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ABSTRACT This study focuses on the input-to-state stability issue for impulsive Gilpin-Ayala competition
model with reaction diffusion and delayed feedback. By using a fixed point theorem, variational method and
Lyapunov function method, the unique existence of globally asymptotical input-to-state stability of positive
stationary solution is established under Dirichlet zero boundary value. Remarkably, it is the first paper to
derive the unique existence of the stationary solution of Reaction-Diffusion (RD) Gilpin-Ayala competition
model, which is globally asymptotical input-to-state stability. In the end, simulation results are presented to
validate the effectiveness and feasibility of the proposed results.

INDEX TERMS Gilpin-Ayala competition model, globally asymptotical stability, Lyapunov function,
Markovian jumping.

I. INTRODUCTION
Delayed ecosystem or reaction-diffusion ecosystem has
been investigated for a long time (see, e.g. [1]–[4], [10],
[12]–[14], [16] and the references therein). But most of the
related literature only involved in the Neumann zero bound-
ary value. In real world, Dirichlet zero boundary value can
sometimes better simulate the population ecology, for exam-
ple, the population density of deep-sea fish at the edge of
their life circle is zero, and out of the circle may mean that
they cannot adapt to the environment. Besides, the delayed
feedback model is introduced in this paper, for the larval
individuals in the population often have a certain growth
period, and only adults can participate in the food competition
among populations. Such delayed feedback models are not
only suitable for biological population competition model,
but also common to other dynamic models ( [14]–[16]).
In addition, Markov models can always simulate the
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competition systems of biological population with random
factors and other dynamical systems ( [9], [17]). Some recent
works have been involved in semi-Markov jump systems
([38]–[40]), which greatly enriches the application ofMarkov
process. In addition, multiple-species competition models are
always linear ones. For example, even in 2017, Yuanyuan
Liu and Youshan Tao investigated the following two-species
linear competition model with cross-diffusion for one species
under Neumann boundary value ( [4]):

∂u
∂t
= 1[(d1 + a12v)u]+ µ1u(1− u− a1v),

x ∈ �, t > 0,

0 = 1v+ µ2v(1− v− a2u), x ∈ �, t > 0,
∂u
∂ν
=
∂v
∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �. (1)

Until 1973, Gilpin and Ayala found that the model did
not match a series of experimental data well( [5]). Via accu-
rate data analysis, they proposed the following nonlinear
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competition model with two-species:

ẋ1(t) = x1(t)[b1 − a11x
θ1
1 (t)− a12x2(t)],

ẋ2(t) = x2(t)[b2 − a21x1(t)− a22x
θ2
2 (t)], (2)

in which θ1, θ2 represent the nonlinear density restric-
tions. As pointed out in [6]–[8] that the nonlinear den-
sity restrictions model can match well the experimental
data on drosophila melanogasters when θi was far less
than 1. From then, Gilpin-Ayala ecosystems have been
investigated extensively (see, e.g. [3], [12], [13], [17]).
Even various reaction-diffusion Gilpin-Ayala competition
models were investigated under Neumann boundary value
(see, e.g. [2]–[4]). But seldom reaction-diffusion two-species
competition models were studied under Dirichlet boundary
value. In fact, there are many cases suitable to the Dirich-
let boundary problem. For example, deep sea fish live in
a certain range of three-dimensional waters, and in their
area edge, the population density of deep sea fish is zero.
Besides, the living range of some pollens is also affected
by their regional environment. They only spread in a certain
area, and the population density of the living pollens on
the edge of the area is zero. Based on the above-mentioned
cases, we shall investigate the global stabilization of reaction-
diffusion Gilpin-Ayala competition models. We also assume
θi < 1 in this paper so that it can match well the
experimental data on drosophila melanogasters. Particularly,
the two-species ecosystem’s globally asymptotical stabiliza-
tion means that after a long time, population densities of
two species will reach to a pair of positive numbers (two
positive numbers), respectively. That is, the suitable artificial
intervention can make both of species alive. But it is impor-
tant to prove the existence of a positive stationary solution
of the ecosystem. Different from the Neumann boundary
problem, our Dirichlet boundary condition of the ecosystem
makes us deal with the existence of positive solutions for
the corresponding elliptic equations, but ecosystems with
Neumann boundary condition only make us deal with the
existence of positive solutions for simple algebraic equations.
Moreover, in order to achieve global stabilization, we have to
solve the uniqueness of the solution of the elliptic equations.
To overcome all the above-mentioned difficulties, we have to
utilize the fixed point theory and variationalmethods to derive
the unique existence of the positive stationary solution before
we use impulse control technique on the ecosystem.

