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ABSTRACT Nowadays, to solve a problem, people/systems typically use knowledge from different
sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus
for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies
postulate 2-Optimality is an NP-hard problem; therefore, many heuristic algorithms have been proposed.
The basic heuristic algorithm is the fastest in the literature, and most widely used to solve this problem.
The computational complexity of the basic heuristic algorithm is O(m2n). In this study, we propose a quick
algorithm (called QADC) to determine the 2-Optimality consensus. TheQADC algorithm is developed based
on a new approach for calculating the distances from a candidate consensus to the collective members. The
computational complexity of the QADC algorithm has been reduced to O(mn), and the consensus quality of
QADC algorithm and the basic heuristic algorithm is the same.

INDEX TERMS Collective intelligence, collective knowledge, consensus, heuristic algorithm, 2-optimality
consensus.

I. INTRODUCTION
Using knowledge from different sources for decision-making
is getting popular [1]. For example, to decide on a problem in
our life, people typically search for information on the Inter-
net or ask the opinions of experts. In this way, they generally
reach a suitable solution. Another example is a distributed
detection system where agents share their logical options on
events and make decisions of the system afterwards [2].

In general, a set of knowledge states from different sources
is considered as a collective or profile. A collective consists of
knowledge states of different agents, experts, or individuals
referring to the same problem [3], [4]. Knowledge states
of a collective are frequently in conflict [5]. For example,
many meteorological stations forecast the weather for the
same region. The forecasts from thesemeteorological stations
are different. A collective consisting of knowledge states in
conflict is called a conflict collective or conflict profile [6].
Besides, in a collective, the uncertainty of knowledge states
often exists [7]. Thus, integrating knowledge states of a
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collective into one consistent state, which is termed as a
collective knowledge or consensus, is a complicated task.

Uncertainty is generally a situation that involves unknown
or imperfect information [8], and it is an attribute of infor-
mation [9]. To treat data with uncertainty, many theories
have been introduced, such as rough set theory [10], soft set
theory [11], fuzzy set theory [12].

A conflict takes place when at least two bodies have dif-
ferent options on the same subject [6]. Pawlak introduced
the first formal model for conflict analysis. In this model,
a set of tools for conflict analysis was presented [13]. This
model is straightforward, and it does not allow the agents to
express complex opinions [6]. Pawlak’s model was enhanced
by Skowron et al. [14]. This enhanced model defines local
states of agents and examines various levels of conflicts. The
attribute values in this model are atomic.

In [15], Nguyen et al. presented a general model for con-
flict and knowledge inconsistency. In this model, such fac-
tors as conflict representation and consistency measures for
conflict collective are considered. Attribute values are multi-
valued. To measure the consistency, eight postulates are pro-
posed, and five consistency functions are defined. Besides,
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a methodology for using inconsistency of knowledge in a
collective to determine its consensus is presented [5]. Deter-
mining consensus plays an essential role in many research
areas [4], [16]. Consensus methods have been proposed for
consensus determination [17].

In consensus methods, many postulates are used to define
consensus functions in which the postulates 1-Optimality
(or Kemeny median) and 2-Optimality are essential pos-
tulates [6]. However, no consensus function concurrently
satisfies both the postulate 1-Optimality and the pos-
tulate 2-Optimality. The consensus satisfying the postu-
late 1-Optimality or the postulate 2-Optimality is the best
representative of the collective. Besides, the consensus sat-
isfying the postulate 2-Optimality is more uniform than that
satisfying the postulate 1-Optimality. Although the crite-
rion 2-Optimality is not well-known, in many cases, it is
better than the criterion 1-Optimality [3], [6]. Determining
the 2-Optimality consensus is an NP-hard problem [6], and
heuristic algorithms have been developed for different data
structures, such as a complex tree, partition, ontology, and
binary vector [6], [18], [19].

In this study, a collective containing binary vectors is called
a binary vector collective. Using binary vector to represent
knowledge states and determining the consensus for binary
vector collectives are used in distributed networks [2], [20],
transport systems [21], [22], e-commerce [23], [24], bioinfor-
matics [25]–[27] medicines [28], [29].

We consider the following situation. In this situation, n
experts are asked about their opinions for a given problem.
Each of them gives answers to m different questions. They
can choose one from two possible answers: ‘‘Yes’’ or ‘‘No’’
(‘‘Yes’’ is corresponding 1, and ‘‘No’’ is corresponding 0).
The collective, which consists of opinions of experts, is rep-
resented by n binary vectors of the length equal tom. The sec-
ond example refers to disease-disease relationships. A group
of n patients has hepatocellular carcinoma. Each patient is
expressed as a vector withm attributes, and each attribute rep-
resents a specific disease. If a patient has a specific disease,
the value of the corresponding component is 1, otherwise 0.
The collective, which consists of diseases of patients, is also
stored as n binary vectors of the length equal to m. The prob-
lem of determining the consensuses of these collectives is
very useful in our lives. Therefore, in this study, we consider
determining the consensus of such situations.

Heuristic algorithms have been introduced to determine the
consensus for binary vector collectives [19], [30], [31]. The
basic heuristic algorithm is the fastest and best algorithm, and
it is the most widely used to solve this task. The computa-
tional complexity of this algorithm is O(m2n) where m is the
length of members and n is the size of collectives [19].

Increasing the number of knowledge sources in the world
and rapid development in information technology have facili-
tated the use of these sources for finding solutions to different
problems; as a result, the collective size is increasing [32].
Determining the 2-Optimality consensus of a binary vector
collective with a large size may require more time [4]. In this

scenario, there is a need to develop a quick algorithm to
determine the 2-Optimality consensus of such a collective.

