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ABSTRACT It is very important to obtain continuous regional crop parameters efficiently in the agricultural
field. However, remote sensing data can provide spatial-continuous / temporal-disperse crop information
while crop growth model can provide temporal-continuous / spatial-disperse crop information. Therefore,
the assimilation between crop growth model and remote sensing data is an efficient way for obtaining
continuous vegetation growth information. This study aims to present a parallel method based on graphic
processing unit (GPU) to improve the efficiency of the assimilation between RS data and crop growth
model to estimate rice growth parameters. Remote sensing data, Landsat and HJ-1 images, were collected
and the World Food Studies (WOFOST) crop growth model which has a strong flexibility was employed.
To acquire continuous regional crop parameters, particle swarm optimization (PSO) data assimilationmethod
was used to combine remote sensing images and WOFOST and this process is accompanied by a parallel
method based on the Compute Unified Device Architecture (CUDA) platform of NVIDIA GPU. With
these methods, we obtained daily rice growth parameters of Zhuzhou City, Hunan, China and compared
the efficiency and precision of parallel method and non-parallel method. Results showed that the parallel
program has a remarkable speedup (reaching 240 times) compared with the non-parallel program with a
similar accuracy. This study indicated that the parallel implementation based on GPU was successful in
improving the efficiency of the assimilation between RS data and the WOFOST model.

INDEX TERMS WOFOST model, data assimilation, remote sensing, parallel algorithm.

I. INTRODUCTION
Data assimilation, which is of momentous theoretical and
application values, has been successfully applied to numer-
ous fields, such as atmosphere [1]–[3], weather [4]–[6],
agriculture [7]–[9], ocean [10]–[12], land surface [13]–[15]
and hydrology [16]–[18]. Assimilating remote sensing (RS)
information into a crop model can provide continuous
regional plant growth information and has been applied to a
wide range of agricultural fields in crop growth assessment,
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agricultural environmental control and farmlandmanagement
decision [19]–[23].

The assimilation between RS data and crop growth model
regards RS information (continuous in spatial scale and dis-
crete in time scale) as the measured variables. In addition,
the model’s simulating process is optimized with an assim-
ilation algorithm to obtain vegetation information succes-
sive in spatial and temporal scales [24]. On the basis of
various RS data, crop growth models and assimilation algo-
rithms, researchers have conducted numerous studies on the
different applications of assimilating RS information into
crop models [20], [22], [25]–[27]. Huang [28] conducted
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an experiment on regional winter wheat yield forecast-
ing with moderate-resolution imaging spectroradiometer-leaf
area index (MODIS-LAI) products on the basis of assimi-
lation between the World Food Studies (WOFOST) model
[29]–[32] and ensembleKalman algorithmmethod [33]–[36].
Their results indicated a remarkable improvement compared
with statistical yield, which provides a reliable approach for
predicting regional crop yield. Jin et al. [37] developed an
improved assimilation method with Landsat 8 images on the
basis of the WOFOST model and particle swarm optimiza-
tion (PSO) algorithm [38]–[42] for the efficient assessment
of heavy metal stress levels in rice.

Previous studies on the assimilation of the crop growth
model and RS data often focus on its precision but not on its
efficiency. However, when the study scale expands, current
methods for assimilation cannot satisfy the needs for rapidly
obtaining continuous accurate crop growth information in a
large scale. The first need involves the tremendous amounts of
data in the assimilation. RS images reflect vast earth surface
information and their data volume is often large. With the
improvement of the image’s spatial and temporal resolution
and the extension of the study area, the number of pixels to
assimilate will increase quickly and the calculation volume
will be enormous. The second need includes computationally
expensive algorithms. The crop growth model quantification-
ally simulates the complex growth processes, such as the crop
development process, CO2 assimilation, respiration and leaf
area simulation [43]–[47]. In addition, the assimilation algo-
rithms generally require considerable iterations to optimize
the model’s simulating process and must conduct a series of
calculations in each iteration [48].

