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ABSTRACT To investigate the performance of Adaptive Neuro-Fuzzy Inference System (ANFIS), activated
by spectral analysis features, for detection of abnormal cardiac valves sound signals. A dataset of 1837 heart
sound signals were acquired from international PhysioNet Challenge 2016 databases (classes A, B and E).
This included 1369 normal and 468 abnormal signals. The signals were de-noised using Notch and
Butterworth filtering, fed to Discrete Fourier Transform, and 5 features using High Order Spectral (HOS)
analysis were extracted from the third Cumulant. Later, the ANFIS neural network was trained and tested
to discern abnormal signals. The results showed that the selected features were statistically significant
(p<0.05). The proposed method was tested and achieved classification of 63-89% accuracy, 63-100%
sensitivity, and 62-100% specificity, respectively. The results were compared with reports utilizing different
neural network techniques, indicating competitive performance. The HOS spectral features can be reliable to
participate in neural network systems to sort heart sound (HS) signals as normal or abnormal. The bispectral
matrix is a new presentation of attributes describing signals. The ANFIS is a suggestive successful tool,
which has not been attempted in Physio-net challenge 2016. The HOS attributes and ANFIS can participate
successfully in PhysioNet Challenge 2016.

INDEX TERMS ANFIS neural network, heart sounds, high order spectrum, PhysioNet-Challenge 2016.

I. INTRODUCTION
The dysfunction of cardiac valves is serious part of cardiovas-
cular diseases (CVDs) leading to mortality. In USA, the cost
of health care services related to CVDs is about $ 320 billion
annually and it may approach to 1 trillion by 2030 [1]–[3].
The assistive-diagnostic cardiac technology such as ultra-
sound, cardiac CT, and monitoring system is also costly and
-heavy demand instruments.

Long time ago, the auscultation of heart sound (HS) known
as Phonocardiography (PCG) is a complementary essen-
tial procedure to assess heart functioning. Distinguishing
defects in heart sounds by means of hearing aid (stethoscope)
depends on physician’s experience. Lately, electronic systems
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(Electronic Cardiac Microphone) were introduced to provide
clear PCG signal. Four different frequencies (S1, S2, S3, and
S4), characterizing the mechanical functions of heart valves,
were recognized [4]. Clinical trials proved that many cardiac
valve diseases such as Aortic Stenosis, Murmurs, Paradoxical
Splitting, and others abnormal heart conditions (HC), are
related to the components of S1 and S2 [5]. Signal processing
(e.g. computer aided diagnosis (CAD)) can help, but careful
analysis to S1 and S2 is substantially required. However, PCG
is complicated non-stationary signal. Furthermore, PCG is
nonlinear low frequency bio-signal, easily affected by sur-
rounding sources of signals, resulting in challenge. The inter-
ference sources could be 50/60Hz, skin impedance, technical
properties of electrodes, and electronic noise.

The challenge mission for signal processing researchers
is to distinguish the healthy HS against the pathological
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FIGURE 1. Block diagram of the proposed framework.

signal arising from HC. Thus, international databases of
normal HS and HC were generated and made available via
internet worldwide. In this work, the database by Phys-
ioNet/Computing in Cardiology (CinC) Challenge 2016 was
utilized [6]. This database is considered as reference for
comparing CAD’s outcomes.

In the current study, due to the nonstationary and
nonlinearity nature of HS signals, we attempted the Fourier
spectrum analysis along with HOS of the third cumulant
(i.e. bispectrum) to generate linear HS features without noise.
These features after statistical normalization were inserted
into ANFIS neural network, which has not been attempted
in literature, to detect normal HS from HC signals.