Furthermore, input-to-state stability was studied in
many literature involved in various dynamical systems
(see [18]- [28]), which is also suitable to ecosystem. In fact,
putting a certain amount of food and small fry in the fish pond
can be seen as the external input, which canmake the dynamic
of the ecosystem stabilized at a positive equilibrium point. By
employing the methods used in [11], the unique existence of
the stable stationary solution of RDGilpin-Ayala competition
model was obtained.

Compared with the existing references, the main contribu-
tions of this paper are as follows:

F It is the first paper to derive the unique existence of the
stationary solution of reaction-diffusion Gilpin-Ayala com-
petition model, which is globally asymptotical input-to-state
stability.

F Different from Neumann boundary problem, the non-
zero constant equilibrium point is not the solution for
the ecosystem with Dirichlet boundary value (see [11]),
which brings about more mathematical difficulties. In this
paper, we originally propose how to impulsively control the
dynamic behavior of a reaction diffusion two species compe-
tition model with Dirichlet boundary value.

F Compared with the existing Lipschitz condition of
Theorem 3.1-3.2 of [11], the generalized Lipschitz one is
developed.

Besides, dynamical analysis on three-species ecosys-
tem or singer-species ecosystem were investigated in many
literature (see,e.g. [32]–[37] and the references therein), and
some limit cycles were described and characterized in some
previous literature. Actually, the methods of this paper can
also applied to stabilize globally such ecosystems.

Throughout of this paper, the author denotes by I the
identity matrix. Besides, ‖ui‖ =

√∫
�σ
|∇ui|2dx, and

‖u‖2 =
2∑
i=1
‖ui‖2, for u = (u1(x), u2(x))T with ui ∈

H1
0 (�). Denote by λ1 the first positive eigenvalue of Laplace

operator −1 in H1
0 (�). For vectors u = (u1, u2)T , v =

(v1, v2)T , I denote |u| = (|u1|, |u2|)T , and u 6 v implies
ui 6 vi, i = 1, 2. Matrices A < B means that
the symmetric matrices A,B satisfies (B − A) is a posi-
tive definite matrix. Denote |C| = (|cij|)2×2 for matrix
C = (cij)2×2.

II. SYSTEM DESCRIPTIONS AND PREPARATIONS
Let λn be the nth positive eigenvalue of the following Dirich-
let problem:

1ϕ(x) = λϕ(x), x ∈ �,

ϕ(x)) = 0, x ∈ ∂�,

then λn satisfies 0 < λ1 < λ2 6 λ3 6 · · · 6 λn 6 · · · ,
and λn → +∞ if n → ∞. Here, λ1 is positive, isolated
and singled, and its corresponding eigenfunctions space is
one dimension space with positive eigenfunctions and neg-
ative ones (see,e.g. [11]). Particularly in H1

0 (�), the Poincare
inequality

∫
�
|∇ϕ(x)|2dx > λ1

∫
�
ϕ2(x)dx holds.

Denote by (ϒ, F , P) the complete probability space
with a natural filtration {Ft }t≥0, which is described similarly
as those of [15]. Consider the following delayed feedback
system:

∂u1
∂t
= d11u1 + u1(b1 − a11u

θ1
1 − a12u2)

+ k1(r(t))[u1− u1(t − τ1(t), x)]+ χ1,

t > 0, x ∈ �,
∂u2
∂t
= d21u2 + u2(b2 − a21u1 − a22u

θ2
2 )
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+ k2(r(t))[u2− u2(t − τ2(t), x)]+ χ2,

t > 0, x ∈ �,

u1(t, x) = u2(t, x) = 0, t > 0, x ∈ ∂�, (3)

where � is a domain in R3 with smooth boundary ∂�,
χi is a bounded continuous disturbance input with χ (x) =
(χ1(x), χ2(x))T and 0 < |χi(x)| < Ji(i = 1, 2), and k1(r(t))
and k2(r(t)) are feedback benefit coefficients at mode r(t) =
r ∈ S. Below, we denote k1(r(t)) = k1r , k2(r(t)) = k2r for
simple.
Remark 2.1: Here, we assume� ⊂ R3. And if two species

live in two dimensional plane, we can assume ui(t, x) =
ui(t, x1, x2, x3) = ui(t, x1, x2, ·), independent of the third
dimension, where x = (x1, x2, x3)T ∈ �.
Assume that (u∗1(x), u

