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ABSTRACT Although EDF (Earliest Deadline First) algorithm has received extensive study during the past
more than 40 years, only a few researchers have published their efforts on the bandwidth transfer between
tasks. If current running tasks are compressed to free part of their occupied bandwidth to accommodate new
requirements, such as a new task’s insertion, then a basic requirement of this operation is smoothness, that
is, no deadline should be missed. Suppose current tasks are immediately compressed at the request time
of the new task, in order to guarantee the smoothness, the new task may have to be released later than the
request time. An interesting and challenging problem is to find the earliest smooth release time. In this paper,
an algorithm to evaluate the earliest release time for single task’s insertion is presented and formally proved.
To finish the algorithm, only the deadlines during the transition should be checked, and each of them needs
to be checked at most once. A novel experimental approach is adopted and more than 4549320 different tests
are implemented to verify the theorems in simulation.

INDEX TERMS Bandwidth transfer, deadline points, earliest smooth insertion time, transition, 1 check.

I. INTRODUCTION
Bandwidth transfer and reallocation are often unavoidable in
bandwidth limited applications. Consider an Internet network
channel. If the bandwidth of the channel is shared by a few
users, the Internet may seem very fast. When new consumers
request access to the network through the same channel,
one or more current users have to free part of their bandwidth.

In embedded devices with limited energy, a low operating
frequency is usually selected under a light load condition. The
frequency may be raised when the load becomes heavier to
meet the time constraints of the system tasks. If a new and
urgent task requests to come into a system that is already
100% loaded at the highest frequency, then transferring a cer-
tain percentage of the bandwidth from less important current
(or old) tasks to the new one is a reasonable decision.

In fact, bandwidth transfer is also worth considering even
if the operating frequency is not the highest and the load is not
100%. Suppose the system runs at a frequency f1 and it is sure
that there will be a deadline loss due to the insertion of a new
task. One possible choice to avoid the loss is to increase the
frequency from f1. Another option is to reduce the bandwidth
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occupied by old tasks and the operating frequency remains
unchanged.

In this paper, the bandwidth transfer based on the EDF
(Earliest Deadline First) algorithm in real-time applications
is discussed [1]. One or more running tasks are compressed
to meet the new bandwidth requirements that come from the
acceleration of other current tasks and/or the insertion of
new tasks [2]. The compression means a task′s period is pro-
longed while its computation time remains unchanged, thus
its occupied bandwidth (or utilization) is decreased. On the
contrary, to accelerate a task is to shorten its period. It is
proved that the acceleration of a current task can be treated as
the insertion of an equivalent new task [3]. Therefore, as for
as new requirements, we need to discuss the insertion only.

New tasks′ insertion can be categorized into the mode-
change problem [4]–[7]. It has three stages as shown in
FIGURE 1: the old mode starting from toldb, the transition
process from tr and the new mode from tnewb. The request of
the insertion occurs at tr and certain current tasks start to be
compressed.

If new tasks are inserted at tr immediately, it is known
that deadline missing may occur even though the sum of the
utilizations of all the tasks, called the total utilization or total
bandwidth, does not exceed one [2], [3]. In [8] and [9], it is
proved that deadline missing is only possible during the time
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FIGURE 1. Three stages of a mode-change.

interval [d ′min,d
′
max) that is part of the transition, where d ′min

and d ′max represent the earliest and the latest deadline of the
current instances of all the old tasks, respectively.
∀t ≥ tr , if new tasks are released at t without causing any

deadline missing afterwards, then t is called a smooth inser-
tion time (or smooth release time), denoted by δ. Obviously,
finding the earliest smooth insertion time, denoted by δearliest ,
is significant and challenging.

A concise formula for calculating δearliest is given in [3],
but it is not guaranteed to be δearliest . One obvious way to
get δearliest is to do multiple rounds of deadline checks. First
we assume δearliest = tr and check every deadline from d ′min
to d ′max . If deadline missing is impossible, then we conclude
that δearliest is really equal to tr and nomore check is required;
otherwise we need next round of deadline checking with the
assumption

δearliest = δearliest + timestep. (1)

The timestep is the increment of the release time of the
new task from the current round to the next. The Smart way
presented in [8] shows that the timestep can be greater than
one time unit in some cases so that the real δearliest can be
reached quickly. However, each deadline point in [d ′min,d

′
max)

may need to be checked multiple times, even if there is only
one new task.
Paper Contributions: (i).To get the real δearliest for the

insertion of a new task, an advanced algorithm, denoted as
ESITforSNT (Earliest Smooth Insertion Time for Single New
Task), is presented and proved. With ESITforSNT, the dead-
lines of the tasks in the region [d ′min,d

′
max) need to be checked

at most once. This is much smaller than that from the Smart
way in many situations. (ii).To verify the correctness of the
new algorithm, a novel approach is shown in simulation.
Firstly, every experimental task set with its total bandwidth
exactly equal to 100% is carefully chosen so that every logical
branch in ESITforSNT can be tested, and these task sets may
be referenced for other researchers in the future. Secondly,
an offline iteration algorithm that is obviously correct, though
time-consuming, is used for comparison. It shows that the
offline algorithm and ESITforSNT produce the same δearliest
value in every test.
Paper Structure: Section II covers the review of the

descriptions of tasks′ compression. A delaying rule is intro-
duced and an example is provided. Section III presents
Theorem 2 and 3, based onwhichESITforSNT is designed for
calculating δearliest . Section IV shows the novel experimental
approach and the simulation results. Section V discusses the
related work and Section VI concludes the paper.

FIGURE 2. The compression of task set M.