In literature, many studies attempted the signal processing
challenge on the international database (i.e. PhysioNet Chal-
lenge 2016). Due to the noisy cardiac sound background,
most state of art techniques focused on de-noising HS
signal and establishing the most significant features. For
example, features in time, frequency, statistical, and wavelet
domains had been addressed by many authors [7]–[10].
The neural network methodologies and learning machine
algorithms were implemented intensively to reach to the
best classification accuracies. This includes algorithms as
Convolutional Neural Network (CNN), Drop Connected
Neural Networks (DCNN), Gram polynomials and proba-
bilistic neural networks, AdaBoost classifier, LogitBoost,
Random Forest, and a Cost-Sensitive Classifier [11]–[15].
Martin et al. [16] used the deep learning machine during
the detection of chronic heart failure disease and to improve
classification accuracy. Other approaches achieved an accept-
able accuracy using clustering techniques for cardiac sound
classification such as the k-nearest neighbors (kNN) algo-
rithm [17], threshold-based methods, and decision trees [18].
Support vector machine (SVM) had been also proved its

capability having different kernel functions for HS classifica-
tion [19]–[21]. Some HS features were generated from phase
components of Fourier spectrum [22] and [23]. They claimed
that phase information could be useful if the complete phase
spectrum was employed appropriately.

This paper presents the results of new attempt (i.e. frame-
work) based on utilizing High Order Spectral (HOS) analysis
and ANFIS, which, to best of our knowledge, has not been
addressed in literature. The method was applied to same
international database, PhysioNet Challenge 2016, and the
outcomes were compared with similar attempts in literature.
Figure 1 shows the block diagram of our attempt.

II. MATERIALS
The PhysioNet-Challenge 2016 [6] is an international
database that containsmore than 3000HS recordings. TheHS
signals are distributed in ClassA, B, C, D, and E.We collected
1837 HS signals from class A, B, and E. They were divided
into training and testing sets with 80-20% (class A), and
85-15% (class B and E) split protocols respectively, as seen
in Table 1. These HS samples were selected based on consid-
eration that there is no emergency noise source (e.g. voices
from humans or machines), deteriorating the HS recording;
we will discuss this point in the discussion section. The time
duration of each HS signal is up to 120 sec. Each signal
is sampled to 2000Hz. These are the original specifications
provided by PhysioNet challenge webpage.

III. METHOD
A. PRE-PROCESSING STEP
Both types, the normal HS and HC signals, are noisy and
intersect in frequency characteristics. Therefore, two prepro-
cessing steps were utilized. First we applied band pass notch
filter to reject the 50-60 Hz noise. Second, 4th Butterworth
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TABLE 1. Dataset distribution.

FIGURE 2. Normal HS, original (a), filtered (b), and Normalized DFT(c).

band pass filter was applied. Figures 2 a-b and 3 a-b
illustrate the results on a 5 second segment, which con-
tains S1 and S2̧ of normal HS and HC signals. In Butter-
worth filter, we implemented two cut off frequencies. These
are the FC1=0.025 and FC2=0.4, which were tested and
recommended by reference [24].

B. HIGH ORDER STATISTICS
The Discrete Fourier Transform (DFT) was applied on the
preprocessed signals, as seen in Figure 1. The DFT can sort
frequencies constituents of the signal. Therefore, the mag-
nitude spectrum was normalized and plotted as shown in
Figure 2-c and 3-c, indicating perceptual difference between
normal HS and HC spectrums. Then, the high order spec-
tral (HOS) analysis was applied. The HOS have different
moments (i.e. cumulants), where each cumulant itself can be

FIGURE 3. Abnormal HC, original (a), filtered (b), and Normalized DFT(c).

expressed by moments. The third cumulant is same as the
central moment, it is called as Bispectrum Fourier [25]. This
bispectrum can investigate the nonlinear coupling informa-
tion, quantifying the oscillatory between basic frequencies f1,
f2, and their modeling f1 + f2. However, the expression of
bispectrum can be calculated from the Fourier Transform of
the 3rd order correlation in which HS signal is analyzed [26]:

Bis (f1, f2) = lim
T→∞

(
1
T

)
E[X (f1 + f2)X∗(f1)X∗(f2)] (1)

where:
X (f ) is Fourier transform 3rd order of the HS signal (i.e.

time series).
(∗) is the complex conjugate.
E stands for the expected/ estimated value.
In order to compare normal HS with HC quantitatively,

set of statistical parameters were extracted from the matrix
of bispectrum (i.e. 2D mapping for all frequencies pairs of
cardiac sound signal). The drawn segments of cardiac sound
were divided into several sub-segments using the 2D priestly
window (Figure 4) of bispectrum. Consequently, it forms
a bispectral matrix size of 128 × 128 points as shown in
Figure 5 [27].