∗

2(x)) is a positive stationary solution
of the system (3). Set

U1 = u1 − u∗1(x)

U2 = u2 − u∗2(x), (4)

and the stationary solution (u∗1(x), u
∗

2(x)) of the system (3)
corresponds to the zero solution (0, 0) of the following
system:

∂U1

∂t
= d11U1 + b1U1 −81(U1,U2)

+ k1r [U1 − U1(t − τ1(t), x)], t > 0, x ∈ �,
∂U2

∂t
= d21U2 + b2U2 −82(U1,U2)

+ k2r [U2 − U2(t − τ2(t), x)], t > 0, x ∈ �,

U1(t, x) = U2(t, x) = 0, t > 0, x ∈ ∂�, (5)

or
∂U1

∂t
= d11U1 + (b1 + k1r )U1 −81(U1,U2)

− k1rU1(t − τ1(t), x), t > 0, x ∈ �,
∂U2

∂t
= d21U2 + (b2 + k2r )U2 −82(U1,U2)

− k2rU2(t − τ2(t), x), t > 0, x ∈ �,

U1(t, x) = U2(t, x) = 0, t > 0, x ∈ ∂�, (6)

where we denote U = (U1,U2)T , and

81(U ) = (U1+ u∗1(x))[a11(U1+ u∗1(x))
θ1+ a12(U2+ u∗2(x))]

− u∗1(x)(a11u
∗

1(x)
θ1 + a12u∗2(x)),

82(U ) = (U2+ u∗2(x))[a21(U1+ u∗1(x))+ a22(U2+ u∗2(x))
θ2 ]

−u∗2(x)(a21u
∗

1(x)+ a22u
∗

2(x)
θ2 ). (7)

The following system is the system (6) in form of vector-
matrix:

∂U
∂t
= D1U + (B+ Kr )U −8(U )

−KrU (t − τ (t), x), t > 0, x ∈ �,

U (t, x) = 0, t > 0, x ∈ ∂�, (8)

where U = (U1,U2)T , U (t − τ (t), x) = (U (t −
τ1(t), x),U (t − τ2(t), x))T , 8(U ) = (81(U ),82(U ))T and

D =
(
d1 0
0 d2

)
, Ak =

(
a(k)1 0
0 a(k)2

)
,

B =
(
b1 0
0 b2

)
, Kr =

(
k1r 0
0 k2r

)
. (9)

Under impulse control on (8), one can get the following
system

∂U
∂t
= D1U + (B+ Kr )U −8(U )

−KrU (t − τ (t), x), t > 0, t 6= tk , x ∈ �,

U (t+k , x) = AkU (t−k , x), k = 1, 2 · · ·

U (t, x) = 0, t > 0, x ∈ ∂�, (10)

where U (t−k , x) = U (tk , x) for all i = 1, 2, k = 1, 2, · · · .
Besides, the bounded initial value of the system (10) is pro-
posed as follows,

U1(s, x) = φ1(s, x) > 0,

U2(s, x) = φ2(s, x) > 0, s ∈ [−τ, 0], x ∈ �, (11)

or

U (s, x) = φ(s, x) > 0, s ∈ [−τ, 0], x ∈ �, (12)

where φ(s, x) = (φ1(s, x), φ2(s, x))T .

III. MAIN RESULTS
Firstly assume that θi ∈ (0, 1) for i = 1, 2, just like [6]- [8].
Next, the following assumption on the population density

may be necessary:
(H1) There are positive numbers Mi,Ni such that

0 < N1 6 u1 6 M1, 0 < N2 6 u2 6 M2. (13)

Remark 3.1 : Everyone knows the fact that the population
density of any species must have the bounded below, or the
species will die out. For example, when the population den-
sity of whales is lower than a certain degree, it will be difficult
for male and female whales to meet each other in the vast sea,
leading to the extinction of the species. Besides, due to the
limited resource, the population density of any species must
have an supper boundedness.