In recent years, graphic processing unit (GPU)-based high-
performance computing technology has been increasingly
applied in large-scale computing scenarios, such as mathe-
matical calculations, image processing, computational biol-
ogy and chemistry and fluid dynamics simulation [49]–[55].
Early works on GPU-based processing for RS data have
been conducted by numerous researchers [56]–[62]. Wei and
Huang [63] explored a GPU-based implementation of the
extended Kalman filter. The Compute Unified Device Archi-
tecture (CUDA) on the Nvidia GeForce GTX 590 GPU was
used. The speedup reached 1386x and the parallel implemen-
tation of extended Kalman filter will serve as good refer-
ence on real large-scale applications. Blattner and Yang [64]
utilized the CUDA programming framework in numerical
weather prediction by the data assimilation method, local
ensemble transformed Kalman filter algorithm. Results show
that an improvement of 72.1× speedup and provide attractive
evidence for applying CUDA GPUs to high demanding sci-
entific computation realms. Zheng et al. [65] first use GPU
and CUDA technology on RRTM (Rapid Radiative transfer
module) long-wave radiation module of GRAPES (Global
and Regional Assimilation and Prediction System) model for
parallel processing. The results show that the parallel comput-
ing algorithm is correct, stable and efficient for operational
implementation of GRAPES in near future. The assimilation

calculations for each rice pixel on the RS image are not only
consistent but also mutually independent; thus, the parallel
implementation is feasible.

In this study, we develop a highly efficient GPU-based
parallel program for the assimilation of the WOFOST model
and RS images with the PSO algorithm on the CUDA plat-
form. We input the most time-consuming work (each rice
pixel’s assimilation with the WOFOST model) to a specific
thread on the GPU and concurrently execute all threads. The
execution time and assimilating precision of serial and par-
allel programs are compared. With the parallel assimilating
results, we simulate the spatial distribution of three important
rice growth parameters, LAI, root weight (WRT) and panicle
weight (WSO), on a large scale.

II. STUDY AREA AND DATA
A. STUDY AREA
The main study region (112◦17’-114◦07’ E, 26◦03’-
28◦01’ N) is located in Zhuzhou City, Hunan, China, with
an entire area of approximately 1836.28 m2 (Figure 1). This
area has a subtropical monsoon humid climate with adequate
illumination, annual average temperature of 15.5-25◦C and
annual precipitation of 1250–1500 mm, which is suitable
for crop growth. Zhuzhou City is an important food base
and its grain output is higher than those of other regions in
Hunan Province. Fast and accurate monitoring of crop growth
information in this region is important.

FIGURE 1. Location of the study area in Hunan Province, China.

B. DATA PREPARATION
The main data of this work contain two parts: RS data
for deriving measured assimilating observations and mete-
orological data for external input data of the WOFOST
model. In this study, Landsat 7 (Enhanced Thematic Mapper
Plus (ETM+) sensor) and HJ-1A/B (charge-coupled device
(CCD)) satellite imagery were jointly used to generate
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TABLE 1. Landsat and HJ-1A/B images used in this study.

measured LAI (MLAI) series [66]. Table 1 shows the param-
eters of these images. Radiometric calibration and atmo-
spheric correction were conducted for these two types of
images. The radiometric calibration for CCD images was
based on the absolute radiation calibration coefficient of
HJ-1A/B, released by the China Resources Satellite Applica-
tion Center. In addition, the Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes model was adopted for the
atmospheric correction of all images. The corrected root-
mean-square error was less than 0.5 pixels. All images
were downloaded from the United States Geological Survey
(http://glovis.usgs.gov/) and China Centre for Resources
Satellite Data and Application (http://www.cresda.com). The
meteorological data included the daily maximum air tem-
perature (TMAX), daily minimum air temperature (TMIN)
and daily solar radiation (AVRAD) from June 1 to Septem-
ber 30 in 2015, 2016 and 2017. They are obtained from China
Meteorological Data Sharing Service System. As the spatial
scale of the study area is not too big, according to the law
of Geographic Similarity, it is reasonable to use the data from
one meteorological station (Zhuzhou Station) to represent the
meteorological factors of the whole study area.