C. FEATURES EXTRACTION
The Bispectral matrix contains the result of mapping
frequencies in form of real and imaginary components.
Many attributes may be extracted. We investigated the HOS
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FIGURE 4. Contour plot of Bispectrum response for normal HS (Top) and
HC (Bottom).

FIGURE 5. Bispectral matrix examples of HC (top) and normal HS
(Bottom).

TABLE 2. List of HOS feature extracted for classification.

features [26]. Table 2 reports the selected five features. They
were calculated from the real (Re) of each point of matrix.
These are the mean, standard deviation (SD), variance (Var),
Entropy, and Log Entropy of real component of the third
cumulant (i.e. bispectrum) of DFT. This set of features will
be, then, used for training a supervised ANFIS classifier to
automatically estimate the person health condition, as normal
or abnormal health condition.

The fifth feature (i.e. log entropy) was omitted because of
its low significance (p>0.05). The remaining features were
normalized to become in the range of 0 to 1 for all signals
as explained in Equation 2. That is the jth feature (j=1 to 4)
for ‘‘n’’ samples (n=1 to 1837) was normalized between
0 and 1 values. Thus, the classification process, which will
be explained in the forthcoming section, will not be affected

TABLE 3. Internal ANFIS parameters for best classification.

by different magnitudes/scales of the considered signal.

EFj,normalized = (EF j − Fj,min)/(Fj,max − Fj,min) (2)

where:
Fj and Fj,normalized are the original and normalized j-th
feature, respectively;
Fj,min and Fj,max are the minimum and the maximum

of the j-th feature values calculated for all ‘‘n’’ samples
(i.e. 1837 samples), respectively.

D. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
ANFIS classifier is a suggestive artificial intelligence tech-
nique for data classification. The ANFIS architecture relies
on five layers of nodes. They are incorporated to compare
the input signal against previous knowledge (training) stored.
Two layers of ANFIS are adaptive while the rest consist of
fixed nodes [28] and [29]. The Input parameters that fed
into ANFIS are: Mean, SD, VAR, and Entropy. The resulting
abnormal output (HC) was denoted by 1, while number 2 was
used to denote the Normal HS. The training parameters of
ANFIS are given in Table 3.

The PRECISION and RECALL statistical metrics were
calculated using Equations 3, 4, and 5
Precision = TP/(TP+ FP) (3)

RECALL = TP/(TP+ FN) (4)

F-score = 2∗precision∗RECALL/[precision+ RECALL]

(5)

where:
TP: true positive represents the abnormal samples detected

correctly
FP: false positive represents the normal samples detected

as abnormal
TN: true negative represents the normal samples detected

correctly
FN: false negative represents the abnormal samples

detected as normal

IV. RESULTS AND DISCUSSION
The proposed approach attempts to eliminate noise, selects
significant spectral features using HOS attributes, and
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FIGURE 6. The ANFIS’s outputs on 78-test samples for class A in dataset.

employs ANFIS neural network. This framework was applied
to all 1837 HS signals in the dataset. As a result, a matrix with
entries containing complex values (Real and Imaginary) was
obtained for each HS signal. The bispectrum showed peak
placed around (0, 0) Hz for normal HS signals, and between
0.02 and -0.02 Hz approximately for HC signals (Figure 4).
This led to deduce four HOS significant spectral features,
which are, in turn, fed to ANFIS neural network. For instance,
Figure 6 shows the ANFIS’s outputs for 78 test samples in
Class A. All abnormal signals (i.e. 54 HC) were successfully
detected (indicated by blue color), while normal samples
(indicated by red color) were well detected (i.e. 24 normal
HS), except two cases.