A. MOTIVATION
The motivation for this study is to find a new algorithm
with lower computational complexity, whereas its consensus
quality is higher than or the same as the consensus quality of
the basic heuristic algorithm.

B. CONTRIBUTIONS OF THIS STUDY
The main contributions of this study are as follows:

1) In this study, we proposed a new method to calculate
the sum of squared distances from a candidate con-
sensus to members of the collective. The new method
reduces the computational complexity of calculating
this sum. Based on the advanced calculating method,
we propose a quick algorithm whose computational
complexity O(mn).

2) We prove that the consensus quality of the QADC
algorithm and that of the basic heuristic algorithm is
the same both in theory and in the experiment.

The remainder of this paper is organized as follows.
Section II provides a short review of the consensus problem
and the 2-Optimality consensus. In section III, notions are
introduced. Section IV presents a new approach to calcu-
late the distance from a candidate consensus to collective
members and the QADC algorithm. In section V, we mea-
sure the consensus quality of the QADC algorithm. Besides,
we compare the QADC algorithm and the best algorithm
of previous studies at both two aspects: running time and
consensus quality. Finally, conclusions and future directions
are provided in VI.

II. RELATED WORK
In computer science, the consensus problem has a long
history [33], [34]. During recent years, it has become an
attractive research area of interest [35]–[37]. The consensus
problem forms the foundation of the field of distributed com-
puting [34], in which all the agents communicate and update
their states to achieve an agreement in the network. The
consensus concept was introduced to control a community
for describing the collective behavior of a group of systems,
calledmulti-agent systems [38]–[40]. The consensus problem
in multi-agent systems has been intensively studied in the
control community and has been applied in vehicle formation,
sensor networks, social networks [39], [41]. IoT has been
rapidly developed during recent years. Its applications have
the potential to affect every aspect of daily human life [42],
many consensus problems exist in this field, for example,
resource allocation [43], task allocation [44], [45], decision
making in service-oriented [46].

There are numerous examples of consensus in economics.
Prediction is an essential activity in several business pro-
cesses, but it becomes challenging in the case that his-
torical data are not available, such as forecasting demand
for a new product. A prediction market that aggregates the
opinions of the crowd is an efficient approach to solve
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such problems [47]. Another example is the blockchain that
creates a rapid change in economics, such as transactions,
accounting, contracts, and records [48], [49]. The consensus
problem forms the foundation of blockchain [50], [51], and
consensus algorithms maintain the existence of blockchain,
for example, PoW, PoS, and PoB [52].

In the medicines field, in the 1950s, consensus problems
were born from a wish to synthesize clinician and expert
opinions on clinical practice and research programs [53].
Nowadays, the consensus is widely used in this field, and it
plays an essential role in diagnosis, management, treatment,
health service, etc. [28], [29].

In bioinformatics there are numerous consensus problems,
for example, in gene prediction [25], microRNA target rank-
ing [27], disease-related gene ranking [27], drug-drug inter-
action [54], protein structure prediction [55], etc.

In general, there are three approaches to resolve consensus
problems in previous studies [6]. In the axiomatic approach,
many axioms are used to specify the conditions that should
be met by consensus functions. First, seven conditions for
the consensus functions were presented. Then, a set of ten
postulates for consensus functions were defined, in which
the postulates 1-Optimality and 2-Optimality are essen-
tial for determining consensus. The constructive approach
resolves the consensus problem in two aspects: the relation-
ship between elements and the structure of them. In the opti-
mization approach, some optimality rules are used to define
consensus functions [6].

In general, the consensus is the reasonable choice if the
conflict participants refer to the same problem [3]. Assume
that the opinions included in the conflict content reflect an
unknown solution to a problem. We call this solution the
proper solution to the problem, and the following two cases
may take place [3]:

1) The proper solution is independent of the participants’
opinions, such as the problem of predicting the GDP of
a country.

2) The proper solution is dependent on the participants’
opinions, such as the problem of the US presidential
election.

In the first case, the proper solution to the problem exists;
however, the participants do not know it. Thus, the partici-
pantsmay ‘‘guess’’ the proper solution [3]. In the second case,
the participants’ opinions decide the solution. In the two cases
mentioned above, the consensus seems to have to satisfy the
following conditions:
• It should best reflect the given versions, and/or
• It should be a good compromise that could be acceptable
to the participants.

The first condition is appropriate for the first case. The
reason is the opinions given by the participants that reflect
the ‘‘hidden’’ and independent solution, but it is not known
to what degree. The consensus should best reflect the par-
ticipants’ opinions. The best criterion for consensus choice
is the criterion 1-Optimality. The second condition refers
to the second case in which the proper problem solution is

dependent on those given by the participants. Thus, consensus
should best represent the participants’ opinions, and it should
reflect the participants’ opinions to an equal degree. The best
criterion for consensus choice is the criterion 2-Optimality.
Consensus chosen by the criterion 2-Optimality is more uni-
form than that chosen by the criterion 1-Optimality [3], [5].

The postulate 2-Optimality is used for many applica-
tions [56], [57]. In bioinformatics, for example, this postulate
is applied for the multiple structure alignment problem that
is described as follows: ‘‘Given a set of proteins X , compute
a transformation (i.e., rotation and translation) for each pro-
tein, and generate a 2-Optimality consensus’’ [58]. Heuris-
tic algorithms have been proposed for solving this problem
in [58], [59]. Let n be the maximum length of the k proteins;
then, the time complexities of the algorithms are O

(
m2k2

)
or

O
(
kn2 + kn2

)
, depending on the initial consensus [58], [59].

