
Received November 20, 2020, accepted November 24, 2020, date of publication December 7, 2020,
date of current version December 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043123

A Preliminary Study: Towards Parallel Garbage
Collection for NAND Flash-Based SSDs
GUANGYU ZHU 1, JAEHYUN HAN 2, AND YONGSEOK SON 2
1Department of Computer Science and Engineering, CAU Institute of Innovative Talent of Big Data, Chung-Ang University, Seoul 06974, South Korea
2School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Yongseok Son (sysganda@cau.ac.kr)

This research was supported in part by the Chung-Ang University Young Scientist Scholarship in 2020, and in part by the National
Research Foundation (NRF) funded by the Ministry of Education of Korea through the BK21 Plus Program.

ABSTRACT NAND Flash-based solid-state drives (SSDs) have been widely used as secondary storage
devices due to their faster access speed, lower power consumption, and higher reliability compared with
hard disk drives. However, application I/O performance can be significantly affected by garbage collection
(GC) inside SSDs. For example, a GC operation usually moves valid pages from a victim block into a clean
block in a serialized manner. Thus, it increases the GC time and affects the application I/O performance.
To address this issue, this article presents a preliminary study on a parallel GC scheme for flash-based SSDs.
In our scheme, we parallelize valid page migrations during a GC operation to reduce the total GC time. To
do this, we first propose a new flash chip architecture that enables valid page migrations in parallel. Second,
we collect information such as new addresses for the migration of valid pages by considering the restriction
of SSD operations. Finally, we employ multiple worker threads to migrate the valid pages using the collected
information in a parallel manner. We implement and evaluate our scheme using Disksim withMicrosoft SSD
extension. The experimental result shows that the proposed scheme reduces the overall GC time by 70% and
57% on average compared with the existing scheme and a state-of-the-art GC scheme IPPBE, respectively.

INDEX TERMS Garbage collection, NAND flash memory, parallelism, solid-state drive.

I. INTRODUCTION
Today, NAND flash-based solid state drives (SSDs) have
become an important part of storage devices because of their
better shock resistance, higher I/O throughput, and lower
latency compared with hard disk drives (HDDs) [24], [48].
As a different feature, due to an erase-before-write char-
acteristic of NAND flash memory [4], [47], SSDs perform
out-of-place updates. For example, when there is a need to
update data in a page, SSDs write new data to a new page
and mark the old page invalid. Thus, SSDs perform a garbage
collection procedure to reclaim these invalid pages to prepare
free space for incoming I/O requests.

Although GC is necessary to reclaim the invalid space,
it can lead to performance issues. For example, the response
time of some I/O requests can reach up to tens of
milliseconds [12] when GC takes place in certain address
spaces. This is because it blocks incoming I/O requests
to those address spaces which increases the I/O response
time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

To reduce the overhead of the GC procedure, previous
studies have proposed different schemes. CA-SSD [27] and
BPLRU [16] manage buffers to reduce the amount of data
written to flash chips, thereby reducing the overhead of GC.
PGC [34] presents a semi-preemptible GC scheme that pre-
empts ongoing GC operations and merges them with pending
I/O requests whenever possible. Thus, incoming I/O requests
are served along with GC I/O instead of waiting for the
completion of the GC procedure. I/O-parallelizedGC [9] uses
multi-plane advanced commands to handle GC and normal
I/O requests in parallel which increases plane utilization.
IPPBE [15] is a new advanced command that leverages the
structure of NAND flash memory to parallelize block erase
operations. Thus, IPPBE can reclaim more invalid pages
in a given erase latency. Our study is in line with these
approaches [9], [15], [16], [27], [34] in terms of reducing
the negative impact of SSD GC. In contrast, we focus on
parallelizing page movements in a GC operation by reading
valid pages in a victim block and writing them into a new
block simultaneously.

In this article, as a preliminary study, we propose a par-
allel garbage collection scheme for flash-based SSDs, which

223574 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0774-6556
https://orcid.org/0000-0002-6202-6690
https://orcid.org/0000-0003-4512-0121
https://orcid.org/0000-0001-7070-6699

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

reduces the amount of time required for a single GC oper-
ation. In our scheme, we enable valid page migrations in
parallel during a GC operation to reduce total GC time.
To do this, we first propose a new flash chip architec-
ture that is organized with additional registers for each die
and plane. This enables page read/write operations in par-
allel within a single plane where a GC operation occurs.
Second, we collect the information of valid pages to be
migrated by considering the restriction of SSD operations.
Finally, we employ multiple workers (threads) to migrate
the valid pages using the collected information in a parallel
manner.