In this work, we select LAI as the assimilative observation
because it is an important index that reflects the growth
status of plant population and a primary output result of the
WOFOST model. The measured rice LAI series are calcu-
lated with RS images. In this study, we extract rice region
in the study area with a random forest algorithm [67]–[70]
and then calculate rice LAI through its NDVI obtained from
RS images. Previous studies have shown that the exponential
empirical model between LAI and NDVI in this area is prac-
ticable and most widely used [71]. The empirical model was
established by using the local measured LAI data and NDVI
conversion index in Zhuzhou City. And its R2 is 0.84 and
the MSE is 0.06, which is acceptable in the actual data
assimilation process. Their transformational relationship is
expressed in the following equation:

LAI = 0.361× e3.69×NDVI (1)

Then, we can obtain the MLAI series. We extract a total of
401296 rice pixels with a valid LAI in the study area.

III. METHODS
Figure 2 shows the overall technical roadmap of this work.
The parallel implementation of the assimilation between

FIGURE 2. General flow chart for estimating rice growth parameters
based on the GPU.

RS images and the WOFOST model with the PSO algo-
rithm mainly includes two parts: retrieving MLAI from RS
images in the Environment for Visualising Images (ENVI)
on the CPU and assimilating all rice pixels’ MLAI with the
simulative LAI (SLAI) series calculated from the WOFOST
model synchronously on the GPU. The lower part of Figure 2
presents each rice pixel’s assimilating process, i.e. each
thread’s computational task. Each thread’s output result is an
optimised leaf senescence index, which is an input parameter
of the WOFOST model.

A. ASSIMILATION BETWEEN THE WOFOST MODEL AND
RS DATA
Each thread’s computational task includes each rice pixel’s
assimilation between SLAI calculated from the WOFOST
model and MLAI retrieved from RS data, which is the most
time-consuming in the assimilating process. The methods for
obtaining MLAI from satellite images are previously dis-
cussed. The methods for obtaining SLAI from the WOFOST
model and assimilation are presented as follows.

The assimilation between the WOFOST model and RS
data involves obtaining the model’s optimal input parameters
for each rice pixel on the RS image through the assimilation
algorithm. The input parameters to be optimised must satisfy
two conditions: (1) difficult to obtain in a regional scale
and (2) closely related to the output results of WOFOST.
Considering these principles, we selected SPAN as the input
parameter to be optimised. SPAN (day) is the leaf senescence
index, which refers to the life cycle of leaves at 35 ◦C.
Generally, SPAN ranges from 17 to 50 [72]. As the exact
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value of SPAN for each pixel is difficult to determine due
to the individual differences of rice [73], we select a random
value in its range as the initial input of the WOFOST model.
The meteorological data and initial randomised SPAN are the
input data of the WOFOST model, and the output result is an
interannual LAI series at the time step of 1 day. Then, we can
extract the SLAI at the acquisition time of images. In this
study, the meteorological data from one weather station is
used to represent the entire study area, because the area of
this study is relatively small. The crop data in the WOFOST
model includes: specific leaf area, net photosynthetic rate, dry
matter distribution coefficient, etc. Since the research object
of this article is rice, the rice varieties in this area are relatively
uniform, so uniform crop parameters are used in this study
area.

However, a certain error occurs between SLAI and MLAI.
The PSO algorithm will reduce this error by adjusting
SPAN through considerable iterations. In the PSO algorithm,
the error is calculated as follows:

C =

√
1
N

∑N

i=1
(LAIm − LAIs)2 (2)

whereN is the number of RS images in a year; LAIm and LAIs
denote the MLAI and SLAI, respectively; and C represents
the degree of deviation between LAIm and LAIs. When C
reaches its minimal mean, the SLAI series are closest to the
actual LAI, and the corresponding SPAN is optimised.

Finally, each rice pixel’s daily growth parameters are calcu-
lated with the rectifiedWOFOST model (the optimum SPAN
as its input parameter). Then, we can continuously analyse
the rice growth information on a regional scale.

B. NVIDIA GPU ARCHITECTURE
We have utilized the Pascal architecture-based GPU
(Tesla P40) with CUDA to realize the parallel implementa-
tion of the assimilating process. A brief introduction of the
Pascal architecture and CUDA program model is presented
as follows.