The problem of generating a consensus tree from a given
collective of phylogenetic trees is used to reconstruct the
evolutionary history of a set of organisms, and the postulate
2-Optimality is used for determining the consensus tree [60].
The time complexity of the algorithm MW and ADDTREE
is O

(
n5
)
; that of algorithm FITCH is O

(
n4
)
; and that of the

algorithms UNJ and NJ are O
(
n3
)
, where n is the number of

organisms [61].
In e-commerce, decision-making has become a necessary

component of business activity [62]. In a typical case, the
structure of decision representation is a set of decision ele-
ments that describes an economic problem. These elements
are ordered in sequence to process during decision realiza-
tion. The 2-Optimality consensus is used to develop multi-
agent decision support systems. In [57], a heuristic algo-
rithmwith a computational complexity ofO

(
n2m

)
+O (3nm)

is introduced. This algorithm is implemented in the stock
exchange and a-Trader multi-agent system [62], [63].

Determining the 2-Optimality consensus for binary vector
collectives is an NP-hard problem, and the computational
complexity of the brute-force algorithm to determine the
optimal consensus is O(n2m); thus, heuristic algorithms have
been developed [19]. First, the basic heuristic algorithm was
introduced, and the computational complexity of this algo-
rithm is O(m2n). Then, two additional heuristic algorithms
were developed based on the basic heuristic algorithm: algo-
rithms H2 and H3. In the algorithm H2, the initial consensus
is set to the 1-Optimality consensus of collective X . The time
complexity of algorithms H2 and H3 are O(m2n). During
experiments, the basic heuristic algorithm is 3.8% faster than
the algorithmH2 and 3.71% faster than the algorithmH3 [19].
Besides, the difference among consensus quality of the basic
heuristic algorithm, that of the algorithm H2, and that of the
algorithm H3 are not statistically significant [19].

Genetic algorithms were used to determine the
2-Optimality consensus for a binary vector collective.
In genetic algorithm Gen1, the authors applied a roulette
wheel choice, where the fitness function is g(x) =

1/(d(x,X )+ 1). In genetic algorithm Gen2, the authors
utilized a tournament choice, where g(x) = d(x,X ) is the
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fitness function. These two genetic algorithms were com-
pared with the basic heuristic algorithm. During the exper-
iment, the algorithm Gen1 is 99.47% slower than the basic
heuristic algorithm, and the algorithmGen2 is 99.56% slower
than the basic heuristic algorithm. Besides, the consensus
quality of the algorithm Gen1 is 1.34% lower than that of
the basic heuristic algorithm, and the consensus quality of
the algorithm Gen2 is 0.01% higher than that of the basic
heuristic algorithm. However, both two genetic algorithms
are not practical [19] because of their colossal running time.

In [31], a heuristic algorithm was based on the basic
heuristic algorithm and vertical partition. First, the vertical
partition was used to divide the collection into two parts.
Then, the 2-Optimality consensuses of these two parts were
determined. Finally, the 2-Optimality consensus of the collec-
tive was determined by combining the 2-Optimality consen-
suses of the two parts. The time complexity of this algorithm
is O(m2n).

The basic heuristic algorithm is the fastest in the litera-
ture. The consensus quality of the algorithm Gen2 is higher
(0.01% only) than that of the basic heuristic algorithm. How-
ever, the algorithm Gen2 is not practical because of its unac-
ceptable running time [19]. The basic heuristic algorithm is
the best algorithm for determining the consensus for binary
vector collectives, and it is used to compare with the QADC
algorithm.

III. BASIC NOTIONS
A. COLLECTIVE AND COLLECTIVE KNOWLEDGE
Let U be a finite set of objects representing all potential
knowledge states for a given problem. In the set U , elements
can contradict each other. Let 5b(U ) denote the set of all
b-element subsets with repetitions of set U for b∈N , and let

5(U ) = ∪b5b(U )

Thus, 5(U ) is the finite set of all nonempty subsets with
repetitions of set U · A set X ∈ 5(U ) is considered a col-
lective, where each element x ∈ X represents the knowledge
state of a collective member [3], [5].

Collective knowledge or consensus of a collective is under-
stood as a representative of this collective. The two most
popular criteria for determining consensus are 1-Optimality
and 2-Optimality. For a given collective X ∈ 5(U ), the
consensus of X is determined by the following:

• Criterion1− Optimalityifd
(
x∗,X

)
= min

yεU
d (y,X)

• Criterion2− Optimalityifd2
(
x∗,X

)
= min

yεU
d2 (y,X)

where x∗ is the consensus of X , d (x∗,X) is the sum of
distances from the consensus x∗ to members of the collective
X , and d2 (x∗,X) is the sum of squared distances from the
consensus x∗ to members of the collective X [6].
Definition 1: A binary vector collective is defined as

follows:

X = {x1, x2, . . . , xn}

where n is the number of collective members, and xi
(i= 1, 2, . . . ,n) is a binary vector of length m.

Each element xi ∈ X is described as follows: xi =(
x1i , x

2
i , . . . ,x

m
i

)
, x ji = {0, 1} for j = 1, 2, . . . ,m. For s, t ∈

U , the distance function is described as follows:

d (s, t) =
m∑
j=1

∣∣∣sj − t j∣∣∣ (1)

where s = (s1, s2, . . . , sm), and t = (t1, t2, . . . , tm).
Definition 2: The sum of distances from vector xc with

a length of m to a binary vector collective X is defined as
follows:

d (xc,X) =
n∑
i=1

d (xc, xi) (2)

where
n∑
i=1

d (xc, xi) =
m∑
j=1

∣∣∣x jc − x j1∣∣∣+ m∑
j=1

∣∣∣x jc − x j2∣∣∣
+ . . .+

m∑
j=1

∣∣∣x jc − x jn∣∣∣
Definition 3: The sum of squared distances from vector xc

with a length of m to the binary vector collective X is defined
as follows:

d2 (xc,X) =

 m∑
j=1

∣∣∣x jc − x j1∣∣∣
2

+

 m∑
j=1

∣∣∣x jc − x j2∣∣∣
2

+ . . .