We implement and evaluate our scheme using the
Microsoft Research (MSR) SSD extension [1] with
Disksim [6]. The experimental results show that our proposed
scheme reduces the overall GC time by up to 70% and
57% compared with the existing GC scheme and a state-of-
the-art scheme (IPPBE [15]), respectively, under real-world
workloads when using four migration workers.

In summary, the existing GC scheme moves valid pages
from a victim block into a clean block in a serialized manner
which increases the GC time and affects the SSD perfor-
mance. To alleviate this performance degradation, we propose
a parallel GC scheme to reduce the amount of time required
for a single GC operation. The contributions of our work are
as follows:

• We propose a flash chip architecture that enables a par-
allel GC procedure inside SSDs by adding registers for
each die.

• We design and implement a parallel garbage collection
scheme for flash-based SSDs to reduce the total GC
time.

• The experimental results show that our scheme can
reduce the total GC time by 70% on average com-
pared with the existing scheme under real-world work-
loads. And our scheme outperforms a state-of-the-art
GC scheme IPPBE by 57%.

The rest of this article is organized as follows: Section II
discusses the related work. Section III describes the back-
ground and motivation. Section IV presents the design
and implementation of the proposed scheme. Section V
shows the experimental results. Section VI concludes this
article.

II. RELATED WORK
A. LEVERAGING DATA LOCALITY
CA-SSD [16] and BPLRU [27] are buffer management
schemes that use data locality to reduce the access number
to flash chips. VBBMS [13] is a virtual-block based buffer
management algorithm that uses of both temporal and spatial
localities by putting random requests and sequential requests
into different buffer regions. Our study is in line with these
works [13], [16], [27] in terms of reducing the performance
degradation by GC. In contrast, we focus on the GC operation
instead of optimizing the buffer management.

B. HOT/COLD DATA SEPARATION
Lee and Kim [33] perform an empirical study that shows
the hot/cold data separation policies which can reduce the
GC overhead. Stoica and Ailamaki [46] proposed an update
frequency-based data placement algorithm. This algorithm
reduces the number of valid pages within a victim block,
which reduces the GC overhead. Thermo-GC [54] is a cost-
effective page hotness identifier that leverages the valid page
information in a GC victim block to estimate page hotness
and to reduce the lifetime variance of pages in a block.
Isolation [56] separates hot/cold data by treating the valid
pages in GC victim blocks as cold data. It manages one more
free block per plane and puts valid pages in victim blocks and
user write request data into different free blocks. LFGC [52]
improves durability of flash memory by tracking the number
of erase operations of each dirty block and selects blocks with
less erasures as victim blocks. It separates cold and hot valid
pages during GC, which reduces the page copy overhead. Our
study is in line with these works [33], [46], [52], [54], [56] in
terms of improving SSD performance. In contrast, we focus
on improving the internal GC procedure.

C. USING PREDICTION
EIGC [35] introduces a grey prediction model to determine
the number of victim blocks that should be selected for next
GC. This strategy provides better separation of cold and hot
data which reduces the cleaning cost and the number of GC.
DYGC [36] is a dynamic GC scheme that uses exponential
weighted moving average to estimate the hotness of each
valid page in victim blocks. This helps to better separate cold
pages from hot pages. Yang et al. [55] proposed a scheme to
predict the future temperature of data by using LSTM. This
scheme uses K-Means to dispatch data to different blocks
according to the temperature, thereby reducing the data copy
overhead in GC. Our study is in line with these works [35],
[36], [55] in terms of reducing valid pagemigration overhead.
In contrast, we focus on accelerating page migration process
itself.

D. SEPARATING/SUSPENDING GC
PGC [34] splits the GC procedure into distinct operations
according to preemption points. At each point, the con-
text of GC can be saved so that incoming requests can
be served first. HIOS [22] is a host interface I/O sched-
uler that redistributes the GC overheads across non-critical
I/O requests. The GC procedure of HIOS is divided into
multiple steps and are processed between I/O requests.
Kim et al. [29] proposed two erase suspension mechanisms
that leverage the iterative erase mechanism used in modern
SSDs. These mechanisms allow a read operation to interrupt
an ongoing erase operation, thereby reducing read tail latency
during GC. Our study is in line with these approaches [22],
[29], [34] in terms of improving GC operation. In contrast,
we focus on paralleling read and write operations of the GC
procedure.

VOLUME 8, 2020 223575

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

E. NEW SSD INTERNAL TECHNOLOGY
TTFlash [53] resolves the tail latency problem caused by GC
by using a redundant array of independent NAND (RAIN)
and a powerful controller with a large capacitor-backed
RAM. Read requests to chips that under the GC process will
not be blocked by taking advantage of the redundant data.
Write requests can put data into capacitor-backed RAM and
then respond to the host instead of waiting for GC to finish.
Our study is in line with TTFlash [53] in terms of improving
GC process. In contrast, we focus on improving the GC
procedure by paralleling the read and write operations.

