. Sampling N particles from initial probability distribu-

tion P(xTo ) with uniform weight to form the particle set{
x(i)T0 ,w

(i)
}N
i
at time t0.

2. For T1:Tk

1) Sampling
{
x(i)Tk

}N
i
from P(xTk |xTk−1 ) to update the

state.
2) For the pth pair of microphones, obtain the PDS

xD(i)Tk =

[
x(i)Tk−τm , x

(i)
Tk−τn

]T
corresponding to x(i)Tk ,

propagation time τ (i)m corresponding to the PDS
and the covariance S(i)

xTk ,x
D
Tk

.

3) With UT transform, get the sigma points{
xD(i)Tk [j] ,weight

(
xD(i)Tk [j]

)}J
j
and calculate the

relative Doppler stretch δ̄p
(
xD(i)Tk [j]

)
.

4) Update w(i).

• Calculate XDp
(
δ̄p

(
xD(i)Tk [j]

))
, then P

(
δp | x

(i)
Tk

)
is obtained as

P
(
δp | x

(i)
Tk

)
=

J=2c+1∑
j=1

weight
(
xD(i)Tk [j]

)
×

{
XDp

(
δ̄p

(
xD(i)Tk [j]

))}r
• Update the weight as

w(i)
=

M (M−1)/2∏
p=1

P
(
δp | x

(i)
Tk

)
3. Normalize w(i) and get

w(i)
=

w(i)∑N
i w

(i)

4. Get the current estimation of source state:

x̄Tk =
N∑
i

w(i)
× x(i)Tk

5. Store the particles set
{
x(i)Tk ,w

(i)
}N
i

6. End for

TABLE 1. Positions of the microphones with respect to the origin of
coordinates (Location distance in meters).

1) SIGNAL PARAMETERS
The acoustic signals radiated by some moving sources, such
as unmanned aerial vehicles or ground vehicles, are often
dominated by a few harmonics [24], [25]. In this paper, the
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FIGURE 2. The source trajectory and microphones distribution.

single-frequency signal is superimposed to simulate an acous-
tic signal with a band [1000Hz−1500Hz]. Thismethod is also
used in [26], [27] for a moving sound source simulation. The
sampling frequency of the microphone is 10KHz, the noise
attached to the received signals is Gaussian white noise, and
the signal-to-noise ratio is SNR = 20dB.
The signal frequency spectrums of the four microphones

from t = 4s to t = 5s are shown in Figure 3.
Figure 3 illustrates that the frequency spectrums of different
microphones at different positions differ due to the different
Doppler stretches and the unequal distance traveled.

FIGURE 3. The frequency spectrums of the acoustic signals received by
four microphones.

2) MODEL PARAMETERS
The source motion is modeled with a discretized coor-
dinated turn model with an unknown constant turn rate
and with Cartesian velocity. The state variable is xTk =[
PxTk ,V

x
Tk ,P

y
Tk ,V

y
Tk ,wTk

]T
and the discretized form of the

model is given as

XTk+1 = FXTk + wTk ,Tk+1 (31)

where F is state transition matrix, wTk ,Tk+1 is the process
noise with zero mean and covariance Sk , Let T = Tk+1−Tk ,
then F and Sk can be obtained as

F =



1
sin (wT )

w
0

1− cos(wT )
−w

0

0 cos(wT ) 0 cos(wT ) 0

0
1− cos(wT )

w
1

sin (wT )
w

0

0 sin(wT ) 0 cos (wT ) 0
0 0 0 0 1



Sk =



T 3

3
σ 2
x

T 2

2
σ 2
x 0 0 0

T 2

2
σ 2
x Tσ 2

x 0 0 0

0 0
T 3

3
σ 2
y

T 2

2
σ 2
y 0

0 0
T 2

2
σ 2
y Tσ 2

y 0

0 0 0 0 σ 2
wT


where σx , σy, represent the standard deviations of the velocity
in x, y directions, σw is the standard deviations of the turn rate.
we assume σx = σy = 1m/s2, σw = 0.01rad/s2.