+

 m∑
j=1

∣∣∣x jc − x jn∣∣∣
2

(3)

B. BASIC HEURISTIC ALGORITHM
Firstly, this algorithm randomly generates one initial can-
didate consensus xc. Then it determines the value of com-
ponents of consensus xc. The basic heuristic algorithm to
determine the 2-Optimality consensus for a binary vector
collective is presented as follows:

The value of d (xc, xi) is calculated by (1) for i =
1, 2, . . . , n. The value of d2 (xc,X) is calculated by (3), the
computational complexity of line {2} is O (mn) . Because
line {6} repeats the calculation of d2 (xc,X) in m times,
its computational complexity is O

(
m2n

)
. The computational

complexity of the basic heuristic algorithm is O
(
m2n

)
.

IV. QUICK ALGORITHM TO DETERMINE 2-OPTIMALITY
CONSENSUS
This section introduces a new method to calculate the dis-
tances from a candidate consensus to the members of a binary
vector collective. Based on this method, we propose a new
algorithm to determine the 2-Optimality consensus. The com-
putational complexity of the QADC algorithm is O(mn). The
consensus quality of the basic heuristic algorithm and that
of the QADC algorithm is the same if their initial candidate
consensuses are the same.
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FIGURE 1. The QADC algorithm.

A. METHOD FOR CALCULATING DISTANCES
The sum of squared distances from a candidate consensus
xc to collective members is computed by (3). The computa-
tional complexity of calculating value d2 (xc,X) depends on
the computational complexity of calculating values d (xc, xi).
The distance between xc and xi for i= 1, 2, . . . ,n is computed
by (1). The computational complexity of calculating value
d2 (xc,X) can be reduced if the computational complexity
of calculating values d (xc, xi) reduces. Thus, an efficient
method for calculating values d (xc, xi) need to be studied.
Theorem 1: Let xv =

(
x1v , x

2
v , . . . ,x

m
v
)
, xu =(

x1u , x
2
u , . . . ,x

m
u
)
, and xw =

(
x1w, x

2
w, . . . ,x

m
w
)
be binary vec-

tors of the same length. Assume that if xu and xw only differ
in the k th component, then

d (xv, xu) =

{
d (xv, xw)− 1 if xkv = xku
d (xv, xw)+ 1 if xkv 6= xku

Example 1: Given xv = (1, 1, 1, 0, 1, 1), xw =

(0, 1, 0, 1, 1, 0). We have d (xv, xw) = 4.

If xu = (0, 0, 0, 1, 1, 0), xu and xw differ in the 2nd

component: x2w 6= x2u . Because x
2
v 6= x2u , then d(xv, xu) =

d(xv, xw) + 1 = 5. If xu = (0, 1, 1, 1, 1, 0), xu and xw only
differ in the 3rd component: x3w 6= x3u . Because x

3
v = x3u , then

d(xv, xu) = d(xv, xw)− 1 = 3. �
Theorem 2: Given a binary vector collective X =

{x1, x2, . . . , xn}, the length of each member ism. Assume that
xu and xw are binary vectors of length m and differ in the k th

component. If d(xi, xw) is determined, then d(xi, xu) can be
determined for i = 1, 2, . . . , n.
Example 2: Given xw = (0, 1, 0, 1), xu = (1, 1, 0, 1) and

X = {x1, x2, x3}, where x1 = (1, 1, 0, 1), x2 = (0, 0, 1, 0),
x3 = (1, 0, 1, 1).
We have d (x1, xw) = 1, d (x2, xw) = 3, d (x3, xw) = 3.

As xu and xw only differ in the 1st component (k = 1), based
on Theorem 2, we have:

d (x1, xu) = d (x1, xw)− 1 = 0 because x11 = x1u .

d (x2, xu) = d (x2, xw)+ 1 = 4 because x12 6= x1u .

d (x3, xu) = d (x3, xw)− 1 = 2 because x13 = x1u . �
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Algorithm 1 Basic Heuristic Algorithm
Input: Collective X = {x1, x2, . . . , xn}
Output: 2-Optimality consensus xc =

(
x1c , x

2
c , . . . , x

m
c
)

Begin
// Initialization
1. randomly choosing binary vector xc
2. calculate tO2 = d2 (xc,X)
// Choice
3. for k = 1 to m do
4. ⊕xkc = xkc 1;
5. calculate d2 (xc,X);
6. if d2 (c,X) < tO2 then
7. tO2 = d2 (xc,X);
8.

else
9. ⊕xkc = xkc 1;

10.
end

11. end
12. END

B. QADC ALGORITHM
In the proposed algorithm, components of a candidate con-
sensus xc are sequentially determined from 1st to mth.
Firstly, xc is randomly created, and values of d (xc, xi) for
i= 1, 2, . . . ,n are computed by (1). In the next steps, the
distances between xc and collective members are computed
based on Theorem 2 and the results of the previously adjacent
step.