Next, the following existence of positive stationary solu-
tion comes mainly from Theorem 3.1 of [11]. Of course,
the ecosystem (8) is involved in non-Lipschitz functions,
and so the author has to generalize the first conclusion of
Theorem 3.1 of [11] from the Lipschitz condition to the
generalized Lipschitz condition.
Theorem 3.1: Suppose the condition (H1) holds, θi ∈ (0, 1)

for i = 1, 2 and 0 < |χi| < Ji with J = (J1, J2)T ,

0 6 g(u∗(x))− J 6 g(u∗(x))+ J 6 cDE, (14)

where g(u) = (g1(u1, u2), g2(u1, u2))T , and

g1(u1, u2) = u1(b1 − a11u
θ1
1 − a12u2),

g2(u1, u2) = u2(b2 − a21u1 − a22u
θ2
2 ), (15)

then the system (3) possesses at least one positive bounded
stationary solution (u∗1, u

∗

2).

VOLUME 8, 2020 222627



R. Rao et al.: Input-to-State Stability for Impulsive Gilpin-Ayala Competition Model

Proof: Firstly definite the so-called generalized Lips-
chitz condition: f (u1, u2) is said to satisfy the generalized
Lipschitz condition if there are constants l̄1, l̄2 > 0 such that

|f (u1, u2)− f (v1, v2)|

6 l̄1|u1 − v1| + l̄2|u2 − v2|, ui, vi ∈ R1. (16)

In fact, the first conclusion of Theorem 3.1 of [11] still
holds if the Lipschitz conditions are replaced with the gen-
eralized Lipschitz condition. And hence, Theorem 3.1 is the
direct corollary of Theorem 3.1 of [11]. However, in view of
the integrity of the proof, we are willing to prove it in details.

Indeed, let (u1(x), u2(x)) is the stationary solution,
satisfying

d11u1 + g1(u1, u2)+ χ1 = 0, x ∈ �,

d21u2 + g2(u1, u2)+ χ2 = 0, x ∈ �,

u1(x) = u2(x) = 0, x ∈ ∂�, (17)

The condition (H1) yields that there are four positive con-
stants l1, l2, l3 and l4 such that

|g1(u1, u2)− g1(v1, v2)|

6 l1|u1 − v1| + l2|u2 − v2|, ui, vi ∈ R1 (18)

and

|g2(u1, u2)− g2(v1, v2)|

6 l3|u1 − v1| + l4|u2 − v2|, ui, vi ∈ R1, (19)

where

l1 = b1 + a11(1+ θ1)M
θ1
1 + a12M2, l2 = a12M1,

l3 = a21M2, l4 = b2 + a22(1+ θ2)M
θ2
2 + a21M1. (20)

In fact, 0 < θi < 1 and (H1) yield

|g1(u1, u2)− g1(v1, v2)|

=

∣∣∣∣[u1(b1 − a11uθ11 − a12u2)]− [v1(b1 − a11v
θ1
1 − a12v2)]

∣∣∣∣
6 [b1 + a11(1+ θ1)M

θ1
1 + a12M2]|u1 − v1|

+ a12M1|u2 − v2|, (21)

|g2(u1, u2)− g2(v1, v2)|

=

∣∣∣∣[u2(b2 − a21u1 − a22uθ22 )]− [v2(b2 − a21v1 − a22v
θ2
2 )]

∣∣∣∣
6 a21M2|u1 − v1| + [b2 + a22(1+ θ2)M

θ2
2

+ a21M1]|u2 − v2|,

(22)

which derives (20).
If the stationary solution of the system (3) exists, we may

denote it by u∗(x) = (u∗1(x), u
∗

2(x))
T .