Each class in the dataset was randomly categorized as
training and testing sets, as shown in Table 1. The ANFIS was
trained for the whole dataset. That is all training sets in classes
A, B, E participated in the training stage (1544 HS signals).
Later, it was, first, evaluated on all testing samples (293 HS
samples), and then evaluated for each test set in each class.
The ANFIS outcomes were observed. The precision, recall,
and accuracy were reported. Table 4 shows the results of the
framework.

Since class A (391 samples), class B (351 Samples),
and class E (1095 samples) have different number of HS
signals, the ANFIS achieved range of values for precision
(63-100%) and accuracy (63-89%). Both precision and accu-
racy increased with the increment of samples (Table 4). This
may indicate the ANFIS ability to detect abnormal HS signals
(i.e. TP responses). However, the recall (i.e. specificity) was
62%, 100% and 78% in class A, B, and E, respectively. This
variation, on the one hand, may be attributed to variations
in number of normal and abnormal HS test samples. That
is, as seen in Table 1, class A included 24 normal HS test
samples in comparison to 42 and 147 in class B and E,
respectively. Whilst, class A included 54 abnormal HS test
samples in contrast to 8 and 18 samples in class B and E,
in turn. These differences have direct impact on equation (4).
On the second hand, this variation in recall (and in sensitivity
and accuracy) may be attributed to fact that, as stipulated
by PhysioNet challenge [6], the HS recording’s severity (i.e.
occult) were distributed unequally among classes. Since we
utilized only four features as inputs for ANFIS, these statisti-
cal metrics (sensitivity, specificity, and accuracy) are subject
to improve if the number of features increases. The results

TABLE 4. The framework performance on dataset.

FIGURE 7. The accumulative framework performance (ROC).

in Table 4, with consideration that only four features were
utilized, rationalize the conclusion that ANFIS can classify
HS signals. In other words, Table 4 indicates that ANFIS is
a successful classifier on PhysioNet, but it also indicates that
there is requirement to increase the number of HS’ attributes
(i.e. features) to obtain close results. Increasing the number
of input parameters, or collaborating ANFIS with other types
of neural networks, may improve the performance. These are
prospective research.

Figure 7 shows the receiver operating characteristics
(ROC) describing the accumulative performance of the sug-
gested framework (Figure 1), based on adjusting the ANFIS
operating parameters.

In literature, many participations in PhysioNet-challenge
2016 were reported, addressing different types of neural
networks and classifiers. Table 5 summarizes these main
attempts, to best of our knowledge. It shows the author’s
group, technical features (i.e. methodology), features’ num-
ber, neural network/classifier type, and overall accuracy.
Generally, authors focused on objectives to enhance HS sig-
nals, select group of features, and apply a classifier. The
wavelet domain was attracting for some authors [8], [30],
and [36]. They used resampled wavelet envelope features,
wavelet entropy, wavelet-based deep convolutional neu-
ral network (CNN), and spectral features. For this group,
the SVM showed an accuracy ranging between 77-88.9%.
The second group of authors was interested in Hidden
Markov Model combined with some statistical features [31]
and [37]. They reported accuracy in range of 79-82%.
Third group attempted to extract features using the spectro-
gram method [32] and [35]. They employed classifiers like
SVM, CNN, and Logistic Regression (LR). These attempts
achieved accuracy of 68-81%. Other researchers attempted
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TABLE 5. Literature Summary on Physio-Net Challenge 2016.

the dynamic time warping (DTW) linked withMel-frequency
cepstral coefficients (MFCC) [14] and [33]. The DTW fea-
tures were fed to SVM (training rule 1) and 20 feed forward
neural networks (training rule 2). They recorded the high-
est accuracy in comparison to other attempts, they reported
accuracy in the range of 82-91.5%. Finally, the fifth group
attempted time-domain and frequency-domain features, they
recorded accuracy of 86-88% [34].

Table 5 shows that the suggested framework has pro-
duced close performance to other neural network techniques.
Considering the fact that this performance was achieved with
only four features, whereas all other attempts had used at
least 13 features to achieve accuracy in the range of 68-91.5%
(63-89% in this paper), this arises that the proposed frame-
work has exhibited signs of success. Thus, ANFIS can suc-
cessfully participate in the PhysioNet challenge. This is the
first contribution in this paper. It may team up with other
neural networks.