The QADC algorithm is described in Fig. 1. In this figure,
the white boxes represent the values of components randomly
created at step Initialization, the green box in each step
presents a component that its value is changed, the red box
in each step represents that the value of this component is
determined.
Example 3: Given xc = (0, 1, 0, 1) and X = {x1,x2, x3},

where x1 = (1, 1, 0, 1), x2 = (0, 0, 1, 0), x3 = (1, 0, 1, 1).
The basic heuristic algorithm determines the 2-Optimality
consensus for the collective X as the following:
Step Initialization:
Assume that xc = (0, 1, 0, 1). We have

d (xc, x1) =
∑4

j=1

∣∣∣x jc − x j1∣∣∣ = 1

d (xc, x2) =
∑4

j=1

∣∣∣x jc − x j2∣∣∣ = 3

d (xc, x3) =
∑4

j=1

∣∣∣x jc − x j3∣∣∣ = 3

d2 (xc,X) =
∑3

i=1
d2 (xc, xi) = 19

Step 1 (k = 1) :
Changing the value of 1st component, xc = (1, 1, 0, 1).

We have

d (xc, x1) =
∑4

j=1

∣∣∣x jc − x j1∣∣∣ = 0

d (xc, x2) =
∑4

j=1

∣∣∣x jc − x j2∣∣∣ = 4

d (xc, x3) =
∑4

j=1

∣∣∣x jc − x j3∣∣∣ = 2

d2 (xc,X) =
∑3

i=1
d2 (xc, xi) = 20.

Value of d2 (xc,X) with xc = (1, 1, 0, 1) is larger than that
with xc = (0, 1, 0, 1). Thus, xc = (0, 1, 0, 1) is chosen.
Step 2 (k = 2) :
Changing the value of 2nd component, xc = (0, 0, 0, 1).

We have

d (xc, x1) =
∑4

j=1

∣∣∣x jc − x j1∣∣∣ = 2

d (xc, x2) =
∑4

j=1

∣∣∣x jc − x j2∣∣∣ = 2

d (xc, x3) =
∑4

j=1

∣∣∣x jc − x j3∣∣∣ = 2

d2 (xc,X) =
∑3

i=1
d2 (xc, xi) = 12.

Value of d2 (xc,X) with xc = (0, 0, 0, 1) is smaller than
that with xc = (0, 1, 0, 1). Therefore, xc = (0, 0, 0, 1) is
chosen.
Step 3 (k = 3) :
Changing the value of 3rd component, xc = (0, 0, 1, 1).

We have

d (xc, x1) =
∑4

j=1

∣∣∣x jc − x j1∣∣∣ = 3

d (xc, x2) =
∑4

j=1

∣∣∣x jc − x j2∣∣∣ = 1

d (xc, x3) =
∑4

j=1

∣∣∣x jc − x j3∣∣∣ = 1

d2 (xc,X) =
∑3

i=1
d2 (xc, xi) = 11.

Value of d2 (xc,X) with xc = (0, 0, 1, 1) is smaller than
that with xc = (0, 0, 0, 1). Thus, xc = (0 0 1 1) is chosen.
Step 4 (k = 4) :
Changing the value of 4th component, xc = (0, 0, 1, 0).

We have

d (xc, x1) =
∑4

j=1

∣∣∣x jc − x j1∣∣∣ = 4

d (xc, x2) =
∑4

j=1

∣∣∣x jc − x j2∣∣∣ = 0

d (xc, x3) =
∑4

j=1

∣∣∣x jc − x j3∣∣∣ = 2

d2 (xc,X) =
∑3

i=1
d2 (xc, xi) = 20

Value of d2 (xc,X) with xc = (0, 0, 1, 0) is larger than that
with xc = (0, 0, 1, 1). Thus, xc = (0, 0, 1, 1) is chosen. It is
also the 2-Optimality consensus of the collective X generated
by the proposed algorithm. �

The schema of the QADC is described in Fig. 2. In this
algorithm, tO2 is the sum of squared distances from a current
candidate consensus xc to collective members, and nO2 is the
sum of squared distances from a new candidate consensus to
collective members. In each step, tO2 and nO2 are computed.
If nO2 is larger than or equal to tO2, the new candidate con-
sensus is discarded. Otherwise, the new candidate consensus
is considered as the current candidate consensus.

After step m, the current consensus is the consensus of the
collective X .
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FIGURE 2. Schema of the QADC algorithm.

FIGURE 3. Calculation of d (xc , xi ) and d2 (
xc , X

)
in Algorithm 1 and 2.

The QADC algorithm is presented as follows:
The main difference in the calculation of each step (from

step 1 to step m) between the basic heuristic algorithm and
the QADC algorithm is shown in Fig. 3.
Theorem 3: The computational complexity of the QADC

algorithm is O(mn).
Theorem 4: The 2-Optimality consensus determined by

the basic heuristic algorithm and that by the QADC algo-
rithm is the same if initial candidate consensuses are the
same.

V. EXPERIMENT AND ANALYSIS
This section assesses the efficiency of the QADC algorithm.
We compare the QADC algorithm and the basic heuristic
algorithm. The basic heuristic algorithm is chosen because
it is the best algorithm for previous studies, and it is being
used widely. These two algorithms are compared both in two
respects: running time and consensus quality. The main tasks
in this section are described as follows:
• Measuring the consensus quality of the QADC
algorithm,

• Comparing the consensus quality of the QADC algo-
rithm and that of the basic heuristic algorithm,

• Comparing the running time of the QADC algorithm and
the running time of the basic heuristic algorithm.