F. LEVERAGING PARALLELISM INSIDE SSDs
VBP-FAST [17] virtually makes a logical block span sev-
eral channels. Therefore, data in a virtual block is actually
placed on multiple physical blocks belonging to different
channels, dies, and planes. This allows VBP-FAST to use
the internal parallelism of SSDs across different planes to
improve performance. I/O-parallelized GC [9] focuses on a
resource wasting issue that occurs during GC, called plane
under-utilization problem. During GC, except for the plane
that reclaims invalid pages, other planes in the same die are
idle. I/O-parallelized GC uses the multi-plane advanced com-
mand to serve GC and normal I/O requests in parallel which
increases the plane utilization duringGC. IPPBE [15] is a new
advanced command that leverages the structure of NAND
flash to parallelize the block erase operation. The triple-well
NAND flash plane architecture allows multiple blocks to be
selected during the erase operation. And erasing more than
one block does not incur additional time spent performing the
operation. By erasing multiple blocks simultaneously, more
space can be reclaimed during an erase operation. Our study
is in line with VBP-FAST [17], I/O-parallelized GC [9], and
IPPBE [15] in terms of leveraging parallelism inside SSDs.
In contrast, we focus on utilizing the page-level parallelism.

Even though the previous studies handle the performance
degradation problem induced by GC procedure, they do
not focus on exploiting page-level parallelism to reduce the
amount of time required for a single GC procedure. In con-
trast, our study exploits the page-level parallelism inside a
flash plane to accelerate valid page migration of GC, which
improves the single GC procedure.

III. BACKGROUND AND MOTIVATION
A. SSD INTERNALS
This section describes an overview architecture of modern
NAND flash SSDs [9], [49], [53] as shown in Fig. 1. Fig. 1a
shows main components of SSDs. In general, SSDs have four
main components:

• Host interface logic (HIL). HIL connects the host and
the SSD together. It receives I/O requests from a host,
passes them to the SSD, and sends responses to the host.
Common interfaces are SATA and PCIe.

• Controller. This is a core component that processes I/O
requests and manages flash translation layer (FTL), bad

FIGURE 1. Overview architecture of modern NAND flash-based SSDs.

blocks, error-correcting code (ECC), etc. The FTL is
a software layer that is responsible for mapping logi-
cal block addresses to physical flash addresses, wear-
leveling, and handling garbage collection.

• DRAM. It is attached to the controller and provides
space for the address mapping table. It is also used as
read/write buffers.

• Flash chips. These are the storage medium. There are
single-level cell (SLC) flash chip and multi-level cell
(MLC, TLC, and QLC) flash chip. The multi-level cell
can store more bits per cell which leads to higher storage
density, whereas has much longer read/write latency.

To increase storage density, flash manufactures connect
several flash chips together through a shared I/O bus to
consist a channel. Fig. 1b shows the internal architecture
of a flash chip. As shown in the figure, each chip contains
one or more dies and has its own set of ready/busy sig-
nals [19]. Each die is composed of multiple planes (typically
two planes (Plane0, Plane1)) and has its own address,
command, and data registers, which allows dies to operate
independently [9]. In other words, each die independently
processes normal I/O and GC operations. A plane is divided
into thousands of blocks (Block0 to BlockN) and there are
one or two data registers used as I/O buffers for each plane.
A block typically consists of 64 or 128 pages. The size of a
page is usually between 4KB to 16KB.

B. GARBAGE COLLECTION
Due to the erase-before-write characteristic of SSDs, a flash
page can be written only if the page is erased (clean). To avoid
the need to erase old pages during write operations, which
increases latency, SSDs adopt an out-of-place write policy.
When a logical page is updated, its data is written to a

223576 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

Algorithm 1 Existing GCAlgorithm (Valid Pages in a Victim
Block Are Read and Written From/to the Destination Block
in Serialized Manner)

Input: GC victim block (blk)
1: procedure GARBAGE COLLECTION(blk)
2: for V ← each valid page in blk do
3: issue a single read (V);
4: issue a single write (V);
5: end for
6: issue block erase (blk);
7: end procedure

FIGURE 2. A procedure of copyback command in a single plane.

different physical page. To do this, a Flash Translation Layer
(FTL) remaps logical pages to new physical pages while the
original physical pages are marked as invalid. This enables
SSDs to accept the write requests without immediately per-
forming erase operations.