On the other hand, we have selected 1837 samples.
We chose the samples from Normal and Abnormal
sub-folders in each class A, B, and E. We avoided the
‘‘Unsure’’ sub-folder in each class since the aim of this
paper is to preliminary test ANFIS and HOS as new

framework proposal. The administration of PhysioNet stip-
ulated that some of the HS are difficult or even impossible to
classify into normal or pathological condition [6].We avoided
HS signals that contain emergency voices from probably
external environment (i.e. uncontrolled voices that can be
heard during the recording), using our hearing skills being
as biomedical engineers. If we had included all signals,
the performance would have dropped. However, this is the
situation with all attempts by various research institutes who
had employed part of the available signals (i.e. less than
1000 samples) such as references [8], [30], [33], [38], as seen
in Table 5. However, some techniques in Table 5 employed
more than 3000 HS signals [14], [31], [34]–[37]; they had
attempted some of these difficult signals, but they needed
to explore high number of input parameters in the range of
13-124 different signal attributes. Thus, they reported better
reliable performance than ANFIS, but this would not affect
the suggestive capability of ANFIS to classify signals after
training, particularly if the number of features was increased
(e.g. more than 4 features).

Two other contributions can be concluded. First, the HOS
features are possible parameters to be fed into medical deci-
sion support system for HS classification. There are other
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features such as skewness and kurtosis. Second, the bispectral
matrix, in Figure 5, is a new presentation of HS signal’s
features. It presents the real and imaginary components of
frequency constituents of the HS signal. We used only HOS
attributes. Thematrixmay be used to extract further attributes
describing HS signal such as co-occurrence matrices andmay
some of them capable to discern abnormal from normal HS
signals. Those two contributions are subject for prospective
research.

In summary, this paper is the first attempt to introduce
ANFIS with four HOS features, extracted from new presenta-
tion of real and imaginary parts of HS’ frequency constituents
(i.e. bispectral matrix), as a possible framework to classify the
HS international PhysioNet challenge signals, and profitably
showed its capability on 1837 HS signals. Increasing number
of input parameters, or collaborating ANFIS with other types
of neural networks, would further sustain the findings in this
paper.

V. CONCLUSION
This paper attempted to distinguish normal from abnor-
mal HS signals available in PhysioNet-challenge 2016. The
method collaborated Butterworth filtering, DFT, HOS spec-
tral analysis presented as bispectral matrix, and ANFIS arti-
ficial intelligence technique. The framework was applied
to 1837 samples from three different groups of HS signals
in PhysioNet dataset. The suggested framework achieved
63-89% accuracy, indicating suggestive promising outcomes
in comparison with other techniques attempting the challenge
but on lower number of samples. It is a preliminary first
attempt to utilize ANFIS on 1837 samples in contrast to other
investigations, in which researchers utilized all HS samples
(3126), or utilized more features and other sophisticated
classifiers [37].

REFERENCES
[1] World Health Organization. Media Centre-Cardiovascular Diseases

(CVDs) Fact Sheet. Accessed: May 1, 2017. [Online]. Available:
http://www.who.int/mediacentre/factsheets/fs317/en/

[2] D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha,
M. Cushman, S. De Ferranti, J. P. Després, H. J. Fullerton, V. J. Howard,
and M. D. Huffman, ‘‘Executive summary: Heart disease and stroke
statistics—2015 update: A report from the American Heart Association,’’
Circulation, vol. 131, no. 4, pp. 434–441, 2015.

[3] L. H. Schwamm, N. Chumbler, E. Brown, G. C. Fonarow, D. Berube,
K. Nystrom, R. Suter, M. Zavala, D. Polsky, K. Radhakrishnan,
N. Lacktman, K. Horton, M.-B. Malcarney, J. Halamka, and A. C. Tiner,
‘‘Recommendations for the implementation of telehealth in cardiovascular
and stroke care: A policy statement from the American Heart Association,’’
Circulation, vol. 135, no. 7, pp. e24–e44, Feb. 2017.