Define the operator M : [C(�σ )]2 → [C(�σ )]2 as
follows,

M =

(
−1 0
0 −1

)
. (23)

The operatorM has the inverse operator M−1 as follows,

M−1 =

(
(−1)−1 0

0 (−1)−1

)
, (24)

where M−1 : [C(�σ )]2 → [C(�σ )]2 is a linear compact
positive operator (see, e.g. [11]), and

Mu∗(x) = D−1g(u∗(x))+ D−1χ, x ∈ �, (25)

u∗(x) = 0, x ∈ ∂�. (26)

It is obvious that
(
D−1g(u∗(x)) + D−1χ

)
is continuous

for all the variables x, u∗1, u
∗

2. Define K as that of the proof of
Theorem 3.1 in [11], then K is a positive cone, which must
be a closed convex subset of [C(�σ )]2. Define an operator
T : K→ K such that

Tϕ =M−1
(
D−1g(u∗(x))+ D−1χ

)
, ϕ ∈ K. (27)

Because M−1 is the linear positive compact operator, and(
D−1g(u∗(x))+D−1χ

)
is positive continuous, one can con-

clude that T : K→ K is a positive compact operator.
Next, completely similar as the proof of Theo-

rem 3.1 of [11], one can utilize the fixed point theorem
(Lemma 2.1 of [11]) to prove that T satisfies all the assump-
tion conditions of Lemma 2.1 of [11], which implies that T
has at least a fixed point in K. And u∗ is a bounded positive
solution of the system (3).

Next, Theorem 3.2 of [11] proposed the methods which
may be helpful to conclude the following uniqueness result:
Theorem 3.2: Based on the assumptions of Theorem 3.1,

and suppose, in addition, the following condition is satisfied,
(H2) for any mode r(t) = r, there exists a scalar ε > 0

such that l1 + ε
l2 + l3

2
0

0 l4 + ε−1
l2 + l3

2

 < λ1D, (28)

then the system (3) possesses the unique positive bounded
stationary solution u∗(x) for x ∈ �σ with u∗|∂�σ = 0, where
u∗(x) is the positive bounded solution in Theorem 3.1, and
li(i = 1, 2, 3, 4) is defined in (20).

Proof: Assume both u(x) and v(x) are the stationary
solutions of the system (3). Then we claim u(x) = v(x).
In fact,

(u(x)− v(x))T
(
g(u(x))− g(v(x))

)
6 |u− v|T |g(u)− g(v)|

6 l1|u1 − v1|2 + l2|u1 − v1| · |u2 − v2|

+ l3|u1 − v1| · |u2 − v2| + l4|u2 − v2|2

6 |u− v|T

 l1 + ε
l2 + l3

2
0

0 l4 + ε−1
l2 + l3

2

 |u− v|.
(29)
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Below, I shall employ some methods similar as those of
the proof of Theorem 3.2 of [11]. Since both u(x) and v(x)
are the stationary solutions of the system (3), one can see it
from (29), variational method and the Poincare inequality that

λ1

∫
�

|u(x)− v(x)|TD|u(x)− v(x)|dx

6
∫
�

|∇(u(x)− v(x))|TD|∇(u(x)− v(x))|dx

=

∫
�

(u− v)T [g(u)− g(v)]dx

6 |u− v|T

 l1 + ε
l2 + l3

2
0

0 l4 + ε−1
l2 + l3

2

 |u− v|.
(30)

Now the condition (H2) yields the claim via the proof
by contradiction. And so the system (3) possesses a unique
positive bounded stationaru solution u∗(x) for x ∈ �σ with
u∗|∂�σ = 0.

Below, I shall prove that the above-mentioned positive
bounded vector function u∗(x) is globally exponentially sta-
ble, which is the unique stationary solution of the system (3),
corresponding to the null solution of the system (10).
Theorem 3.3 : Suppose the conditions (H1),(H2) and (14)

hold. In addition, there is a sequence positive definite matri-
ces Pr (r ∈ S), positive numbers wr , πr (r ∈ S), ε, ε1, ε2,
γ, ς, λ such that

0 < λmaxATk Ak < e−(ς+λ)(tk+1−tk ), k ∈ Z+, (31)
1
wr
λmax

(
− 2λ1DPr + 2(B+ Kr )Pr +

∑
j∈S

γrjPj

+ ε1PrKr + ε2Pr + ε
−1
2 πrL8

)
+
γ eλτ

wr
λmax

(
ε−11 PrKr

)
6 ς − λ, (32)