1) PASCAL ARCHITECTURE
The GPU architecture is constructed by using extensible
arrays with a streaming multiprocessor (SM). The hardware
is parallelized on the GPU by copying the SM. The Pascal
architecture produced by NVIDIA in 2016 is a quick, effi-
cient and high-performance computing architecture. Similar
to previous Tesla-class GPUs, the Pascal architecture is com-
posed of an array of graphics processing clusters (GPCs),
texture processing clusters (TPCs), SMs and memory con-
trollers. A full Pascal architecture consists of six GPCs,
60 Pascal SMs, 20 TPCs (each with two SMs) and eight
512-bit memory controllers. Each GPC has 10 SMs. Each SM
has 64 CUDA cores and four texture units. The total number
of cores loaded in NVIDIA’s Tesla P40 GPU is 3840. Each
memory controller is attached to 51 KB of L2 cache [74].

2) CUDA PROGRAMMING MODEL
CUDA is a universal parallel computing platform and pro-
gramming model and is an extension of the C programming
language.

In the CUDA programming model, the CPU is the host
terminal, whereas the GPU is the device terminal. Developers
can stipulate computation tasks to be parallelized into a kernel
function, which is invoked on the host terminal and executed
on the device terminal. Before the CPU calls a kernel func-
tion, developers have to allocate a memory on the GPU for
data sets used in kernels and copy them from the CPU to the
GPU. After a kernel finishes, users have to copy the output
results from the device to the host [75].

The organization of threads on theGPU is the key for accel-
erating large-scale data processing. To manage the threads on
the GPU further, CUDA has introduced an abstract concept,
namely, thread hierarchy. Figure 3 depicts the two levels of
thread hierarchy (thread grids and thread blocks [75]. When
a kernel is activated, all generating threads form one grid.
One grid consists of multiple thread blocks, and one thread
block includes a group of threads. The organization of threads
involves grouping all threads in one grid. We can artificially
set the number of threads in one block and the number of
thread blocks in one grid for our program to obtain optimal
performance [74].

FIGURE 3. GPU’s thread hierarchy. Host is the CPU terminal and
responsible for serial processes between kernels. Device refers to the
GPU terminal, which contains a large number of threads, blocks and grids.
Device is in charge of the execution of large-scale parallel computing.

C. PARALLEL IMPLEMENTATION APPROACHES FOR THE
ASSIMILATION
In the parallelisation of assimilating RS information into
the WOFOST model, NVIDIA Tesla P40 based on Pascal
architecture GPU and Xeon E5-2620 CPU is used for the
hardware environment. Tesla series is specially designed for
large-scale parallel computing. Table 2 presents the techni-
cal specifications of P40. The software is developed under
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TABLE 2. Technical specification of NVIDIA Tesla P40 GPU.

Ubuntu Linux system, and the CUDA codes (.cu) are written
in C++ language and compiled with NVCC.

1) THREAD ORGANISATION METHODS ON GPU
MLAI retrieved from satellite images in a year is the main
data set and is saved in a 2D array. We assign all rice pixels’
LAI values of one image into a 1D vector from top to bottom,
from left to right, as one column of MLAI. Moreover, the rice
pixels’ locations in a 2D image are saved, which will be used
in the subsequent simulation of the spatial distribution of rice
growth parameters. Thus, the length of MLAI equals the total
number of rice pixels in our study area, whereas its width
equals the number of RS images obtained in 1 year. Each
row represents the MLAI series of one rice pixel. We extract
a total of 401296 rice pixels with valid LAI values in the
study area, and the length of MLAI is greater than the width.
Hence, although the data set is a 2D array, we organize all
threads in a 1D manner, and the assimilation for each rice
pixel is allocated to a thread ( Figure 4). In the kernel function,
we can use the thread index to extract theMLAI series of each
thread’s corresponding rice pixel. As we organized all threads
in a 1D manner, the relationship between the index (idx) of
one rice pixel’s MLAI series and the thread identifiers is as
follows:

int idx = threadIdx.x+ blockDim.x ∗ blockIdx.x, (3)

where threadIdx and blockIdx are the indexes of thread and
block, respectively, and blockDim indicates the block size,
which is equal to the number of threads in one block.