II. SYSTEM MODULE AND AN EXAMPLE
Multiple tasks′ compression and the calculation of the proces-
sor demands of system tasks after compression are recalled
in this section [3], [8], [9]. A delaying rule is proposed as the
basic means for approaching δearliest . An example is provided
to help in understanding relevant theories. The main symbols
used in this paper are summarized in Appendix A.

A. MULTIPLE TASKS’ COMPRESSION
As shown in FIGURE 2, the system has m current tasks that
form a task set M . ∀τi(Ci,Ti) ∈ M , i ∈ (0, 1, · · · ,m − 1),
it has its computation time Ci, period Ti, and utilization
Ui = Ci/Ti. The starting point of its current period is ti.
At tr , new tasks are requested to be inserted and thus τi is
compressed. Its period increases to T ′i from Ti and utilization
decreases to U ′i = Ci/T ′i . Its remaining computation of the
current instance is ci(tr ). The total freed bandwidth from the
compression of the tasks in M is equal to

∑m−1
0 (Ui − U ′i ).

Suppose new tasks constitute a subset J and they are
inserted into the system at the same time. The sum of the
utilizations of the tasks in J is denoted as UJ , and rJ is
introduced to represent the release time of their first instances,
rJ ≥ tr . In order to keep the system schedulable in the new
mode, it is assumed that

UJ ≤
∑m−1

0
(Ui − U ′i ). (2)

For the convenience of the associated descriptions, d ′min
and d ′max are introduced to represent the earliest deadline and
the latest deadline of all the current instances of the tasks in
M after compression, respectively, that is,

d ′min = min{t0 + T ′0, t1 + T
′

1, · · · , tm−1 + T
′

m−1}, and

d ′max = max{t0 + T ′0, t1 + T
′

1, · · · , tm−1 + T
′

m−1}.

As described above, deadline missing is only possible
during [d ′min,d

′
max), which is proved in [8] and [9]. [8] is in

English while [9] is in Chinese.
For the convenience of literature indexing, it is better to list

several important assumptions of the systemmodel studied in
this paper:
• Every task is periodic and scheduled in one processor.
Every instance has an implicit deadline.
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• The computation time of every instance of a task remains
unchanged.

• Every old task is released at toldb and runs to d ′max (or
after this time point) without pausing.

• The total bandwidth (or total utilization) of the tasks
in the system is exactly 100%, both before and after
compression.

• The bandwidth transferred from the compression equals
that required by new tasks.

B. PROCESSOR DEMANDS AFTER COMPRESSION
The proof of subsequent theorems relies on the processor
demand criterion [10], [11]. With the problem of compres-
sion, we can evaluate the processor demand of each task from
tr on.
∀t ≥ tr , the processor demand of task τx(Cx ,Tx) in [tr , t]

is labelled with Dx(tr , t). The sum of the processor demands
of all the tasks in J and M are indicated with DJ (tr , t) and
DM (tr , t), respectively. The sum of DJ (tr , t) and DM (tr , t) is
called the total processor demand, denoted as Dtotal(tr , t).
Then, 1(tr , t) = Dtotal(tr , t) − (t − tr ) is introduced.

According to the processor demand criterion, the deadlines
at t are met if and only if1(tr , t) is less than or equal to zero.
Checking whether1(tr , t) is greater than zero or not is called
a 1 check . 1(tr , t) is the value of the 1 check.

The processor demand of new tasks can be calculated with

DJ (tr , t) =
∑
τj∈J

⌊ t − rJ
Tj

⌋
Cj. (3)

The processor demand of the compressed task τi should be
computed with

Di(tr , t) =


0, if t < ti + T ′i .

ci(tr )+
⌊ t − ti − T ′i

T ′i

⌋
Ci, if t ≥ ti + T ′i .

(4)

From tr to ti + T ′i , the deadline point ti + T ′i of τi is met
only if τi is assigned the processor time equal to ci(tr ), thus
its processor demand equals ci(tr ) in this interval.

C. A DELAYING RULE
With (3) and (4), the important Theorem 1 is presented and
proved in [8].
Theorem 1: With compressing the task set M, suppose that

new tasks are released from rJ and deadline missing occurs at
a time tx in [d ′min,d

′
max), then the insertion should be delayed

and we must have

δearliest ≥ rJ +1(tr , tx). (5)

That is, the delayed insertion becomes possibly smooth only
when the release time is delayed by not less than the value of
the 1 check at tx .

In the following descriptions, a task in the task set M
shown as in FIGURE 2 is called a M task. Now we give the
definitions of deadline points and an important delaying rule
based on Theorem 1.

Definition 1 (Deadline Points): A time point when at least
one deadline of task instances occurs is called a deadline
point. A M task deadline point refers to a time when there
is at least one deadline of M task instances. Comparatively,
if a deadline of an instance of any new task occurs, then we
have a new task deadline point. If some deadlines of different
tasks take an identical time value, then this time point is called
an overlapped deadline point.
Definition 2 (Delaying Rule): According to Theorem 1,

if the1 check value1(tr , tx) is greater than zero at a deadline
point tx ,then δearliest will not be earlier than rJ + 1(tr , tx).
Therefore, rJ should be delayed to rJ +1(tr , tx). If tx is a M
task deadline point, then it is necessary to do the 1 check at
tx again with the delayed rJ . If tx is a new task deadline point
that moves with the delaying of rJ , then tx = tx + 1(tr , tx)
should be checked. This type of check with tx may take many
times to get 1(tr , tx) ≤ 0. This approach of check and delay
and recheck until 1(tr , tx) ≤ 0 is defined as the delaying
rule. Also, it is declared that tx passes its1 check as soon as
1(tr , tx) ≤ 0 becomes true.
To get δearliest using the delaying rule, we start the1 check

with rJ = tr and tx = d ′min. Once every deadline point in the
region [d ′min,d

′
max) passes its 1 check, then the newest rJ is

the real δearliest .
If 1(tr , tx) > 0, it can be seen from the delaying rule that

the greater the value of1(tr , tx) is, the more delay the rJ will
have, then the fewer checks are required for δearliest . This is
the major contribution of Theorem 1.