The consensus quality of a heuristic algorithm is estimated
as follows:

QC= 1−

∣∣d2 (x∗,X)− d2 (xopt ,X)∣∣
d2
(
xopt ,X

) (4)

where x∗ is the consensus determined by the heuristic
algorithm, and xopt is the optimal consensus determined by
the brute-force algorithm.
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Algorithm 2 QADC Algorithm
Input: Collective X = {x1, x2, . . . , xn}
Output: Consensus xc =

(
x1c , x

2
c , . . . , x

m
c
)

Begin
// Initialization
1. randomly generating an initial candidate

consensus xc;
2. tO2 = 0;
3. for i = 1 to n do
4. tD [i] = 0;
5. for j = 1 to m do

6. tD [i] = tD [i]+
∣∣∣x ji − x jc∣∣∣;

7. end
8. tO2 = tO2 + (tD [j])2;
9. end
// Choice

10. for k = 1 to m do
11. ⊕xkc = xkc 1;
12. nO2 = 0;
13. for i = 1 to n do
14. if xki = xkc then
15. nD [i] = tD [i]− 1;
16. else
17. nD [i] = tD [i]+ 1;
18. end
19. nO2 = nO2 + (nD [j])2;
20. end
21. if nO2 ≥ tO2 then
22. ⊕xkc = xkc 1;
23. else
24. tO2 = nO2;
25. for i = 1 to n do
26. tD [i] = nD [i];
27. end
28. end
29. end

END

In this study, the significance level is chosen to be 0.05
(α = 0.05).

A. MEASURING THE CONSENSUS QUALITY
We have used the hepatocellular carcinoma dataset1 in this
study. This dataset is heterogeneous and hence comprised
of 205 real patients diagnosed with hepatocellular carcinoma.
Each patient has 23 binary attributes, and each attribute rep-
resents a specific disease. We consider that each patient is
represented as a binary vector with a length of 23. If a patient
has a specific disease, the value of corresponding component
is 1, otherwise 0.

1 https://www.kaggle.com/mrsantos/hcc-dataset

FIGURE 4. Consensus quality of the QADC algorithm.

If we perform the QADC algorithm on this dataset one
time, one consensus is generated, and its quality is computed
by (4). In the experiment, a set of consensus qualities create
a sample, and this sample is used to measure the consensus
quality of the QADC algorithm. We need to determine how
many times to perform the QADC algorithm. The number of
times performed by the QADC algorithm on this dataset is
also the size (sz) of the sample.

We need to compute the consensus quality of the QADC
algorithm with a margin of error (E) of 0.002 and a confi-
dence interval of 95%. The sample deviation of the pilot sur-
vey (s) was 0.02. The sample size is determined below [64]:

sz ≥
(
Z × s
E

)2

The confidence interval was 95%, then Z = 1.96. We have

sz ≥
(
Z × s
E

)2

=

(
1.96 ∗ 0.02

0.002

)2

= 484.16

We can choose sz = 485.
We perform the QADC algorithm on the hepatocellular

carcinoma dataset 485 times. After every run of the QADC
algorithm, a consensus is generated. The quality of this con-
sensus is determined by (4). Finally, we obtain a consensus
quality sample with a size of 485. This sample is shown in
Table 1. The mean of the sample is 0.976, so the consensus
quality of the QADC algorithm is 0.976± 0.001.
The boxplot of the sample consensus is shown in Fig. 4.

The maximum consensus quality is 1.000, and the minimum
consensus quality is 0.951. The mean of the sample is 0.976.

B. EVALUATING THE CONSENSUS QUALITY
In this section, we continue our experiment by comparing
the consensus qualities of the QADC and the basic heuristic
algorithm. The sample consensus of the QADC algorithm has
been presented in Table 1.

The sample consensus in basic heuristic algorithm is com-
puted as follows. We perform the basic heuristic algorithm to
find the consensus for the hepatocellular carcinoma dataset.
This algorithm is performed on the hepatocellular carcinoma
dataset 485 times. After each run of the algorithm, a consen-
sus is generated. The quality of this consensus is computed
by (4). Finally, we obtain a consensus quality sample of the
basic heuristic algorithm with a size of 485, and this sample
is shown in Table 2.

We utilize the Shapiro-Wilk test to find the distribution
of the two consensus quality samples. The significance level
is chosen to be 0.05. The p-values of two samples are less

VOLUME 8, 2020 221801



D. T. Dang et al.: Quick Algorithm to Determine 2-Optimality Consensus for Collectives

TABLE 1. Consensus quality of the QADC algorithm.

than 0.05 (p − value = 0.0015 and p − value = 0.0381 for
the sample consensus of the QADC algorithm and the sam-
ple consensus of the basic heuristic algorithm, respectively).
Thus, there is evidence that these two samples do not come
from a normal distribution.

The hypotheses to compare the consensus quality of these
two algorithms are presented as follows:
• Hypothesis H0: The difference in consensus quality
between the QADC algorithm and the basic heuristic
algorithm is not significant.

• Hypothesis H1: The difference in consensus quality
between the QADC algorithm and the basic heuristic
algorithm is significant.

Since the two samples do not come from a normal dis-
tribution, the Wilcoxon rank-sum is utilized for this test.

We obtain p − value = 0.0952. The p − value is greater
than 0.05; thus, the hypothesisH0 cannot be rejected. It means
that the difference in consensus quality between the QADC
algorithm and the basic heuristic algorithm is not statistically
significant.

In Theorem 4, we prove that if initial candidate consen-
suses xc are the same, then the 2-Optimality consensus deter-
mined by the QADC algorithm and that by the basic heuristic
algorithm are the same. Besides, the analysis of experimen-
tal results shows that the difference between the consensus
quality determined by the QADC algorithm and that the basic
heuristic algorithm is not statistically significant.