2) PARALLEL PROGRAM DESIGN
In this work, PSO_WOFOST is set as the kernel function,
which indicates that all threads allocated on the GPU will
execute the same PSO_WOFOST function with different
input data. The prototype is presented as follows:

__global__ void PSO_WOFOST (double ∗MLAI, double
∗TMIN, double ∗TMAX, double ∗AVRAD, long rand, dou-
ble ∗gbest)

PSO_WOFOST is responsible for each rice pixel’s assim-
ilating process with the PSO algorithm, i.e. the calculation
of optimal SPAN. The main steps of PSO_WOFOST are as
follows:

FIGURE 4. Thread organization in a 1D manner. Each row under MLAI
stores each rice pixel’s MLAI series. N is equal to the total number of rice
pixels in our study area. Each rice pixel’s assimilating process is allocated
to one specific thread on the GPU.

Step 1: Obtain the index of one rice pixel’s MLAI series
with thread identifiers and extract the rice pixel’s MLAI
series;

Step 2: Randomly initialize SPAN in its range;
Step 3: Input randomized SPAN and meteorological data

into the WOFOST model to calculate SLAI;
Step 4: Calculate the cost function value (C) with SLAI and

MLAI through Eq. (2).
Step 5: Assess whether C reaches the minimum. If yes,

output the corresponding SPAN to the gbest in accordance
with the index in Step 1; if no, adjust SPAN and return to
Step 3.

Before kernel function is activated, the data to be trans-
ferred from the host terminal to the device terminal include
MLAI, TMIN, TMAX and AVRAD. MLAI stores all rice
pixels’ LAI in a year and TMIN, TMAX and AVRAD store
the meteorological data. After the kernel function is finished,
all rice pixels’ optimal SPAN must be transferred from the
GPU to the CPU. gbest stores all rice pixels’ SPAN. Trans-
ferring such a large data between the GPU and CPU is time-
consuming. Thus, to reduce the transferring time, we allocate
a pinnedmemory for the data to be transferred directly instead
of a pageable memory on the host terminal. This process will
reduce the time of copying data from pageable memory to
pinned memory (the GPU can only access the host pinned
memory) [74]. We can use the following codes to allocate
pinned memory for MLAI.

//Allocate pinned memory, nbytes is the size of MLAI
cudaMallocHost ((double ∗∗) &MLAI, nbytes);
As the methods of memory allocation for variables in

the parallel program, the local variables declaring inside
the kernel function are located in registers. Given the size
of these five datasets are relatively larger and each thread
(a pixel’s assimilation process) needs to obtain correspond-
ing data from MLAI, TMIN, TMAX AVRAD and assign
assimilation result to gbest, we allocated global memory for
them in our parallel program.
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IV. RESULTS
This section may be divided by subheadings. It should
provide a concise and precise description of the experimen-
tal results, their interpretation as well as the experimental
conclusions that can be drawn.

A. PRECISION ASSESSMENT OF ASSIMILATION
IMPLEMENTED ON GPU
We regarded the discrepancy (C) between each rice pixel’s
MLAI retrieved from satellite imagery and SLAI calculated
with the WOFOST model as the standard for measuring the
assimilation effect, which is calculated in Eq. (2). We eval-
uated the assimilation precision in three cases: a) SLAIe,
calculated from the WOFOST model that sets experiential
SPAN (50) as the input parameter; b) SLAIc, calculated from
the WOFOST model that sets the optimized SPAN of the
assimilation implemented on the CPU as the input parameter;
and c) SLAIg, calculated from the WOFOST model that sets
the optimized SPAN of the assimilation implemented on the
GPU as the input parameter. However, the comparison of
assimilation precision for all rice pixels in our study area
is hardly possible to conduct. Thus, we selected six sites
within the scope of the study area to compare their assimila-
tion precision. As previously described, we extracted a total
of 401296 rice pixels in each RS image and organized them
in one dimension. Similarly, the assimilating results, namely,
gbest (optimized SPAN for each rice pixel), were stored in
one dimension. We divided the gbest equidistantly into six
parts and extracted one optimized SPAN in each part. Six
optimized SPANs and meteorological data are inputted into
theWOFOSTmodel to calculate the SLAIc and SLAIg of the
six sites. The results of comparing these six sites’ precision
represent the assimilation precision of the entire study area.
Figure 5 shows the locations of six sites and comparison
results of the assimilation precision.