0 < wr I 6 Pr 6 πr I , ∀ r ∈ S, (33)

where γ > 1
λmaxATk Ak

, k ∈ Z+, and

L8 = 2
(
ω1 0
0 ω2

)
, (34)

with ω1 = [a11(1 + θ1)M
θ1
1 + a12M2]2 + a221M

2
2 and

ω2 = [a22(1+ θ2)M
θ2
2 + a21M1]2 + a212M

2
1 ,

then the unique positive bounded stationary solution
u∗(x) is globally exponential input-to-state stability for
0 < |χ | < J . At the same time, the null solution of the impul-
sive system (10) with initial value (11) is globally exponential
input-to-state stability with the convergence rate λ

2 .
Proof: Consider the following Lyapunov function:

V (t, r) =
∫
�

UT (t, x)PrU (t, x)dx, ∀ r(t) = r ∈ S. (35)

Below, the Poincare inequality is employed to deal with the
diffusion item, just like the related literature (see, e.g. [23]).
Let L be the weak infinitesimal operator (see, e.g. [23]) such
that for t > 0, t 6= tk ,

LV (t, r)

6
∫
�

(
UT [−2λ1DPr + 2(B+ Kr )Pr

+

∑
j∈S

γrjPj]U + [|U |TPr |8(U )| + |8(U )|TPr |U |]

+ [|U |TPrKr |U (t − τ (t), x)|

+ |U (t − τ (t), x)|TKrPr |U |]
)
dx. (36)

On the other hand,

|U |TPrKr |U (t − τ (t), x)| + |U (t − τ (t), x)|TKrPr |U |

6 ε1UTPrKrU + ε
−1
1 UT (t − τ (t), x)PrKrU (t − τ (t), x),

(37)

and

|U |TPr |8(U )| + |8(U )|TPr |U |

6 ε2UTPrU + ε
−1
2 8T (U )Pr8(U )

6 ε2UTPrU + ε
−1
2 πr8

T (U )8(U ). (38)

Besides,

|81(U )| = u1(a11u
θ1
1 + a12u2)

− u∗1(x)(a11u
∗

1(x)
θ1 + a12u∗2(x))

6 [a11(1+ θ1)M
θ1
1 + a12M2]|U1| + a12M1|U2|.

(39)

Similarly,

|82(U )| 6 a21M2|U1| + [a22(1+ θ2)M
θ2
2 + a21M1]|U2|.

(40)

In addition,

8T (U )8(U )

6

(
[a11(1+ θ1)M

θ1
1 + a12M2]|U1| + a12M1|U2|

)2

+

(
a21M2|U1| + [a22(1+ θ2)M

θ2
2

+ a21M1]|U2|

)2

6 UTL8U . (41)

It follows by (36)-(41) that for , t > 0, t 6= tk ,

LV (t, r)

6
∫
�

(
UT [−2λ1DPr + 2(B+ Kr )Pr

+

∑
j∈S

γrjPj]U + [|U |TPr |8(U )| + |8(U )|TPr |U |]

+ [|U |TPrKr |U (t − τ (t), x)|
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+ |U (t − τ (t), x)|TKrPr |U |]
)
dx

6
∫
�

UT
[
− 2λ1DPr + 2(B+ Kr )Pr

+

∑
j∈S

γrjPj + ε1PrKr + ε2Pr + ε
−1
2 πrL8

]
Udx

+ ε−11

∫
�

UT (t− τ (t), x)PrKrU (t− τ (t), x)dx, (42)

which implies that for a small enough positive number ε,

EV (t + ε)− EV (t) =
∫ t+ε

t
ELV (s)ds, (43)

and letting ε → 0, it leads to

D+EV (t, r)

6 E
∫
�

UT
[
− 2λ1DPr + 2(B+ Kr )Pr

+

∑
j∈S

γrjPj + ε1PrKr + ε2Pr + ε
−1
2 πrL8

]
Udx

+ ε−11 E
∫
�

UT (t − τ (t), x)PrKrU (t − τ (t), x)dx

6
1
wr
λmax

[
− 2λ1DPr + 2(B+ Kr )Pr +

∑
j∈S

γrjPj

+ ε1PrKr + ε2Pr + ε
−1
2 πrL8

]
EV (t, r)

+
1
wr
λmax

(
ε−11 PrKr

)
EV (t − τ (t), r). (44)

Due to the conditions (31)-(33) and the proof of The-
orem 3.3 of [15], we can similarly prove and obtain the
following inequality:

EV (t, r) 6 M
(
E sup
s∈[−τ,0]