The configuration of the simulation parameter is as fol-
lows. The number of particles is N = 1000. We assume that
the initial particle set is generated from the Gaussian dis-
tribution N ((x(i);µ; diag

([
1002, 102, 1002, 102, 0.052

])
),

and µ is generated from the Gaussian distribution
N ((µ; xt0; diag

([
1002, 102, 1002, 102, 0.052

])
) which repre-

sents the errors of obtaining the initial position. Considering
the propagation time of the signals at the first moment,
we start tracking from t0 = 4s to tend = 45s with the time
interval T = 1s. A total number of 1000 Monte Carlo runs
were made.

B. TRACKING PERFORMANCE METRICS
The Root Mean Square Error (RMSE) of position and veloc-
ity of the source are used as a reference to evaluate the
performance of the method, which is defined as

RMSE =
1
Mc

Mc∑
mc=1

√√√√( 1
K

) K∑
k=1

∥∥l̄m,k − lm,k∥∥2 (32)

where k is the estimation step, l̄m,k and lm,k refers to the
estimated value and real value respectively, and mc refers to
the cycle index of the Monte Carlo simulation running.

C. RESULT DISCUSSIONS
To assess the performance of the proposed method, PDS-PF,
a comparative experiment with the existing moving sound
source tracking methods with DOA is conducted, which is
the PDM-PF [19]. In addition, the direct PF regardless of the
propagation time delay is also conducted. The differences of
the three methods are summarized in TABLE 2.

The RMS position and velocity errors are given
in Figure 4 and Figure 5 respectively. The performance of the
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TABLE 2. Differences of three methods.

FIGURE 4. RMS-position errors of different methods.

PDS-PF-RDS algorithm turns out to be superior to PDM-PF
in terms of the position error and velocity estimation, the error
of the PDS-PF-RDS can quickly reduce to a small value
faster than other algorithms. And the error of the PF method
increases fast, although it decreases after 25 seconds, it is
still much bigger than the other two methods. In the whole
tracking process, the performance of the PDS-PF-RDS is
much more stable than PDM-PF and PF. The error of the
PDM-PF increases after 10s and is even bigger than the error
of the PF around 28s although it can reduce to a small value
quickly after 30s.

In order to explain the performance differences of different
algorithms, we show the true propagation delay in Figure 6.
According to Equation (15) and (16), when the delay is
neglected in PF, the current source states are not correspond-
ing to the measurement, the relative Doppler stretch (RDS).
When the delay is large, the bias between the current states
and propagation delayed states (PDS) is not negligible. Thus,
though the error also decreases when the delay is becoming
smaller after 35s, the accumulation of the errors before 35s
is too large to get a satisfactory performance with the
PF method.

In [19], it is reported that when the delays change quite
fast, the PDM-PF performance becomes inaccurate, although

FIGURE 5. RMS-velocity errors of different methods.

FIGURE 6. Time evolution of the propagation time delay of each
microphone.

the estimates can quickly recover after this period ends.
In fact, the stability is affected by the change speed of
the propagation delay. When the propagation delay changes
fast, the corresponding propagation delayed state (PDS) also
changes quickly. In order to keep up the fast changes, we need
a smaller time interval to estimate the PDS, but our state
transition model changes at a fixed time interval. However,
in PDS-PF-RDS, the performance is always stable because
randomly distributed microphones can reduce the influence
of delay changes caused by the spatial position of a single
microphone. Moreover, from Equation (12), relative Doppler
stretch contains both the velocity information and position
information of the source compared to DOA which is only
related to the source position. Thus, when the relativeDoppler
stretch (RDS) is used as the measurement, the estimation of
the posterior probability can be more accurate.