First, SLAI calculated from the WOFOST model that sets
the assimilating result (optimized SPAN) as the input param-
eter is closer to the actual LAI than SLAI calculated from
the WOFOST model that sets the experiential SPAN as the
input parameter, whether the assimilation is implemented on
the GPU or CPU. However, the precision of the assimilation
implemented on the GPU is slightly inferior to that on the
CPU. The reason is that the GPU is often used for parallel
tasks with simple control logic and calculations and poorly
handles programs that require high-precision results, whereas
the CPU performs better when executing extreme complex
programs. Nevertheless, numerous complex floating-point
calculations and logical operations in the assimilating process
are presented.

B. EVALUATIONS OF GPU PERFORMANCE IN
COMPUTATIONAL TIME GAINS
The serial program includes individually executing all
rice pixels’ assimilation on the CPU, which is the same
with the parallel program. However, when the data size

FIGURE 5. Comparison of the assimilation precision of three
circumstances. x and y represent the line and column numbers of the
sites in the entire study area. Ce, Cc and Cg indicate the MLAI
discrepancies with each site’s SLAIe, SLAIc and SLAIg, respectively.

(number of rice pixels) is greater than 10000, the memory
space on the CPUwill be insufficient for storing the variables
in the assimilating process. Therefore, we divided all the
datasets (401296 pixels) into 41 batches. Each batch size is
10000 and the size of the last one is 1296. When the data size
is over 10000, the execution time of different size data sets is
the computation time for all batches within the corresponding
data set in Table 3.

Table 3 compares the computation times of serial and
parallel programs in handling different data sizes (number
of rice pixels). Distinctly, the parallel program executed by
the GPU for the assimilation considerably outperforms the
serial program executed by the CPU. The major reason for
the remarkable acceleration is the massive parallelism imple-
mented by a large number of different threads on the GPU that
synchronously executes the assimilation processes. However,
when the data size is less than 100 pixels, the execution
time of the serial program is less than that of the parallel
program. This phenomenon results from the frequentmemory
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TABLE 3. Time consumed by the parallel and serial programs.

transmission between the GPU and CPU, which can weaken
the parallel program’s performance. Table 3 shows that the
speedup increases with the increase of input data size. The
maximum Speedup in this work reaches near 240 times.

C. SPATIAL DISTRIBUTION OF RICE GROWTH
PARAMETERS IN A LARGE SCALE
Each rice pixel’s optimized SPAN can be used as the input
parameter of the WOFOST model to simulate rice LAI daily.
WOFOST can also simulate important growth parameters
other than LAI, such as WRT and WSO, which can com-
mendably reflect the rice growth conditions. All rice pixels’
LAI, WRT and WSO values are reorganized in accordance
with the previously saved locations of all rice pixels in the
2D image. As shown in Figure 6, we simulated the spatial
distribution of rice LAI, WRT and WSO within the entire
study area at several key time nodes during the rice growth
season. Figure 7 simulates the dynamic changes of LAI,WRT
and WSO at a time step of 5 days during the rice growth
season. Generally, LAI, WRT andWSO in 2015 and 2016 are
higher than those in 2017, indicating that the rice growth
conditions in 2015 and 2016 are better than that in 2017. The
speeds of rice growth in 2015 and 2016 are faster than that
in 2017, and the speed of rice senescence in 2016 is faster
than those in 2015 and 2017. Furthermore, the final WSO

in 2016 is higher than those in 2015 and 2017, indicating that
the grain output in 2016 is higher than those in 2015 and 2017.