The FTL keeps tracking the number of free pages within
a plane and maintains a free (active) block for incoming
requests. Once the number of free pages drops below a given
threshold, GC takes place to erase some victim blocks for
reclaiming the invalid pages as described in Algorithm 1.
First, a victim block is selected for GC. Once a GC victim
block is selected, each valid page in it is read and written
to the free page of the destination block in serial. Finally,
the selected victim block is erased.

When valid pages are read or written during GC, the data
must be transferred to the data register at first. Then, the data
is transferred in/out via shared buses. During the transmis-
sion, the shared buses are blocked to avoid data corruption.
The blocking of shared buses delays other requests from
being serviced along these paths. Since SSDs always need
to guarantee an amount of free space for correct operations,
GC has the highest priority and incoming normal I/O requests
can be blocked during GC operations.

Generally, there are two types of approaches which are
global and local approaches [9]. In the global approach, valid
pages in a victim block are moved to an active block in
different chips/dies/planes via read/write commands. In the
local approach, valid pages in a victim block are moved to an
active block in the same plane using the copyback advanced
command.

Fig. 2 shows the procedure of execution of a copyback
command in a single plane when a data register is used.

As shown in the figure, there are six pages (i.e., Page0 to
Page5) in a block (i.e., Source blk). The copyback oper-
ation reads Page0 from Source blk to the data register.
Then, it writes the data from the data register to Page0 in an
active block (i.e., Active blk) in the same plane. Since
copyback only works inside a plane, it does not block the
shared buses connecting other dies and channels during GC
operations. In this article, we will present our scheme based
on the local GC first, then we discuss how our scheme can
work based on the global GC.

C. PARALLELISM INSIDE SSDs
There are four levels of parallelism in SSDs: channel-level,
chip-level, die-level, and plane-level. Exploiting parallelism
at each level can increase SSD performance. For example,
as shown in Fig. 1a, when two channels (i.e., Channel0
and Channel1) can serve a request which includes more
than one page simultaneously, we use channel-level paral-
lelism. When a request can be served by Chip0 and Chip1
of Channel0 simultaneously, we benefit from chip-level
parallelism [19]. In addition, inside a flash chip, each die
has its own address, command, and data registers, which
enables die-level parallelism. Within a die, all planes share
the same address and command registers, but each plane has
its own data register. To exploit parallelism at the plane-level,
we need to use multi-plane advanced commands [50].

In summary, a single GC operation in the existing scheme
moves valid pages from victim blocks to other blocks in
the serialized manner, which cannot exploit the page-level
parallelism and has a relatively long GC time. This decreases
the performance of the SSD because the GC operation blocks
incoming normal I/O requests. In this article, we enable page-
level parallelism inside each plane by devising a new flash
architecture for an efficient and parallel GC procedure. Our
GC scheme leverages page-level parallelism by migrating
valid pages via multiple read and write operations in parallel
for a GC operation. Thus, this scheme can accelerate overall
GC operations.

IV. DESIGN AND IMPLEMENTATION
A. OVERVIEW AND ASSUMPTION
This section describes an overview and assumption for our
preliminary study. Aswementioned, because of the limitation
of current SSD internal architecture, the existing GC scheme
can only read/write one valid page from/into a single plane.
Even though previous state-of-the-art techniques are effective
in reducing the negative impact of GC, the improvement of
individual GC processes is still necessary.

In terms of the number of valid pages in a victim block, a
previous study [41] has shown the occupancy rate of valid
pages in victim blocks can reach more than 40% under
high disk utilization in the real-world workloads. This makes
migrating valid pages in victim blocks a huge burden in
the GC process. Furthermore, when using multi-bit per cell
flash chips (e.g., TLC and QLC) that have longer read/write

VOLUME 8, 2020 223577

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

FIGURE 3. New flash chip architecture (Each die has N set of registers
and each plane has N data registers).

time compared with single-bit per cell (SLC) chips, the large
number of valid pages further increases the time required for
GC operations.

Recently, commercial SSDs have been equipped with
fairly powerful multi-core controllers [40], [43]. Such multi-
core SSD controllers are likely to become more common-
place. Also, host-managed flash [5], which moves the FTL
to the host operating system, enables the use of much more
powerful host side processors and more flexibility to control
SSDs.

In order to utilize high-performance multi-core processors
more efficiently and address the performance degradation
introduced by GC, in this article, we propose a page-level
parallel garbage collection scheme to reduce the time required
for GC. First, we propose a newflash architecture that enables
page-level parallelism in a single plane. Second, to parallelize
the GC works properly, we collect the information such as
new addresses for valid pages in victim blocks by consid-
ering the restriction of SSD. Finally, we leverage page-level
parallelism by enabling multiple worker (threads) to migrate
valid pages from victim blocks to other active blocks. In the
following subsections, we describe our scheme in detail.