D. AN EXAMPLE
An example in FIGURE 3 is demonstrated to show the use of
the delaying rule to evaluate δearliest . If there is only one new
task τj(Cj,Tj), rj is used to indicate its release time. In this
figure, before tr = 8, the system has two tasks: τ0(8, 16)
and τ1(8, 16). The total utilization equals one. After tr , T1
keeps unchanged, but the period of τ0 is prolonged from 16 to
32 thus a bandwidth of 1/4 is transferred to the new task
τj(1, 4). The total utilization remains 100%. It is easy to see
d ′min = T ′1 = 16 and d ′max = T ′0 = 32.
If the new task is released at rj = tr = 8 as shown in

FIGURE 3(a), the deadline point d ′min = 16 can not pass its
1 check for the first time because the value of this 1 check
is

1(tr , 16) = Dtotal(tr , 16)− (16− tr )
= Dtotal(8, 16)− 8
= D0(8, 16)+ D1(8, 16)+ Dj(8, 16)− 8

= 0+ c1(tr )+ b
16− rj
Tj
cCj − 8 = 8+ 2− 8 = 2.

According to the delaying rule, rj = rj + 1(tr , 16) = 10
is implemented as shown in FIGURE 3(b) and we do the 1
check again. Unfortunately, d ′min does not pass its second 1
check due to

1(tr , 16) = 0+ c1(tr )+ b
16− 10
Tj
cCj − 8

= 0+ 8+ 1− 8 = 1.
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FIGURE 3. An example using the delaying rule.

In this way, further delay is needed. The consecutive
checks are as follows:

• The third 1 check: rj = 11, 1(tr , 16) = 1.
• The fourth 1 check: rj = 12, 1(tr , 16) = 1.
• The fifth 1 check: rj = 13, 1(tr , 16) = 0.

That is to say, five 1 checks in total have to be done at
d ′min. Then four deadlines of the new task have to be checked
to get the real δearliest by Smart way: t = 17, t = 21, t = 25
and t = 29. It is easy to see that each of the four deadlines
will pass its 1 check for the first time, thus rj will not be
delayed further. Therefore, nine 1 checks are needed to get
δearliest = 13 totally. Using the new algorithm ESITforSNT
presented in the next section, however, only one 1 check is
enough to reach δearliest = 13.

III. NEW THEOREMS AND ESITforSNT ALGORITHM
Although the number of the times of the required 1 checks
may be reduced by Theorem 1, a deadline point in [d ′min,d

′
max)

may need to be checked multiple times even if there is only
one new task. In this section, new theorems are presented
and proved for single new task′s insertion, with which every
M task deadline point needs to be checked only once to

get δearliest . Based on these theorems, an advanced algorithm,
called ESITforSNT, is provided.

A. NEW THEOREMS
In Figure 3(a), d ′min = 16, d ′max = 32, and there is only oneM
task deadline point in [d ′min,d

′
max). But the new task has four

deadline points: t = 16, t = 20, t = 24 and t = 28. Note that
these points of the new task will also shift with the delaying
of rj.

Based on Theorem 1, we should not only check the M
task deadline points in [d ′min,d

′
max), but also check the new

task deadline points. Fortunately, this can be simplified with
Theorem 2 and 3.
Theorem 2 (Criterion 1): With compressing the task set

M for the insertion of single new task τj(Cj,Tj) under EDF,
the release time of τj is labeled by rj. In [d ′min, d

′
max), sup-

pose that the set M has n deadline points: d ′M (0), d
′

M (1), · · · ,

and d ′M (n−1). They are arranged in ascending order, that
is,

d ′M (0) < d ′M (1) < · · · < d ′M (n−1) < d ′max .

Apparently, d ′M (0) = d ′min. Let d
′

M (n) = d ′max . ∀k ∈
(0, 1, · · · , n − 1), in (d ′M (k), d

′

M (k+1)), assume that the first
deadline point (if any) of τj is dj(k)(0).
Then, if d ′M (k) and dj(k)(0) pass their 1 checks, other dead-

line points (if any) in (d ′M (k), d
′

M (k+1)) will also pass their 1
checks.

Proof: See Appendix B.
Multiple new task deadline points may exist in the region

(d ′M (k),d
′

M (k+1)). Theorem 2 declares that if the first one
passes its 1 check, then the rest of them will. As a result,
every deadline point of M tasks and some deadline points
of the new task in [d ′min,d

′
max) should be checked to obtain

δearliest . Theorem 3 will indicate that these points should be
checked at most once.

Take the FIGURE 3(a) as an example. It can be seen that
n = 1. We need to check the only deadline point of the M
tasks at t = 16 and the first deadline point of τj at t = 20
in the region [16,32). It is not necessary to check any other
deadline points. Note that the point at t = 16 is an overlapped
one since both a M task and the new task have a deadline at
this point.
Theorem 3 (Criterion 2): If there is only one new task τj,

then the deadline points d ′M (k) and dj(k)(0) pass their1 checks
as soon as the current rj is delayed by L(k) (in number of time
units) that is calculated according to the following Case 1 or
Case 2:
Case 1. If 1(tr , d ′M (k)) > 0, then

L(k) = d ′M (k) − (rj +
⌊d ′M (k) − rj

Tj

⌋
Tj)+1(tr , d ′M (k))

+
⌈1(tr , d ′M (k))− Cj

Cj

⌉
(Tj − Cj). (6)
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Case 2. If 1(tr , d ′M (k)) ≤ 0, then

L(k) =

{
0, if 1(tr , dj(k)(0)) ≤ 0.
1(tr , dj(k)(0)), if 1(tr , dj(k)(0)) > 0.