V. DISCUSSION
We mainly improved the efficiency of the assimilation
between the WOFOST model and satellite imagery by paral-
lel implementation based on the GPU with CUDA platform.
We inputted the most time-consuming work (all rice pixels’
assimilation) into thousands of GPU threads and concurrently
start all threads to reduce the execution time. We compared
the precision and execution times of the assimilation imple-
mented on the CPU and GPU. Although the assimilation
precision performance of the GPU is slightly lower than
that of the CPU, the gains in the computational time aspect,
such as the huge acceleration (240 times) from the GPU’s
parallel implementation, are sufficiently excellent for appli-
cation. With the highly efficient parallel assimilating results,
we simulated the spatial distribution of rice growth conditions
in a large scale.

A comparison with other GPU-based image processing
works shows differences in two main aspects. The first aspect
involves the manners of thread organization on the GPU.
General works for image processing must assign specific
computational tasks for all pixels on the image, which are
inherently planar, so the 2D thread organization is further
suitable. Assimilation for all pixels on the RS image was not
required to obtain the rice growth conditions in our study
area but not for all rice pixels. We extracted all rice pix-
els and input rice LAI in one RS image into a 1D vector.
Hence, we adopted a 1D manner to organize all threads on
the GPU. Second, the model calculations of each thread in
this work are considerably more complex than those in other
image processing works. As discussed in Section 3, the kernel
function PSO_WOFOST consists of numerous intermediate
variables, floating-point calculations, iterations and judgment
statements, which prevent the speedup of the assimilating
progress. We simplified the PSO_WOFOST as much as pos-
sible, for instance, removing the unnecessary variables and
calculations in the WOFOST model. However, the execution
of WOFOST and the PSO algorithm is complex and time-
consuming. The optimization and acceleration of each rice
pixel’s assimilating algorithm still require further work.

The parallel implementation of assimilation can be opti-
mized in numerous aspects in the future. For example, on the
basis of different usages of variables, the most applicable
memory space is allocated on the GPU to store variables,
such as constant, shared and local memories, to improve
the parallel program’s performance. In addition, CUDA pro-
vides a series of accelerated libraries to improve the parallel
program’s performance, for example, cuBLAS contains all
interfaces of functions in the linear algebra BLAS library and
cuRAND includes the methods of quickly generating random
numbers. The utilization of CUDA - accelerated libraries will
greatly improve the parallel program’s performance.

Actually, this article does not solve the upscaling problem
of the WOFOST model applicated in large-scale. On the
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FIGURE 6. Spatial distribution of rice LAI (a), WRT (b) and WSO (c) during the growth period of the entire study area.
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FIGURE 7. Dynamic changes of LAI and WRT in the entire study area. The
time step is 5 days. These values are the averages of the entire area at
each period.

one hand, when the study area continues to expand, it is
completely insufficient to use the data from one meteoro-
logical station to represent the entire area due to the spatial
heterogeneity. The possible methods for upscaling to a larger
area include using grid meteorological data as the model’s
inputs, conducting spatial interpolation using the data from
multiple weather stations. For the issue of meteorological
data upscaling, we will continue to study in the future. On the
other hand, when the study area continues to expand, due to
regional differences in crop growth, the crop parameters in
the WOFOST model also need to be adjusted. How to adjust
us will also be one important research direction in the future.

VI. CONCLUSION
A highly efficient parallel method based on the GPU with the
CUDA platform for the assimilation between the RS data set
and WOFOST model by using the PSO algorithm was devel-
oped. Each rice pixel’s assimilating process between MLAI
and SLAI through PSO, which is the most time-consuming
work, was allocated to one specific thread on the GPU for the
parallel implementation of all rice pixels’ assimilation tasks
in the entire study area. With the assimilating results, we sim-
ulated the crop growth parameters quickly to analyze rice
growth conditions in a large scale. The remarkable progress
of this work is based on ensuring the precision of assimilating
results within an acceptable margin of error and dramatically
improving the performance of the assimilation process. The
execution times of the parallel and serial programs when
handling different sizes of rice pixels are compared. Results
show that the parallel implementation based on the GPU has
considerably improved the speed of the assimilation between
the RS data and WOFOST model and the savings scale
with the increase in data size. The speedup reaches almost
240 times in this work. With the highly efficient assimilation
results, we simulated rice growth parameters quickly and
obtained the spatial distribution of rice growth conditions in
a large scale.
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