Similar to the basic heuristic algorithm, the QADC algo-
rithm keeps track of one initial candidate consensus to deter-
mine the consensus of a collective. Keeping track of one
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TABLE 2. Consensus quality of the basic heuristic algorithm.

initial candidate consensus results in the moderate consensus
quality of the QADC algorithm. That is the main limitation of
the QADC algorithm. One approach to solve this limitation
keeps track of many initial candidate consensuses. Besides,
the diversity of initial candidate consensuses is carefully
considered.

C. EVALUATING THE RUNNING TIME
The basic heuristic algorithm is the fastest in the literature.
Therefore, we compare the running time of the QADC algo-
rithm and that of the basic heuristic algorithm. Two datasets
are generated randomly.
• Datatset 1 consists of 14 binary vector collectives. The
vector length is 23. The sizes of collectives are 15,000;
20,000; 25,000; 30,000; 35,000; 40,000; 45,000; 50,000;
55,000; 60,000; 65,000; 70,000; 75,000; 80,000.

• Datatset 2 contains 14 binary vector collectives. The
vector length is 30. The sizes of collectives are 14,000;
19,000; 24,000; 29,000; 34,000; 39,000; 44,000; 49,000;
54,000; 59,000; 64,000; 69,000; 74,000; 79,000.

First, these two algorithms are performed on dataset 1.
We obtain two samples: one sample running time of the
QADC algorithm and one sample running time of the basic
heuristic algorithm. Table 3 shows the two samples and the
ratio of the basic heuristic algorithm’s running time to the
QADC algorithm’s running time.

We utilize the Shapiro-Wilk test to find the distribution of
the two samples. The p-values of the two samples are larger
than 0.05 (p−value = 0.8881 and p−value = 0.7852 for the
sample running time of the QADC algorithm and the sample
running time of the basic heuristic algorithm, respectively).
It means that these samples come from a normal distribution.
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TABLE 3. Running time comparison on dataset 1 (in seconds).

TABLE 4. Running time comparison on dataset 2 (in seconds).

The hypotheses to compare the running time of the two
algorithms are stated as follows:
• Hypothesis H0: The difference in running time between
the QADC algorithm and the basic heuristic algorithm
is not significant.

• Hypothesis H1: The difference in running time between
the QADC algorithm and the basic heuristic algorithm
is significant.

Paired samples come from a normal distribution; therefore,
we use the paired t-test for this test. We obtain p − value =
0.000007. Since the p-value is less than 0.05, the hypothesis
H0 is rejected. It means that the difference in running time
between the QADC algorithm and the basic heuristic algo-
rithm is significant. Thus, their means are compared.

The mean of the sample running time of the QADC algo-
rithm and that of the basic heuristic algorithm are 0.059757
and 0.353071, respectively. The average running time for the
QADC algorithm occupies 16.92%

( 0.059757
0.353071 × 100%

)
that

of the basic heuristic algorithm. In simple words, the running

time of the QADC algorithm equals to 16.92% that of the
basic heuristic algorithm.

Second, we perform the QADC algorithm and the heuristic
algorithm on dataset 2. We obtain a sample running time of
the QADC algorithm and a sample running time of the basic
heuristic algorithm. Table 4 shows these two samples and the
ratio of the running time of the basic heuristic algorithm to
that of the QADC algorithm.

The Shapiro-Wilk test is utilized to find the distribution of
the two samples. The p-values of the two samples are larger
than 0.05 (p−value = 0.9142 and p−value = 0.7804 for the
sample running time of the QADC algorithm and that of the
basic heuristic algorithm, respectively). It means that these
samples come from a normal distribution.

The hypotheses for comparison of the running time of the
two algorithms are stated as follows:
• Hypothesis H0: The difference in running time between
the QADC algorithm and the basic heuristic algorithm
is not significant.

• Hypothesis H1: The difference in running time between
the QADC algorithm and the basic heuristic algorithm
is significant.

The paired t-test is used for this test. We obtain p−value =
0.000005. Because the p-value is less than 0.05, the hypoth-
esis H0 is rejected. The difference in running time between
the QADC algorithm and the basic heuristic algorithm is
significant. Their means are compared.

The mean of the sample running time of the QADC algo-
rithm and that of the basic heuristic algorithm are 0.083336
and 0.596529, respectively. The average running time for the
QADC algorithm occupies 13.97%

( 0.083336
0.596529 × 100%

)
that of

the basic heuristic algorithm. In other words, the running time
of the QADC algorithm equals to 13.97% that of the basic
heuristic algorithm.

The computational complexity of the basic heuristic algo-
rithm is O

(
m2n

)
, and the computational complexity of the

QADC algorithm isO (mn). In the case of dataset 1, the length
of the vector is 23, so the computational complexity of the
basic heuristic algorithm and that of the QADC algorithm
are O

(
232n

)
and O (23n) , respectively. The running time

of the QADC algorithm equals to 16.9% that of the basic
heuristic algorithm. In the case of dataset 2, the length of
the vector is 30, so the computational complexity of the
basic heuristic algorithm and that of the QADC algorithm are
O
(
302n

)
and O (30n) , respectively. The running time of the

QADC algorithm equals to 13.97% that of the basic heuristic
algorithm. The QADC algorithm is faster than earlier basic
heuristic algorithm. The achived results of these experiments
conform the efficiency and the computational complexity of
the two algorithms.