B. OVERALL ARCHITECTURE
To make it possible to achieve parallelism inside the plane
(the page-level parallelism), we devise a new flash architec-
ture as shown in Fig. 3. In this architecture, we add reg-
ister sets for each die and data registers for each plane to
enable multiple workers to migrate multiple valid pages. The
number of set of registers and data registers are identical.
Also, the number of workers can be configured as much as
the number of set of registers and data registers. Thus, this
architecture enables page-level parallelism inside a single
plane.

For example, as shown in the figure, in the die, there are
N sets of registers (Register0 to RegisterN). A set
of registers consists of one command register, one address
register, and one data register. For each plane (Plane0,
Plane1), there are N data registers (Data Reg0 to
Data RegN). In this case, up toN workers can perform valid
page migration in parallel. With this modification, the com-
mands, addresses, and data of multiple operations can be sent
to the same die. They are interleaved because the dies in the

same chip share the internal bus of the chip. Thanks to the
high speed of NV-DDR3 interface which can reach up to
1600MT/s [2], [50], the interleaving time is negligible.

We note that the number of registers should be carefully
chosen by considering the internal resources of SSDs and
workloads. Since the computing power and bandwidth of the
interconnect bus are limited resources shared by all processes
within an SSD, unbalanced resource allocation for migra-
tion workers may reduce the GC time but stall normal I/O
requests. Thus, rather the total performance of SSD can be
decreased. In our article, the evaluation section shows the
efficiency according to the number of workers andworkloads.

C. FEASIBILITY AND COST OF THE NEW
FLASH ARCHITECTURE
1) FEASIBILITY OF ADDING REGISTERS
Real products have already used additional registers to
improve SSD performance. For example, many flashmemory
chips like [38] already have two registers (one data reg-
ister, one cache register) per plane to implement a cache
programming/reading mechanism. Regarding the feasibility
of adding registers in each die, there are some flash chips
like [26] which use several data registers for reducing read
errors. Based on previous studies [26], [38], adding registers
to plane and die can be feasible.

2) THE COST OF ADDING NEW HARDWARE
Although there is no physical prototype, we can roughly
estimate the cost of adding registers. In terms of space, if we
add registers by using SRAM to a 3D TLC NAND flash
chip, the space cost can be estimated as follows. A study [26]
presents a 3D TLC NAND memory flash chip with a high
areal density up to 3.98GB/mm2. The chip has one die, and
the die size is 128mm2. There are two planes in the die, and
each plane has 2874 blocks. One block consists of 768 pages
of which size is 16 KB. The density of SRAM is about
4.75MB/mm2 [45]. Thus, the size of a data register would
be 3.4 × 10−3 mm2. To enable four workers running in the
chip, we need to add 9 data registers, 3 command registers,
and 3 address registers. The size of command and address
registers are not specified in the standard [50]. If we assume
all three kinds of registers have the same size, the total size
of added registers is around 5.1 × 10−2 mm2. And, the size
of added registers accounts for 0.4% of the die.

The monetary cost caused by the new hardware is mainly
composed of two parts, one is the cost of added register,
and the other is the cost of peripheral circuits linking these
registers with other components. In terms of the cost of the
added registers, we can estimate it from the price of SRAM.
Because price of SRAM is about 500$ per GB [7], when we
use SRAM to build the register, the cost of one 4KB register
is about 0.002$. To enable four workers on each die, we need
to add at most 12 data registers. This costs about us 0.024$
per die. The cost of peripheral circuits that link registers with
other components is hard to estimate because it is related

223578 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

to the specific layout of the architecture. Thus, we leave to
evaluate this cost as future work.

3) MULTI-PAGE READ/PROGRAMMING WITHIN A BLOCK
New data can only be written after the last data writ-
ten in a block used to be a well-known limitation of
NAND flash. However, there are some existing flash archi-
tectures [18], [26], [28], [30] that can support multi-page
read/programming simultaneously in a single block. Espe-
cially, [18] presents a multiple pages programming scheme
like our scheme by adding data register in the plane. They
present an architecture that comprises a bit line select gate
bank. The bit line select gate bank contains multiple bit line
select gates. The bit line select gates allow a page buffer to be
coupled to multiple bit lines, which allows multiple pages to
be programmed and read at the same time. Thus, this enables
multi-page programming/read in a single block by using the
multiple bit lines simultaneously. Based on previous studies,
we believe it is possible to read and write several pages in
parallel at the same block. Consequently, our scheme can be
feasible and applied to flash architecture.