(7)

Proof: See Appendix C.
The CASE 1 of Theorem 3 means that if d ′M (k) does not

pass its 1 check, then the release time rj of the new task
should be delayed by a time amount L(k) given by (6) and
there is no need to check dj(k)(0) any more.
If d ′M (k) pass its 1 check, then we come to the CASE 2 of

Theorem 3. The 1 check of dj(k)(0) must be done and rj is
delayed by (7) according to the 1 check value.
Now we use Theorem 3 to discuss the example of

FIGURE 3. First let rj = tr = 8. Because the 1 check value
1(tr , d ′M (0)) = 1(8, 16) = 2 > 0, by using (6) we have

L(0) = d ′M (0) − (rj +
⌊d ′M (0) − rj

Tj

⌋
Tj)+1(tr , d ′M (0))

+
⌈1(tr , d ′M (0))− Cj

Cj

⌉
(Tj − Cj)

= 16− (8+
⌊16− 8

4

⌋
4)+ 2+

⌈2− 1
1

⌉
(4− 1) = 5.

Thus we get

δearliest = rj + L(0) = 8+ 5 = 13.

This shows that only one1 check is needed to get δearliest .
Remember that nine 1 checks are required with the Smart
way, as described before.
In Theorem 2, when multiple M task deadline points exist

in the region [d ′min,d
′
max), it is assumed that they are sorted

from d ′M (0) to d ′M (n−1) according to the times they appear.
Although this assumption is helpful for the description of
the theorem, sorting causes some overhead. Fortunately,
Lemma 1 declares that δearliest can be calculated without
sorting.
Lemma 1: As for all the M task deadline points in

[d ′min, d
′
max), i.e., d

′

M (0), d
′

M (1), · · · , and d
′

M (n−1), δearliest is
not influenced by the priority order of their 1 checks.

Proof: See Appendix D.

B. ESITforSNT ALGORITHM
Now we start to design a new algorithm, named ESITforSNT,
to calculate δearliest based on Theorem 2 and 3. In [d ′min,d

′
max),

the checking process can be implemented task by task since
queuing deadline points is not necessary from Lemma 1. First
the deadline points of task τ0 are checked: t0 + T ′0, t0 +
2T ′0, · · · , and t0 + pT ′0. Here, p is a positive integer and
t0 + pT ′0 < d ′max . Consequently, τ1, τ2, . . . , and τm−1 will
be checked. If the value of any 1 check is greater than zero,
then rj is updated according to Theorem 3. δearliest takes the
value of rj after all the deadline points are checked.

Overlapped deadline points should be checked only once.
Therefore, it is necessary to introduce an array flag[ ] to mark
whether a deadline point is an overlapped one. A problem is

Algorithm 1 ESITforSNT
The main function:
Input: m, tr , ci(tr ), ti,Ti,T ′i ,Ci,Cj,Tj.
1: Find out d ′min and d

′
max

2: Initialize rj, d ′M [ ],Lseg, tsegend ,mark, and flag[ ]
3: while (tsegend − d ′max < 0) do
4: Create a segment(Lseg, tsegend , tsegstart )
5: mark ++
6: for (i = 0; i < m; i++) do
7: while (rj < d ′M [i] < tsegend ) do
8: posrel = d ′M [i]− tsegstart
9: if (flag[posrel]− mark 6= 0) then
10: rj = deadlinecheck(d ′M [i])
11: flag[posrel] = mark
12: end if
13: d ′M [i] = d ′M [i]+ T ′i
14: end while
15: end for
16: end while
17: δearliest = rj
The sub function deadlinecheck():
Input: d ′M (k) = d ′M [i].
1: calculate Dtotal(tr , d ′M (k)) with (3) and (4)
2: 1(tr , d ′M (k)) = Dtotal(tr , d ′M (k))− (d ′M (k) − tr )
3: if (1(tr , d ′M (k)) > 0) then
4: calculate L(k) with (6)
5: else
6: calculate L(k) with (7)
7: end if
8: rj = rj + L(k)
9: return rj

that if the region [d ′min,d
′
max) is lengthy, then the capacity of

flag[ ] will be too large. To solve this, the region [d ′min,d
′
max)

is divided into segments in the algorithm. We do 1 check-
ing segment by segment and flag[ ] needs to deal with one
segment only. The starting time point, ending point, and
length of a segment are denoted as tsegstart , tsegend and Lseg,
respectively. At the beginning, an initial constant is assigned
to Lseg. Note that the length of the last segment ending with
d ′max may be less than this constant.
In the main function of this algorithm, first d ′min and d

′
max

should be calculated. Then the initialization is implemented
(line 2). rj is initialized with tr . An array d ′M [ ] is introduced to
denoteM task deadlines. ∀τi(Ci,Ti) ∈ M , i ∈ (0, 1, · · · ,m−
1), d ′M [ ] is set to ti + T ′i . In the initialization, an initial
constant LSEG is assigned to Lseg.mark and flag[ ] are cleared,
tsegstart = d ′min. Here, mark is prepared to set the value of the
element in flag[ ].