[4] A. N. Pelech, ‘‘The physiology of cardiac auscultation,’’ Pediatric Clinics
North Amer., vol. 51, no. 6, pp. 1515–1535, Dec. 2004.

[5] D. S. Gerbarg, A. Taranta, M. Spagnuolo, and J. J. Hofler, ‘‘Computer
analysis of phonocardiograms,’’ Prog. Cardiovascular Diseases, vol. 5,
no. 4, pp. 393–405, Jan. 1963.

[6] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells,
J. M. Roig, I. Silva, A. E. Johnson, and Z. Syed, ‘‘An open access database
for the evaluation of heart sound algorithms,’’ Physiol. Meas., vol. 37,
no. 12, p. 2181, 2016.

[7] D. Kumar, R. Jadeja, and S. Pande, ‘‘Wavelet bispectrum-based nonlinear
features for cardiac murmur identification,’’ Cogent Eng., vol. 5, no. 1,
Jul. 2018, Art. no. 1502906.

[8] P. Langley and A. Murray, ‘‘Abnormal heart sounds detected from short
duration unsegmented phonocardiograms by wavelet entropy,’’ in Proc.
Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 545–548.

[9] M. N. Homsi and P. Warrick, ‘‘Ensemble methods with outliers for phono-
cardiogram classification,’’ Physiological Meas., vol. 38, no. 8, p. 1631,
2017.

[10] V. Maknickas and A. Maknickas, ‘‘Recognition of normal-abnormal
phonocardiographic signals using deep convolutional neural networks and
mel-frequency spectral coefficients,’’ Physiological Meas., vol. 38, no. 8,
p. 1671, 2017.

[11] E. Kay and A. Agarwal, ‘‘DropConnected neural networks trained on time-
frequency and inter-beat features for classifying heart sounds,’’ Physiolog-
ical Meas., vol. 38, no. 8, p. 1645, 2017.

[12] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, ‘‘Ensemble of feature:
Based and deep learning: Based classifiers for detection of abnormal heart
sounds,’’ in Proc. Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 621–624.

[13] I. Diaz Bobillo, ‘‘A tensor approach to heart sound classification,’’ in Proc.
Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 629–632.

[14] M. Zabihi, A. Bahrami Rad, S. Kiranyaz, M. Gabbouj, and
A. K. Katsaggelos, ‘‘Heart sound anomaly and quality detection using
ensemble of neural networks without segmentation,’’ in Proc. Comput.
Cardiol. Conf. (CinC), Sep. 2016, pp. 613–616.

[15] F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli, and F. Scaglione, ‘‘Auto-
matic heart activity diagnosis based on gram polynomials and probabilistic
neural networks,’’ Biomed. Eng. Lett., vol. 8, no. 1, pp. 77–85, Feb. 2018.

[16] M. Gjoreski, A. Gradisek, B. Budna, M. Gams, and G. Poglajen, ‘‘Machine
learning and End-to-End deep learning for the detection of chronic heart
failure from heart sounds,’’ IEEE Access, vol. 8, pp. 20313–20324, 2020.

[17] A. F. Quiceno-Manrique, J. I. Godino-Llorente, M. Blanco-Velasco, and
G. Castellanos-Dominguez, ‘‘Selection of dynamic features based on time–
frequency representations for heart murmur detection from phonocardio-
graphic signals,’’Ann. Biomed. Eng., vol. 38, no. 1, pp. 118–137, Jan. 2010.

[18] S. A. Pavlopoulos, A. C. Stasis, and E. N. Loukis, ‘‘A decision tree–
based method for the differential diagnosis of aortic stenosis from mitral
regurgitation using heart sounds,’’ Biomed. Eng. OnLine, vol. 3, no. 1,
p. 21, Dec. 2004.

[19] J. Li, L. Ke, Q. Du, X. Ding, X. Chen, and D. Wang, ‘‘Heart sound
signal classification algorithm: A combination of wavelet scattering
transform and twin support vector machine,’’ IEEE Access, vol. 7,
pp. 179339–179348, 2019.