Next, we will carefully discuss some key impact parame-
ters which influence the tracking performance of the propaga-
tion delayed state particle filter with relative Doppler stretch.
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1) EFFECT OF THE TIME INTERVAL
In section II.A, we assume that the frequency spectrum is
constant in a short time interval. However, the time interval is
not as short as possible. On one hand, a shorter time interval
means more tracking steps which requires more computation
time in the same tracking process, on the other hand, a shorter
time interval results in lower frequency resolution. Therefore,
we compare the relative Doppler stretch obtained by theory
and measurement for different time intervals to make a com-
promise. Figure 7 illustrates the average errors of the relative
Doppler stretch estimation with different time intervals.

FIGURE 7. Average errors of the relative Doppler stretch with different
time intervals.

From Figure 7, we can observe that the error is very small
in a short time interval less than about 1s but will rise much
faster with a larger interval. Thus, we choose the time interval
is T = 1s in our case. The real value and estimation of relative
Doppler stretch is shown in Figure 8.

From Figure 8, the estimated relative Doppler stretch
has errors but is similar to the true value. It means that
Equation (9) and (10) can work well in obtaining the relative
Doppler stretch with T = 1s. In [19], the reason for the
interval chosen or the method for DOA estimation is not
discussed, but it is worth studying to keep a balance between
accuracy and efficiency as mentioned above.

2) EFFECT OF SIGNAL-TO-NOISE RATIO (SNR)
To evaluate the impact of the noise on the tracking perfor-
mance, corresponding simulation experiments of different
SNRs are carried out.

We discuss the performance of Equation (9) under dif-
ferent SNRs and give the limitations. The signals are from
the microphone pair (1, 2) from t = 4s to t = 5s, and
Figure 9 shows the results.

From Figure 9, we can observe that the Ambiguity func-
tion, X (δ), has a good performance when SNR > 15dB.
However, the side lobe will be higher than themain lobe when
SNR < 10dB. According to Figure 9, the pseudo-likelihood
function, X (δp), in Equation (29) can only describe the

FIGURE 8. Real value and estimated value of the relative Doppler
stretches (real(m,n) and estimate(m,n) represent the real and the
estimated Doppler stretches respectively of the microphone pair(m,n)).

FIGURE 9. The value of X (δ) (Equation (9)) under different SNRs.

probability distribution P
(
δp | x

D(i)
Tk [j]

)
when SNR > 15dB.

Though the exponential weight r can be used to strengthen the
main lobe peak, there is still a wrong peak in the likelihood
function under low SNR environment. When the particles
weights update in our tracking frame, the particles related to
the PDS corresponding to the wrong peak will get very big
weights. As a result, the error between the true state and the
weighted average of the particles will become large and the
number of effective particles will decrease.

V. CONCLUSION
In this paper, we propose a propagation delayed state particle
filter framework of acoustic tracking for a moving sound
source with relative Doppler stretch (PDS-PF-RDS).

We avoid using complex microphone arrays but randomly
distributed microphones to reduce the hardware difficulty
in real-world application. We obtain the relative Doppler
stretches of each pair of sensors directly by Equation (9) to
form the observation vector. Compared to obtaining DOA
or TDOA of a moving source, this method does not need
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intricate preprocessing of the raw signals, such as using de-
Dopplerization [12] or dynamic compressive sensing [17].
At the same time, we correct the observation model and
construct the propagation delayed state (PDS) to be a bridge
to get the corrected posterior probability. Moreover, we use
the value X (δ) of the ambiguity function to approximate the
weight of each particle instead of calculating the complex
posterior probability directly. The simulation results show
that the proposed tracking framework has smaller RMS posi-
tion and velocity errors and can adapt to the changes of the
propagation delay in the whole tracking process compared to
other algorithms. In addition, we show the whole process of
tracking a moving sound source with raw data received by
sensors instead of ignoring the preprocessing of the signals.

As a limitation, the current method is only discussed in
the subsonic scenes. When tracking a supersonic source,
the received signal will contain both leading and lagging
signals, and the measurement will no longer be reliable.
However, it can still work well in tracking most subsonic
sound sources and play an essential role in the multi-source
informationmonitoring system.Wewill carry out field exper-
iments in the next step, and the research on experiments will
be presented in future work.
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