A segment is built in line 4. If tsegend + LSEG − dmax > 0,
then Lseg = d ′max − tsegend ; otherwise Lseg = LSEG. Next,
tsegend will be added by Lseg and tsegstart = tsegend − Lseg.
In this way, the first segment starts from d ′min and the last one
ends at d ′max .
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All the M tasks are checked within a selected segment
from line 6 to 15. From line 7, a deadline point d ′M [i] is
selected and its position posrel relative to the start of the seg-
ment is calculated, which corresponds to flag[posrel]. If d ′M [i]
is not an overlapped deadline point, then a sub function
deadlinecheck() is called for 1 check and flag[posrel] is
set with the current value of mark that indicates a marked
point to later checks. Theorem 3 is implemented in the sub
function.
The Temporal Complexity: In this algorithm, themost time-

consuming operation is the execution of the sub function
deadlinecheck(). In other words, the time required to fulfill
the algorithm mainly depends on this sub function. When it
is called, (3) and (4) are required to evaluate the processor
demands of the tasks and one or two 1 checks are needed:
first d ′M [k] should be checked and the next is dj(k)(0) if
1(tr , d ′M [k]) ≤ 0. Therefore, it is reasonable to measure the
temporal complexity of the algorithm with the number of the
times of1 checks. Then, howmany1 checkswill be required
to get δearliest? In Theorem 2, it is assumed that the M task
set has n deadline points in [d ′min,d

′
max). Therefore, the worst-

case time complexity of this algorithm is equal to 2n times of
1 checks.

IV. EXPERIMENTS
The purpose of the following experiments is to verify
Theorem 2, 3 and the ESITforSNT algorithm. In these exper-
iments, the release time of all the M tasks is assumed to be
zero, that is, toldb = 0.
The problem is how to implement the verification. A very

simple offline and standard algorithm that is obviously cor-
rect, though time consuming, is used. In every experiment,
the δearliest values from ESITforSNT and from the offline
algorithm are compared. The pseudo code of the standard
algorithm is provided in Algorithm 2.

To start Algorithm 2, first rj = tr is assumed. All the tasks
are scheduled and the system simply runs from tr to d ′max .
If deadline missing occurs after tr , then rj = rj + 1 is done
and the system runs from tr to d ′max again. If no deadline is
missed till d ′max , then the algorithm ends with δearliest = rj.
The correctness of this process is obvious, thus this algorithm
can be used as a standard algorithm. Remember the time
sequence

0 ≤ tr ≤ rj < d ′max .

Let TLCM (0∼m−1) be the least common multiple of the
periods of the M tasks before compression. If tr = 0 and
tr = TLCM (0∼m−1), obviously, the new task can be smoothly
inserted immediately at tr . Therefore, for a set of M tasks,
we only do the experiments with the cases from tr = 1 to
tr = TLCM (0∼m−1) − 1. With each case, we compare the
δearliest value obtained from ESITforSNT with that from the
standard algorithm.

For the convenience of describing a bandwidth transfer
process, Definition 3 is provided first.

Algorithm 2 Offline or Standard Algorithm
The main function:
Input: m, tr , ci(tr ), ti,Ti,T ′i ,Ci,Cj,Tj.
1: Find out d ′max
2: Schedule M tasks from t = 0 to tr
3: Compress M tasks and set rj = tr
4: loop:
5: Schedule M tasks from t = tr to rj
6: Schedule M tasks and τj from t = rj to d ′max
7: if(deadline missing occurs) then
8: rj ++
9: go to loop
10: end if
11: δearliest = rj

TABLE 1. A configuration of tasks in experiments.

Definition 3 (Freed Bandwidth Ratio): The Freed band-
width ratio from aM task τi(Ci,Ti) is defined as (Ui−U ′i )/Ui,
denoted as pfreed(i).

In the experiments, tasks are configured mainly depending
on pfreed(i). TABLE 1 is an initial configuration of task param-
eters. The new task is τj(3, 5) with a bandwidth Uj = 0.6.
There are four tasks in the M task set in total: τ0, τ1, τ2 and
τ3. Before compression, we have U1 = 0.4 and U2 = 0.4.
After compression, each of the two tasks frees its bandwidth
according to a ratio of 0.75, that is, pfreed(1) = pfreed(2) =
0.75.
In TABLE 1, τ0 and τ3 does not transfer any bandwidth,

that is, pfreed(0) = pfreed(3) = 0.
Then, we get the bandwidth Uj of the new task with an

expression, called the bandwidth allocation expression:

Uj = pfreed(0)U0 + pfreed(1)U1

+ pfreed(2)U2 + pfreed(3)U3

= 0× U0 + 0.75× U1 + 0.75× U2 + 0× U3 = 0.6.

The period T0 of τ0 takes 201 integer values from 50 to
250. Accordingly, C0 has 201 integer values.

For τ3, its period T3 takes the value of the least common
multiple of T0,T1 and T2, denoted as TLCM (0∼2). The values
of C3 and C0 are calculated as follows:

C0 = b0.195× T0c, and

C3 = (1− (
C0

T0
+
C1

T1
+
C2

T2
))× T3.

In this way, U0 + U3 = 0.2 is guaranteed.
The total number of the M task sets generated from

TABLE 1 is 201. These task sets are listed in TABLE 2.
Now we give the reasons for the above configuration:
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TABLE 2. The 201 M task sets from TABLE 1.