V (s, r)
)
e−λ(t−t0), t ∈ [tk−1, tk ),

(45)

where M > 1 is a constant, and k ∈ Z+, r ∈ S.
Moreover, it follows by (45) and (33) that for t ∈

[tk−1, tk ), k ∈ Z+,

(min
r∈S

wr )E‖U (t)‖2L2(�) 6 (max
r∈S

πr )ME‖φ(s)‖2τ e
−λ(t−t0),

(46)

where ‖φ(s)‖2τ = sup
s∈[−τ,0]

∫
�
|φ(s, x)|2dx. Similarly as the

proof of Theorem 2 of [16], one can conclude from (46) that

E‖U (t)‖2L2(�) 6
max
r∈S

πr

min
r∈S

wr
ME‖φ(s)‖2τ e

−λ(t−t0), t ∈ [tk−1, tk ],

(47)

in which the positive constant
max
r∈S

πr

min
r∈S

wr
M is independent of any

r ∈ S. Therefore, the unique positive bounded stationary
solution u∗(x) is globally exponential input-to-state stability
for 0 < |χ | < J . At the same time, the null solution of the

impulsive system (10) with initial value (11) is globally expo-
nential input-to-state stability with the convergence rate λ

2 .
Remark 3.2 : The impulse control condition in Theo-

rem 3.3 is easy to test, which is the advantage of the algo-
rithm.However, we can not find out somemethods to improve
the Lyapunov function method in the proof of Theorem 3.3,
which may make add some free-weighting matrices to the
algorithm to reduce its conservatism, which is the important
point to be improved in the future.

IV. NUMERICAL EXAMPLE
Example 4.1. Consider the following system:

∂u1
∂t
= d11u1 + u1(b1 − a11u

1
3
1 − a12u2)

+ k1(r(t))[u1 − u1(t − τ1(t), x)]+ χ1,

t > 0, x ∈ �,
∂u2
∂t
= d21u2 + u2(b2 − a21u1 − a22u

1
5
2 )

+ k2(r(t))[u2 − u2(t − τ2(t), x)]+ χ2,

t > 0, x ∈ �,

u1(t, x) = u2(t, x) = 0, t > 0, x ∈ ∂�, (48)

where θ1 = 1
3 , θ2 =

1
5 , � = (− 1

2 ,
1
2 ) × (− 1

2 ,
1
2 ) × (− 1

2 ,
1
2 ),

then λ1 > 3 (see Remark 14 of [11]). Let d1 = 0.5, b1 = 1.1,
d2 = 0.4, b2 = 1, J1 = 0.003 = J2, ε = ε1 = ε2 = 1,
a11 = 0.002, a12 = 0.001, a21 = 0.001, a22 = 0.002,
τ = 0.01. And M1 = 1.5,M2 = 1.6,N1 = 0.5,N2 = 0.6.
and c = 100000, then direct computation yields

0 6 g(u∗(x))− J 6 g(u∗(x))+ J 6 cDE (49)

and l1 + ε
l2 + l3

2
0

0 l4 + ε−1
l2 + l3

2

 < λ1D, (50)

which means both the conditions (14) and (28) hold.
Furthermore, let S = {1, 2},

5 = (γij)2×2 =
(
−0.1 0.1
0.15 −0.15

)
,

K1 =

(
0.0013 0

0 0.0023

)
,K2 =

(
0.0012 0

0 0.0021

)
.

(51)

P1 =
(
0.9813 0

0 1.0033

)
, P2 =

(
1.0339 0

0 0.9963

)
,

(52)

and w1 = 0.98, π1 = 1.005, w2 = 0.99, π2 = 1.07, then
the condition (33) holds obviously.

Assume the pulse interval (tk+1 − tk ) = 0.25, for all k ∈
Z+, and

Ak ≡
(
0.1 0
0 0.2

)
, k ∈ Z+. (53)

Now, we set γ = 26, then we get γ = 26 > 25 =
1

λmaxATk Ak
, k ∈ Z+. Set ς = 5 and λ = 1, then the
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FIGURE 1. Sectional curve of u1 of Example 4.1-4.2.

direct calculation makes the condition (32) hold. Besides,
for k ∈ Z+,

0 < λmaxATk Ak = 0.04 < 0.8607 = e−(ς+λ)(tk+1−tk ), (54)

which makes the condition (31) holden.
Now, all the conditions of Theorem 3.3 are satisfied.