D. PARALLEL GARBAGE COLLECTION
The existing GC procedure reads and writes the valid pages
in a victim block to a new block one by one sequen-
tially. To improve the existing procedure, we enable parallel
garbage collection by leveraging page-level parallelism based
on the proposed SSD architecture. To do this, we first collect
the addresses of valid pages and free pages by scanning the
metadata of the victim block and the active block. Then,
we match valid page addresses and their corresponding free
page addresses by considering the restriction of SSDs. This
allows our parallel GC procedure to be performed properly.
Second, based on the collected address information, we adopt
multiple workers to read valid pages and write them into free
page addresses in parallel. This reduces the total time required
for the GC procedure. In this article, we introduce our idea
based on a page-mapping FTL.We note that the same idea can
also be used on hybrid-mapping FTLs because our scheme
focuses on accelerating the valid page migration on physical
flash blocks, which has no effect on other parts of the FTL. In
this section, we describe how our scheme works based on the
local GC1 as follows (We will discuss how our scheme can
work with global GC2 in the discussion subsection).

1) COLLECT INFORMATION CONSIDERING THE
RESTRICTION OF SSDs
During our GC process, we select a victim block depending
on a victim block select policy. (we use a greedy strategy [8]
in this article). After the victim block is selected, we collect
information (e.g., addresses of valid pages and free pages)
in advance to enable the copyback advanced command to

1The victim block and the destination block are in the same plane and
pages are migrated by copyback commands.

2The victim block and the destination block are in different chips, dies,
and planes and the pages are migrated by read/write commands.

FIGURE 4. Parallel garbage collection.

read/write pages within a single plane in parallel. During this
procedure, there is a restriction that we need to handle. In
some SSDs, the copyback command has an odd/even page
restriction. This means the contents need to be written into
an odd page when reading from an odd page [9], [19], [42],
[44], [50].

To handle this restriction, when creating pairs of valid
and destination page addresses, we map the destination page
address based on the valid page address to satisfy the restric-
tion. Also, the destination page with the lowest address is
selected first.

Fig. 4a shows the procedure of metadata scanning for par-
allel GC. As shown in the figure, there are three valid pages
(page1, page2, and page4) and three invalid pages (page0,
page3, and page5) in a victim block (victim blk metadata).
In this case, since page1 (a valid page) is an odd page in
the victim block, we map the page to page1 (a free page) in
an active block as its destination page although page0 in the
active block is still free. Similarly, we pair page2 and page4
(valid pages) in the victim block with page0 and page2 (free
pages) in the active block, respectively. Finally, we get three
pairs of addresses (< 1, 1 >,< 2, 0 >, and < 4, 2 >).
Here, we only use one worker to scan the metadata because
the number of pages in a block is typically between 64 and
512. The time required to scan the metadata of two blocks
(victim block and active block) is trivial.

Scanning valid pages in the victim block and mapping
destination pages for valid pages are required for both exist-
ing and our proposed GC schemes. The existing scheme
performs address mapping every time a valid page is moved.
Meanwhile, our scheme first performs all address mappings
for valid pages in a victim block, then moves valid pages.
Therefore, the overhead introduced by the scanning and map-
ping in our scheme is similar to the existing scheme. The
difference for the mapping operations in the two schemes
only lies in the time point of doing page mapping.

VOLUME 8, 2020 223579

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

2) PARALLEL GC PROCESS
As described above, we scan all pages in a block to find valid
pages and match new destination pages for them. After this
point, we create multiple workers to migrate the valid pages
in a parallel manner. Each worker fetches a pair of addresses
and moves the valid pages to the selected free pages.

Fig. 4b shows multiple workers which performs copyback
commands in parallel. As shown in the figure, N workers are
created for valid page migration (the number of workers to
be created depends on the processor and flash architecture as
mentioned in section IV-B). The workers (W0, W1, and WN)
first fetch address pairs to indicate the direction of migration.
These address pairs are stored in a shared array. To allocate
an address pair for each worker properly and concurrently,
we use an atomic instruction (fetch_and_add() [14],
[21]) that increments the index of the array without a locking
mechanism. This ensures that each worker gets a different
address pair and no address pair is missed.

For example, a worker (W0) fetches an address
pair (< 1, 1 >) and increases the index of the array using
fetch_and_add() instruction, then calls a copyback
command to read a page (P1) in the victim block into a data
register (Data Reg1). The worker then writes the content to
a page (P1) in the active block in the same plane. Simultane-
ously, another worker (W1) fetches address pair (< 2, 0 >),
increases the index, and calls a copyback command to begin
its page migration task. The remaining workers obtain pairs
of addresses in the same manner and complete the transfer
of valid pages. After all valid pages in the victim block
are transferred, we can erase the block and complete the
GC procedure. Consequently, this parallel GC process can
accelerate the migration of valid pages via multiple workers
to read and write the pages in parallel.