• The bandwidth of τ3 is very small (about 0.005). It is
used together with τ0 to produce U0 + U3 = 0.2 so
that both

∑
U and

∑
U ′(the total bandwidths before

and after compression) are exactly equal to 1. Thus
ESITforSNT can be verified under the condition of
exactly 100% load. In addition, we set T3 = TLCM (0∼2)
to produce TLCM (0∼3) = T3, that is to say, the least
common multiple of the periods of all theM tasks is T3.
Thus, the number of the possible values of tr (from 1 to
TLCM (0∼3) − 1) is controllable and not too large.

• τ1 and τ2 are configured with relatively large freed band-
width ratios. Both pfreed(1) and pfreed(2) are 0.75. The
reason for this is that a transfer with large bandwidth
is easy to cause δearliest > tr . This is good for the
verification. With an unreasonable configuration, on the
contrary, there may be fewer or even no cases with
δearliest > tr .

• A relatively short period, Tj = 5, is assigned to the
new task τj. With a constant Uj, the shorter the Tj is,
the greater processor demand the τj has in a given time
region, and the more likely the deadline will be lost.
Therefore, a new task with a short period is used in
simulation.

• τ0 does not transfer any bandwidth and its period is
changeable. Let us compare T0 with T1 and T2. When T0
takes a value in [50,120) (region 1), it has the shortest
value, T0 < T1 < T2. When T0 takes a value in
[120,180) (region 2), it is in the middle, T1 ≤ T0 <

T2. If T0 is in [180,250) (region 3), it is the longest
period, T1 < T2 ≤ T0. No matter which region it is,
many task sets are available to generate three different
types of delay: zero delay with δearliest = tr , the delay
corresponding to the Case 1 of Theorem 3, and the delay
with the Case 2. This is favorable for verification. Here
are several examples:
Three examples in region 1:

T0 = 81, tr = 1, δearliest = 1.

T0 = 90, tr = 328, δearliest = 333(Case 1).

T0 = 90, tr = 321, δearliest = 322(Case 2).

Three examples in region 2:

T0 = 121, tr = 1, δearliest = 1.

T0 = 125, tr = 3575, δearliest = 3581(Case 1).

T0 = 125, tr = 3581, δearliest = 3582(Case 2).

Three examples in region 3:

T0 = 181, tr = 1, δearliest = 1.

T0 = 200, tr = 117, δearliest = 126(Case 1).

T0 = 200, tr = 1906, δearliest = 1907(Case 2).

The Experimental Results: With the 201 different sets of
M tasks, there are 4549320 tests for 4549320 δearliest values.
For a specificM task set, every test is done with a different tr
value. In each test, an identical δearliest value is obtained from
ESITforSNT and from the standard algorithm.
Different task configurations from TABLE 1 are also used

to test ESITforSNT. All the experimental results show that the
above theorems are correct.

V. RELATED WORK
There are many papers related with mode-change prob-
lems [4]–[6]. A mode-change is initiated whenever a
significant change in the internal state or an event from
the environment is detected. The reasons for changing the
operational modes are well listed in [12]. There are four
basic requirements: schedulability, promptness, periodicity,
and consistency [13]. To meet the four basic requirements,
two points have been emphasized by researchers: the protocol
and the offset.
Two major types of protocols are synchronous and asyn-

chronous [12], [14], [15]. With synchronous protocols, new-
mode tasks (allowed to be released after tr ) can not be
released until all the old-mode tasks (only released in the
old mode) have completed their last activations, while with
asynchronous protocols, new-mode and old-mode tasks can
be executed at the same time during the transition process.
A comparison is made between these two [13]. It is pointed
out that synchronous protocols are generally simple and
require no specific schedulability analysis. They do not give
good promptness. Asynchronous protocols, however, often
provide a faster response to mode-change requests, and some
of them provide periodicity. But they need a specific schedu-
lability analysis.
The offset is the time delay a protocol may impose to the

first release of a new-mode task after tr . In this paper, we take
offset= δearliest − tr .
Sometimes the feasibility of a mode-change highly relies

on finding the offset [3], [16]. Some researchers use the offset
in their models or point out that it is important, others try
to find a way to calculate it [5], [13]. In [17], for example,
an asynchronous protocol that uses offsets was provided by
Pedro and Burns, but no way to calculate such offsets is given.
In [13], it is declared that how to calculate the offset is an open
problem and an iterative method based on fixed priorities is
presented. The offsets of new-mode tasks are chosen from
possible maximum values to minimum. If a transition is not
feasible with the selected values, then shorter values are tried
until theminimumvalues for consistency are exactly the same
as those from the previous iteration.
In [18], dynamic voltage scaling with RM (Rate Mono-

tonic) and EDF are studied. From the simulations, Pillai et al.
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note an interesting phenomenon, that is, the dynamic addition
of a task to a task set may cause transient missed deadlines
unless one is very careful. However, the temporal complexity
of such an insertion is not analyzed.

The mode-change based on EDF is also discussed in the
case studies with video streams [16]. An iterative method
is provided to calculate the offset. Given a length of time,
for example 400ms, schedulability is first checked with an
assumed offset = 0. If the system is not schedulable, then the
analysis is performed with different sizes of assumed values
which are chosen by binary search. Analysis stops when the
smallest value is found that makes the system schedulable.
This iterative method depends on the processor demand cri-
terion for EDF. It is not well suitable for use at run-time due to
the logarithmic complexity. Additionally, further studies are
needed to define the length of the transition process and to
find the time region in which deadline missing is possible.

A protocol to handle the admission control is provided
in [19]. The framework can deal with overlapping scheduling
transients and sporadic tasks. But the model of [19] is quite
different from that of this paper in which bandwidth transfer
between tasks is discussed.