According to Theorem 3.3, the system (48) possesses the
unique positive bounded stationary solution u∗(x), which is
globally exponential input-to-state stability with the conver-
gence rate λ

2 = 0.5.
Example 4.2. In Example 4.1, replace the impulse quan-

tity (53) with the following stronger pulse amplitude:

Ak ≡
(
0.01 0
0 0.02

)
, k ∈ Z+, (55)

and the pulse interval (tk+1− tk ) ≡ 0.25 remains unchanged,
then we set γ = 630, and hence γ = 630 > 625 =

1
λmaxATk Ak

, k ∈ Z+.
Set ς = 10 and λ = 2, then the direct calculation makes

the condition (32) hold. Further, for k ∈ Z+,

0 < λmaxATk Ak = 0.0016 < 0.0498 = e−(ς+λ)(tk+1−tk ),

(56)

which makes the condition (31) hold. Now, all the conditions
of Theorem 3.3 are satisfied. According to Theorem 3.3, the
system (48) possesses the unique positive stationary solution
(u∗1, u

∗

2), which is globally exponentially stabilized under
impulse control with the convergence rate λ

2 = 1.

Remark 4.1 : Table 1 illuminates that under the same
pulse frequency, the higher the pulse intensity, the faster the
convergence speed. And we can see it from FIGURE 1 and
FIGURE 2 that the larger pulse can make the system stable at
an earlier time (see FIGURE 1 and FIGURE 2).

TABLE 1. Comparisons the influences on the convergence rate λ
2 under

different pulse amplitude with the same other data.

Example 4.3. In Example 4.1, we replace the pulse interval
with (tk+1 − tk ) ≡ 0.15, and pulse amplitude (53) remains
unchanged.

Now, we set γ = 26, then we get γ = 26 > 25 =
1

λmaxATk Ak
, k ∈ Z+. Set ς = 5.5 and λ = 1.5, then the direct

calculation makes the condition (32) hold. Further,

0 <λmaxATk Ak = 0.04 <0.3499= e−(ς+λ)(tk+1−tk ), k ∈ Z+,
(57)

which makes the condition (31) hold.
Now, all the conditions of Theorem 3.3 are satisfied.

According to Theorem 3.3, the system (48) possesses the
unique positive stationary solution (u∗1, u

∗

2), which is globally
exponentially stabilized under impulse control with the con-
vergence rate λ

2 = 0.75.
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FIGURE 2. Sectional curve of u2 of Example 4.1-4.2.

Remark 4.2: Table 2 reveals that under the same pulse
amplitude, the higher the pulse frequency, the faster the
convergence speed.

TABLE 2. Comparisons the influences on the convergence rate λ
2 under

different pulse frequency with the same other data.

V. CONCLUSION AND FURTHER CONSIDERATION
The ecosystem with Dirichelt zero boundary value represents
that the nature has limited resources, and population density
of the species is zero on the edge of the limited ecological
resources, which is entirely in line with some actual situa-
tions. Gilpin and Ayala in [5] pointed out that the model did
notmatch a series of experimental data well. Via accurate data
analysis, they proposed the nonlinear competition model with
two-species, in which θ1, θ2 represent the nonlinear density
restrictions. As pointed out in [6]- [8] that the nonlinear
density restrictions model can match well the experimental
data on drosophila melanogasters when θi was far less than
1. So, in this paper, the authors considered the nonlinear
density restriction models with θi < 1. Utilizing the fixed
point theorem, variational method and Lyapunov function

method resulted in the unique existence of the stationary solu-
tion of RD Gilpin-Ayala competition model, which is glob-
ally asymptotical input-to-state stability. Numerical examples
have illustrated that improving pulse frequency and pulse
amplitude is helpful tomake the ecosystem stabilized quickly.

Now, the further consideration is, how to study the
bi-stabilization of reaction-diffusion two species competition
model with Dirichlet boundary value under invasion of infec-
tious diseases. Especially in the novel coronavirus pneumonia
epidemic today, it is an interesting problem. In addition, from
the point of view ofmathematics ormathematical application,
the impulsive control of biological mathematical model with
switching rules should be further considered, in which some
methods of recent literature ( [29]–[31]) can be utilized.
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