E. IMPLEMENTATION
We implement our scheme by modifying the GC procedure
of the MS SSD extension [1] to enable multiple workers
to migrate the valid pages in parallel. Algorithm 2 shows
a procedure of the proposed parallel GC. As shown in the
algorithm, similar to the existing GC procedure, we first fetch
the metadata of a selected victim block (victim_blk) for
the plane that need to perform GC (Algorithm 2, line 2). The
metadata includes the page addresses and states of pages in
the victim block. After then, we begin to move the valid pages
and erase victim blocks via CLEAN_BLOCK() function with
the selected victim block (Algorithm 2, line 3).

In the block cleaning process, we first change the state
of the die to busy. Thus, other requests to the same die
will be blocked (Algorithm 2, line 7). Then, we check the
metadata of the victim block to know whether there is any
valid page or not (Algorithm 2, line 8). If there is no valid page
in the victim block, the blockwill be erased directly, themeta-
data will be updated, and the GC procedure will be completed
(Algorithm 2, lines 9-13). Otherwise, if there is any valid
page, we start to prepare migration of the valid pages.We first
create an array (address_pairs) to store the pairs of valid

Algorithm 2 Simplified Pseudo-Code of Parallel Garbage
Collection
1: function GARBAGE_COLLECTION(plane_num, chip_num)
2: victim_blk = SELECT_VICTIM_BLK();
3: CLEAN_BLOCK(victim_blk, plane_num, chip_num);
4: end function
5:

6: function CLEAN_BLOCK(victim_blk, plane_num, chip_num)
7: change the state of corresponding die from idle to

busy;
8: no_valid_pages = CHECK_INFO(victim_blk);
9: if (no_valid_pages) then
10: ERASE_BLOCK();
11: update metadata;
12: return
13: end if
14:

15: address_pairs[# of pages per block];
16: free_pages_info[# of pages per block];
17: SCAN_ACTIVE_BLOCK_INFO(free_pages_info,

plane_num);
18: for (i = 0; i < pages_per_block; i++) do
19: page_addr = victim_blk.page[i];
20: if (page_addr is valid) then
21: dest_addr =

MAP_FREE_PAGE(free_pages_info, page_addr);
22: Put page_addr , dest_addr into

address_pairs;
23: end if
24: end for
25: for (i = 0; i < NUM_WORKERS; i++) do
26: WORKER_CREATE(MOVE_PAGE_PER_

WORKER, &address_pairs);
27: end for
28: Waiting for workers to finish;
29: ERASE_BLOCK();
30: update metadata;
31: end function

page and the destination page address (Algorithm 2, line 15).
Then, we create an array (free_pages_info) to collect
the addresses of free pages in the active block (Algorithm 2,
line 16). After then, we find and scan an active block in the
plane and store the addresses of the free pages in the array
(free_pages_info) (Algorithm 2, 17). For each valid
page, we fetch its address, map its corresponding destination
page addresses, and store the pairs of valid and free page
addresses into the array address_pairs (Algorithm 2,
lines 18-24).

Algorithm 3 shows how we map a destination page for
each valid page in a victim block. As shown in the algorithm,
we match the odd/even free pages starting from the lowest
address to valid pages according to the addresses of the valid
and free pages (Algorithm 3, lines 2-6). After getting the
valid pages and corresponding destination pages, we create

223580 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

Algorithm 3 Simplified Pseudo-Code of Address Mapping
Process
1: function MAP_FREE_PAGE(pages_info, source_page)
2: if source_page.address % 2 == 1 then
3: return FIRST_FREE_PAGE(pages_info, odd);
4: else
5: return FIRST_FREE_PAGE(pages_info, even);
6: end if
7: end function

Algorithm 4 Simplified Pseudo-Code of per Worker
1: function MOVE_PAGE_PER_WORKER(address_pairs)
2: while (true) do
3: local_index = fetch_and_add(curr_index, 1);
4: if (local_index ≥ number of valid pages) then
5: break;
6: end if
7: address_pair = address_pairs[local_index];
8: MOVE_ONE_PAGE(address_pair);
9: end while
10: worker_exit();
11: end function
12:

13: function MOVE_ONE_PAGE(address_pair)
14: COPYBACK(address_pair);
15: update metadata;
16: end function

workers to perform migration in parallel (Algorithm 2, lines
25-27). The number of workers created depends on the num-
ber of data registers for each plane.