[20] W. Zhang, J. Han, and S. Deng, ‘‘Heart sound classification based on
scaled spectrogram and tensor decomposition,’’ Expert Syst. Appl., vol. 84,
pp. 220–231, Oct. 2017.

[21] J. K. Paul, T. Iype, D. R, Y. Hagiwara, J. W. Koh, and U. R. Acharya,
‘‘Characterization of fibromyalgia using sleep EEG signals with non-
linear dynamical features,’’ Comput. Biol. Med., vol. 111, Aug. 2019,
Art. no. 103331.

[22] C. L. Nikias and J. M. Mendel, ‘‘Signal processing with higher-order
spectra,’’ IEEE Signal Process. Mag., vol. 10, no. 3, pp. 10–37, Jul. 1993.

[23] S. A. Taplidou and L. J. Hadjileontiadis, ‘‘Nonlinear analysis of heart
murmurs using wavelet-based higher-order spectral parameters,’’ in Proc.
Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2006, pp. 4502–4505.

[24] G. Bianchi and R. Sorrentino, Electronic Filter Simulation & Design.
New York, NY, USA: McGraw-Hill, 2007.

[25] J. M. Mendel, ‘‘Tutorial on higher-order statistics (spectra) in signal pro-
cessing and system theory: Theoretical results and some applications,’’
Proc. IEEE, vol. 79, no. 3, pp. 278–305, Mar. 1991.

[26] E. Bou Assi, L. Gagliano, S. Rihana, D. K. Nguyen, and M. Sawan,
‘‘Bispectrum features and multilayer perceptron classifier to enhance
seizure prediction,’’ Sci. Rep., vol. 8, no. 1, pp. 1–8, Dec. 2018.

[27] K. Hasselmann, W. Munk, and G. MacDonald, Bispectra of Ocean Waves
(Time Series Analysis), M. Rosenblatt, Ed. New York, NY, USA: Wiley,
1963, pp. 125–139.

[28] A. Sengur, ‘‘An expert system based on linear discriminant analysis and
adaptive neuro-fuzzy inference system to diagnosis heart valve diseases,’’
Expert Syst. Appl., vol. 35, nos. 1–2, pp. 214–222, Jul. 2008.

[29] B. Al-Naami, M. Abu Mallouh, and A. A. Kheshman, ‘‘Automated intel-
ligent diagnostic of alzheimer disease based on neuro-fuzzy system and
discrete wavelet transform,’’ Biomed. Eng., Appl., Basis Commun., vol. 26,
no. 3, Jun. 2014, Art. no. 1450035.

[30] M. A. Goda and P. Hajas, ‘‘Morphological determination of pathological
PCG signals by time and frequency domain analysis,’’ in Proc. Comput.
Cardiol. Conf. (CinC), Sep. 2016, pp. 1133–1136.

224858 VOLUME 8, 2020



B. Al-Naami et al.: Framework Classification of HS Signals in PhysioNet Challenge 2016

[31] I. Grzegorczyk, M. Solinski, M. Lepek, A. Perka, J. Rosinski, J. Rymko,
K. Stepien, and J. Gieraltowski, ‘‘PCG classification using a neural net-
work approach,’’ in Proc. Comput. Cardiol. Conf. (CinC), Sep. 2016,
pp. 1129–1132.

[32] T. Nilanon, S. Purushotham, and Y. Liu, ‘‘Normal/abnormal heart sound
recordings classification using convolutional neural network,’’ in Proc.
Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 585–588.

[33] J. J. Gonzalez Ortiz, C. P. Phoo, and J. Wiens, ‘‘Heart sound classification
based on temporal alignment techniques,’’ in Proc. Comput. Cardiol. Conf.
(CinC), Sep. 2016, pp. 589–592.

[34] J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and
K. Sricharan, ‘‘Classifying heart sound recordings using deep
convolutional neural networks and mel: Frequency cepstral coefficients,’’
in Proc. Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 813–816.

[35] N. Singh-Miller and N. Singh-Miller, ‘‘Using spectral acoustic features to
identify abnormal heart sounds,’’ in Proc. Comput. Cardiol. Conf. (CinC),
Sep. 2016, pp. 557–560.