Determining task shares on processors are discussed
in [20]. A task has an initial weight (bandwidth). This weight
may be increased or decreased, which means a task can
be accelerated or decelerated actually. However, the earliest
time to start this operation without deadline missing is not
discussed in [20].

Andersson claims that it is unfortunate that the research
literature offers no mode-change protocol and corresponding
schedulability analysis for a processor scheduled by EDF, and
then he presents an analysis for this problem based on a rule
that task τi switches from its old mode to a new mode at the
next release time if the beginning of the current instance is
earlier than tr [12]. This rule is different from the compression
shown in FIGURE 2 of this paper, where τi increases its
period immediately at tr , which is better for promptness.
The most relevant works to the model of this paper are [2],

[3], [8], [9]. Buttazzo et al. present an elastic scheduling
model for the task set based on EDF, in which the compres-
sion, the acceleration, and the insertion are discussed [2],
[21]. An insertion time δ = (ti + Ti)− ci(tr )/Ui is provided.
A deeper research is made by Qian and an earlier smooth time
δ = (ti + Ti)− ci(tr )/(Ui − U ′i ) is proved in [3], but there is
no guarantee for δ = δearliest .
The problem of multiple tasks′ compression is studied

in [8] and [9]. It is proved that deadline missing is only
possible in [d ′min,d

′
max). Theorem 1 is also presented in [8].

This theorem indicates that the time step from the current 1
check to the next may be greater than one so that δearliest can
be reached quickly.

VI. CONCLUSION
In summary, with the bandwidth transfer from multiple peri-
odic tasks scheduled with EDF, the following important
points are shown in this paper:

• Some important conclusions are recalled. For example,
deadline missing is only possible in [d ′min,d

′
max), which

is proved in [8] and [9].
• To get δearliest for inserting a new task with ESITforSNT
algorithm, only one 1 check is needed for each M task
deadline point. Totally supposeM tasks have n deadline
points in [d ′min,d

′
max), then the number of the times of the

1 checks required for δearliest will not be greater than 2n.
• The experiments of the bandwidth transfer are spe-
cially designed. Firstly, a standard algorithm is uti-
lized. Although it is time consuming, its correctness
is obvious. Every experimental δearliest obtained from
ESITforSNT is compared with the one from the stan-
dard. Secondly, effective task sets used in experiments
are configured. In the experiments, configuring task
sets randomly is not a good way for the type of band-
width transfer. Therefore, typical, accurate and well-
selected configurations are adopted and more than
201 task sets are tested. These configurations are not
only effective in the verification of the current theo-
rems, but also convenient for the comparisons in future
studies.

APPENDIX A
SYMBOLS
TABLE 3 lists the main symbols used in this paper.

APPENDIX B
PROOF OF THEOREM 2

Proof: In [d ′M (k),d
′

M (k+1)), d
′

M (k) and the deadline points
of τj should be checked. τj may have more than one deadline
point in this interval. Suppose dj(k)(1) is the second deadline
point of τj. If the 1 check of τj at the first deadline point
dj(k)(0) is passed, then

1(tr , dj(k)(0)) = Dtotal(tr , dj(k)(0))− (dj(k)(0) − tr )

= DM (tr , dj(k)(0))+ Dj(tr , dj(k)(0))− (dj(k)(0) − tr )

≤ 0.

From dj(k)(0) to dj(k)(1), the new task increases its processor
demand while a M task does not. Thus we have

1(tr , dj(k)(1))

= Dtotal(tr , dj(k)(1))− (dj(k)(1) − tr )

= Dtotal(tr , dj(k)(1))− (dj(k)(1) − dj(k)(0))

− (dj(k)(0) − tr )

= Dtotal(tr , dj(k)(1))− Tj − (dj(k)(0) − tr )

= DM (tr , dj(k)(1))+ Dj(tr , dj(k)(1))− Tj

− (dj(k)(0) − tr )

= DM (tr , dj(k)(0))+ Dj(tr , dj(k)(0))− (dj(k)(0) − tr )

+Cj − Tj

≤ Cj − Tj < 0.
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TABLE 3. The Symbols.

This indicates that dj(k)(1) also pass its 1 check. Similarly,
other deadline points of τj after dj(k)(1) (if any) in the region
(d ′M (k),d

′

M (k+1)) will also pass their 1 checks.

APPENDIX C
PROOF OF THEOREM 3

Proof: There are two cases: Case 1 and Case 2.
Proof of Case 1: In this case, due to 1(tr , d ′M (k)) > 0,

rj should be delayed by L(k). The delaying will of course
decrease the processor demand Dj(tr , d ′M (k)).

If1(tr , d ′M (k)) > Cj, L(k) must be longer than the length of
Tj to makeDj(tr , d ′M (k)) reduced enough for1(tr , d ′M (k)) ≤ 0.
As shown in FIGURE 4, the delaying is implemented by three
steps: the first delay, the second delay and the third delay. The
amount of delay by each step is denoted by L(k)|1, L(k)|2, and
L(k)|3, respectively. Naturally

L(k) = L(k)|1 + L(k)|2 + L(k)|3 (8)

For the purpose of convenience, with a discussed time
t , Dtotal(tr , t)|1, Dtotal(tr , t)|2 and Dtotal(tr , t)|3 are used to
represent the total processor demands in (tr , t] after the first,
the second, and the third step, respectively. Correspondingly,
Their 1 check values are 1(tr , t)|1,1(tr , t)|2 and 1(tr , t)|3.

FIGURE 4. Using the delaying rule with Case 1.

Let djx be the latest deadline point (if any) of τj in
(tr , d ′M (k)], that is, 0 ≤ d ′M (k) − djx < Tj. djy repre-
sents a special deadline point(if any) of τj before djx , as in
FIGURE 4.