VI. CONCLUSION
In this study, we proposed a fast algorithm to determine the
2-Optimality consensus for binary vector collectives based
on a new method to calculate the distance from a candidate
consensus to members of the collective. The computational
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complexity of the QADC algorithm was reduced to O (mn).
In the experiment, the case length of the collective members
is 30, and the running time of the QADC algorithm equals
to 13.97% that of the basic heuristic algorithm. The running
time of the QADC algorithm equals to 16.9% that of the basic
heuristic algorithm in the case length of collective members is
23. Besides, the difference between the consensus quality of
our proposed QADC algorithm and the basic heuristic algo-
rithm, the best algorithm in the literature, is not statistically
significant.

In future work, we will consider keeping track of many
initial candidate consensuses with high diversity to enhance
the consensus quality of the QADC algorithm.

APPENDIX
In this section, we present proofs of Theorem 1, 2, 3 and 4.
Proof of Theorem 1:We have

d (xv, xu) =
∣∣∣x1v − x1u ∣∣∣+ ∣∣∣x2v − x2u ∣∣∣+ . . .+ ∣∣xmv − xmu ∣∣

d (xv, xw) =
∣∣∣x1v − x1w∣∣∣+ ∣∣∣x2v − x2w∣∣∣+ . . .+ ∣∣xmv − xmw ∣∣

Therefore,

d (xv, xu)− d (xv, xw) =
∣∣∣x1v − x1u ∣∣∣+ ∣∣∣x2v − x2u ∣∣∣+ . . .

+
∣∣xmv − xmu ∣∣− (∣∣∣x1v − x1w∣∣∣+∣∣∣x2v − x2w∣∣∣+ . . .+∣∣xmv − xmw ∣∣)

Because xu and xw are only different in the k th component,
we obtain

d (xv, xu)− d (xv, xw) =
∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣

or

d (xv, xu) = d (xv, xw)+
∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣

If xkv = xku then xkv 6=x
k
w. Thus,∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣= 0− 1 = −1

We have

d (xv, xu) = d (xv, xw)+
∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣

= d (xv, xw)− 1

If xkv 6= xku then xkv = xkw. Thus,∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣= 1− 0 = 1

We have

d (xv, xu) = d (xv, xw)+
∣∣∣xkv − xku ∣∣∣− ∣∣∣xkv − xkw∣∣∣

= d (xv, xw)+ 1

Thus, we have the following:

d (xv, xu) =

{
d (xv, xw)− 1 if xkv = xku
d (xv, xw)+ 1 if xkv 6= xku

Proof of Theorem 2:Distance d(x1, xw) is determined. Two
vectors xw and xu are only different in the k th component.
From Theorem 1, we have

d (x1, xu) =

{
d (x1, xw)− 1 if xk1 = xku
d (x1, xw)+ 1 if xk1 6= xku

Distance d(x2, xw) is determined. Two vectors xw and xu
are only different in the k th component. From Theorem 1,
we have

d (x2, xu) =

{
d (x2, xw)− 1 if xk2 = xku
d (x2, xw)+ 1 if xk2 6= xku

. . . . . .

Distance d(xn, xw) is determined. Two vectors xw and xu
are only different in the k th component. From Theorem 1,
we have

d (xn, xu) =

{
d (xn, xw)− 1 if xkn = xku
d (xn, xw)+ 1 if xkn 6= xku

From the aforementioned analyses, it is clear that

d (xi, xu) =

{
d (xi, xw)− 1 if xki = xku
d (xi, xw)+ 1 if xki 6= xku

for i = 1, 2, . . . , n.

It means that distances between xu and members of the col-
lective X can be determined based on distances between xw
and members of the collective X . �
Proof of Theorem 3: The computational complexity of line

{2} is O (1). The computational complexity of line {4} and
line {8} is O (n). The computational complexity of lines {6},
{15}, {17}, {19}, and {26} is O (mn). The computational
complexity of lines {1}, {11}, {12}, {22}, and {24} isO (m).
Thus, the computational complexity of the QADC algorithm
is max {O (1) ,O (n) ,O (m) ,O (mn)} = O (mn).
Proof of Theorem 4: In step Initialization, the value of xc

in the basic heuristic algorithm and the value of xc in the
QADC algorithm are equal. After step Initialization, the sum
of squared distances between xc and the collective’s members
in the basic heuristic algorithm equals to that in the QADC
algorithm.

At step 1 (k = 1), after changing the values of the 1st

component of vectors xc, the vectors xc in both algorithms
are equal. Thus, the sum of squared distances between xc and
collective members in the basic heuristic algorithm equals to
that in the QADC algorithm. Therefore, in the vectors xc, the
chosen values of the 1st component in two algorithms are the
same. After step 1, the vectors xc in two algorithms are equal.

At step 2 (k = 2), after changing the values of the 2nd

component of vectors xc, the vectors xc in both algorithms are
equal. Thus, the sum of squared distances between xc and the
collective members in the basic heuristic algorithm equals to
that in the QADC algorithm. Therefore, in the vectors xc, the
chosen values of the 2nd component in two algorithms are the
same. After step 2, the vectors xc in two algorithms are equal.

Assume that after step p (p ≤ m− 1), the vectors xc in two
algorithms are equal. Now, we prove that after step p+ 1, the
values of vectors xc in two algorithms are equal.
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At step p + 1, after changing the values of the (p+ 1)th

component of vectors xc, the values of xc in both algorithms
are equal. Thus, the sum of squared distances between xc and
the collective members in the basic heuristic algorithm equals
to that in the QADC algorithm. Therefore, in the vectors
xc, the chosen values of the (p+ 1)th component in the two
algorithms are the same. After step p + 1, the vectors xc in
two algorithms are equal.
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