[36] M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, and T. Wiatowski,
‘‘Heart sound classification using deep structured features,’’ in Proc. Com-
put. Cardiol. Conf. (CinC), Sep. 2016, pp. 565–568.

[37] S. Vernekar, S. Nair, D. Vijayasenan, and R. Ranjan, ‘‘A novel approach
for classification of Normal/Abnormal phonocardiogram recordings using
temporal signal analysis and machine learning,’’ in Proc. Comput. Cardiol.
Conf. (CinC), Sep. 2016, pp. 1141–1144.

[38] M. Nabhan Homsi, N. Medina, M. Hernandez, N. Quintero, G. Perpinan,
A. Quintana, and P. Warrick, ‘‘Automatic heart sound recording classifica-
tion using a nested set of ensemble algorithms,’’ in Proc. Comput. Cardiol.
Conf. (CinC), Sep. 2016, pp. 817–820.

BASSAM AL-NAAMI received the Ph.D. degree
in medical electronics and ergonomics from Saint
Petersburg Electrotechnical University, Russia,
in 2000, and the High Diploma (five years
degree) in biomedical engineering from Stavropol
State Technical University, Russia, in 1997. From
2001 to 2003, he was a Visiting Researcher
with the School of Engineering and Information
Technology, University of Sussex, Brighton, U.K.
In 2003, he joined the Department of Biomedical

Engineering, The Hashemite University, Zarqa, Jordan, where he is currently
an Associate Professor. Since 2019, he has been an Adjunct Professor
with the BME Department and an Active Member of Pharmacological and
Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jor-
dan. He has multi-disciplinary research experience and background, includ-
ing signal and image processing, CAD, biomedical instrumentation, and
ergonomics of virtual reality systems and haptic devices in medicine and
manufacturing applications. He authored/coauthored more than 25 journal
and conference papers. He was honored for his outstanding contribution in
reviewing awarded by Elsevier and Springer Nature publishers, and honored
by The Hashemite University for Excellence in Scientific Research, in 2013.
He is an Associate Editor of the journal of BMC Research Notes (Springer
Nature), U.K. He also acted as a reviewer for more than 30 ISI-indexed
international journals and a member of TPC for more than 25 conferences.

HOSSAM FRAIHAT was born in Algiers, Algeria,
in 1985. He received the B.S. degree in electronics
and communications engineering from USTHB
University, Algeria, in 2008, the M.Sc. degree in
design implementation and quality of electronic
and optoelectronic components from the Univer-
sity of Nantes, France, in 2010, and the Ph.D.
degree in signal, images, and automatic from the
University of Paris-Est, France, in 2018. He is
currently working with Al-Ahliyya Amman Uni-

versity, Jordan. He has published several scientific articles related to visual
perception, saliency object 3D, face recognition using machine learning,
and fuzzy logic. His research interests include computer vision and machine
learning.

NASR Y. GHARAIBEH was born in Irbid, Jor-
dan, in 1959. He received the M.Sc. and Ph.D.
degrees in biomedical engineering from Saint
Petersburg Electrotechnical State University, Rus-
sia, in 1984 and 2000, respectively. He is currently
working with Al-Balqa Applied University, Jor-
dan. He published several scientific articles related
to eye fundus image analysis for the purpose of
detection and classification of diabetic retinopa-
thy. His research interest includes the analysis of
medical image.

ABDEL-RAZZAK M. AL-HINNAWI was born
in Damascus, Syria, in 1968. He received the
B.S. degree in biomedical engineering from Dam-
ascus University, in 1991, and the M.Sc. and
Ph.D. degrees in medical imaging science from
the University of Aberdeen, U.K., in 1995 and
1999, respectively. Since 1999, he has been work-
ing as an Assistant and Associate Professor with
the biomedical engineering and medical imaging
departments at the universities in Jordan and Syria.

He is currently an Associate Professor with Isra University, Jordan. He has
authored several SCOPUS/ISI international articles and one e-chapter. His
research interest includes quantitative analysis of medical images and 3D
visualization.

VOLUME 8, 2020 224859