Before delaying, we have

1(tr , d ′M (k)) = Dtotal(tr , d ′M (k))− (d ′M (k) − tr ) > 0.

After the first step delay, the release of τj is delayed by
L(k)|1 so that djy shifts to d ′jy, and djx to d

′
jx = d ′M (k). Then

L(k)|1 = d ′M (k) − djx

= d ′M (k) − (rj +
⌊d ′M (k) − rj

Tj

⌋
Tj) (9)

Notice that the total demand Dtotal(tr , d ′M (k)) remains
unchanged when the first step delay is completed, thus we
have

Dtotal(tr , d ′M (k))|1 = Dtotal(tr , d ′M (k)), and

1(tr , d ′M (k))|1 = 1(tr , d ′M (k)) > 0.

Through the second step delay, rj is increased by L(k)|2, and
d ′jy will move to d ′′jy to produce

L(k)|2 =
⌈1(tr , d ′M (k))|1 − Cj

Cj

⌉
Tj (10)

The purpose of this step is to make the 1 check value
become less than or equal to Cj:

Dtotal(tr , d ′M (k))|2 = Dtotal(tr , d ′M (k))|1 −
L(k)|2
Tj

Cj, and

1(tr , d ′M (k))|2 = 1(tr , d ′M (k))|1 −
L(k)|2
Tj

Cj

≤ 1(tr , d ′M (k))|1

−
1(tr , d ′M (k))|1 − Cj

Cj
Cj = Cj.
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Now discuss the third step delay. The deadline d ′′jy will shift
to d ′′′jy . The 1 check with d ′M (k) becomes passed as soon as
L(k)|3 > 0 since 1(tr , d ′M (k))|2 ≤ Cj. However, L(k)|3 > 0
may not be enough for d ′′′jy to pass its 1 check. According to
the delaying rule, in order to make both d ′M (k) and d

′′′
jy passed,

the minimum value of L(k)|3 should be calculated by

L(k)|3 = 1(tr , d ′M (k))|2 = 1(tr , d ′M (k))|1 −
L(k)|2
Tj

Cj

= 1(tr , d ′M (k))−
L(k)|2
Tj

Cj

= 1(tr , d ′M (k))−
⌈1(tr , d ′M (k))|1 − Cj

Cj

⌉
Cj. (11)

If d ′′′jy becomes equal to or greater than d ′M (k+1) due to the
third step delay, then d ′′′jy will be checked when we do the 1
check with the next time interval [d ′M (k+1), d

′

M (k+2)), or some
interval after that. Even this happens, L(k)|3 must not be
less than the value given by (11) according to Theorem 1.
Therefore, (11) is correct in any case when we do the1 check
with d ′M (k).
In addition, if d ′M (k) equals djx , then we get L(k)|1 =

0 from (9) and the first step delay is not needed. Also,
if 1(tr , d ′M (k)) ≤ Cj, then we have L(k)|2 = 0 from (10) and
the second step delay is omitted.

Adding (9), (10), and (11) in (8), we get (6) in Theorem 3.
Proof of Case 2: In this case, since 1(tr , d ′M (k)) ≤ 0, thus

only the deadline point dj(k)(0) should be checked in the region
[d ′M (k), d

′

M (k+1)).
If1(tr , dj(k)(0)) ≤ 0, then the delay of rj is not required and

L(k) = 0.
If 1(tr , dj(k)(0)) > 0, rj should be delayed. Suppose

dj(k)(0) shifts to d ′j(k)(0) after the delay and d ′j(k)(0) ≤ d ′M (k+1).
Note that Dtotal(tr , d ′j(k)(0)) is the total demand in (tr , d ′j(k)(0)]
after the delay. Accordingly, we have the 1 check value
1(tr , d ′j(k)(0)). Then

1(tr , d ′j(k)(0)) = Dtotal(tr , d ′j(k)(0))− (d ′j(k)(0) − tr )

= Dtotal(tr , d ′j(k)(0))− (dj(k)(0) − tr )

− (d ′j(k)(0) − dj(k)(0))

= Dtotal(tr , d ′j(k)(0))− (dj(k)(0) − tr )− L(k).

If d ′j(k)(0) < d ′M (k+1), then the total demand of the system
does not increase after the delay, that is,

Dtotal(tr , d ′j(k)(0)) = Dtotal(tr , dj(k)(0)).

Thus we have

1(tr , d ′j(k)(0)) = 1(tr , dj(k)(0))− L(k).

Since we need 1(tr , d ′j(k)(0)) = 0 to make the 1 check at
d ′j(k)(0) just passed, therefore,

L(k) = 1(tr , dj(k)(0)). (12)

If d ′j(k)(0) ≥ d ′M (k+1) after the delay, then d ′j(k)(0) will be
checked when we do the 1 check with d ′M (k+1), or deadline

points after d ′M (k+1). Even this happens, L(k) must not be
less than the value given by (12) according to Theorem 1.
Therefore, (12) is correct anyhow when we do the 1 check
with dj(k)(0).

APPENDIX D
PROOF OF LEMMA 1

Proof: Start with rj = tr . let L(k)first be the delay of rj to
make the deadline point d ′M (k) to pass its1 check if this point
is checked before all other deadline points. The maximum
value of all these delays is denoted as L(k)first_max , that is,

L(k)first_max = max{L(0)first ,L(1)first , · · · ,L(n−1)first }.

Obviously, δearliest depends on L(k)first_max only. That is
to say, the total amount of delay of rj must be equal to
L(k)first_max to make the 1 checks of all the points passed,
no matter which point is checked first.
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