Algorithm 4 shows how each worker performs its page
migration task. As shown in the algorithm, we use a
global variable (curr_index) that indicates the cur-
rent address pair and a local variable (local_index)
that indicates the address pair of each worker. To ensure
that each worker receives a different address pair concur-
rently, we use the fetch_and_add() atomic operation
when each worker accesses the address pairs in the array
address_pair (Algorithm 4, line 3). Thus, each worker
increments curr_index concurrently and obtains its own
pair index. Workers keep performing the tasks until all
address pairs in the array address_pairs are processed
(Algorithm 4, lines 4-6).

Each worker accesses the array (address_pairs) to
fetch an address pair (address_pair) using its own local
index (local_index) (Algorithm 4, line 7). Then, each
worker calls the COPYBACK command to copy the data
from a valid page to its new address (Algorithm 4, line 14)
and updates the metadata according to the results of migra-
tion (Algorithm 4, line 15). After all workers finished their
operation, the victim block is erased (Algorithm 2, line 29)
and the metadata is updated according to the erased block
(Algorithm 2, line 30). At this point, the entire GC procedure
is completed.

F. DISCUSSIONS
1) COMPLEXITY OF PROPOSED GC SCHEME
Our idea is based on utilizing parallel processing for improv-
ing GC performance. Our scheme is relatively simple and
efficient, but there are some challenges. Themain challenge is
to perform parallel operations correctly while improving per-
formance. For example, our scheme collects the information
for the parallel operations in advance and properly schedules
parallel GC workers with little additional cost. The required
information consists of three parts: the number of valid pages
in the victim block, the addresses of valid pages, and the
addresses of free pages (destination). This information is
collected by iterating page metadata in the victim and the
free blocks. The complexity of iterating page metadata is
O(n), where n is the number of pages in a block. In addition,
our scheme considers some limitations of certain NAND
flash memory chips, such as the odd/even page restriction of
copyback command. Given the odd/even page restriction of
copyback command in some flash chips, we determine the
odd/even parity of an address whenmatching valid pages with
destination pages as shown in Algorithm 3.When parallel GC
workers moving the valid pages into a block, the complexity
is 0(n)

k , where n is the number of valid pages in a victim block
and k is the number of workers.

2) PARALLEL GC IMPACT ON NORMAL I/O PERFORMANCE
Our parallel GC scheme reduces the total GC time for SSDs,
therefore, it can improve the overall I/O throughput during
GC. However, the overall performance of normal I/O requests
can depend on the number of GC workers. As described
in Section III-A, both normal I/O and GC I/O requests can
exist in an SSD simultaneously. Because computing power
and shared bus bandwidth are limited resources, when we
allocate excessive GC workers, there can be a performance
degradation for normal I/O. Therefore, the number of GC
workers should be carefully considered according to the
resources of specific SSDs. Unfortunately, it is difficult to
determine exactly how the number of GC workers affects the
performance of normal I/O since our scheme is implemented
based on an SSD simulator, which does not simulate the
computing resources. Thus, we cannot provide a model for
SSD resource allocation to help determine howmanyworkers
can optimize the SSD performance. However, as shown in
evaluation section, even if only one worker is added to help
the task of valid page migration, the total GC time can be
reduced significantly.

3) ENABLING PARALLEL GLOBAL GC
Our parallel local GC mechanism can also enable parallel
global GC. In the global GC, valid pages in a victim block
can bemoved to different units such as chips, dies, and planes.
Instead of using copyback commands in local GC, the global
GC transfers valid pages using normal flash page read/write
commands. When transferring the valid pages, the global GC
first reads valid pages from a flash chip to the controller, and
then dispatches the data to another target SSD unit. With this

VOLUME 8, 2020 223581

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

global GC, our scheme can perform the read/write commands
for the valid pages in parallel. For example, similar to our
local GC, we collect information of the target units (e.g.,
address pairs) in advance to prepare the parallel global GC.
Then, each worker executes read commands to move valid
pages to controller and executes write commands to write
valid pages back to the flash chip according to the collected
address pairs.

4) COMBINATION WITH OTHER STUDIES
Our proposed parallel GC is effective in reducing the time
required for a GC operation and it can be easily combined
with other schemes to achieve better performance. For exam-
ple, the IPPBE [15] command erases multiple blocks simul-
taneously. Our scheme can help IPPBE to reduce the time
required for copying valid pages inside a block since our
scheme is based on page-level parallelism. Thus, combin-
ing our scheme with IPPBE can further reduce the total
GC time using both block-level and page-level parallelism.
I/O-parallelized GC [9] uses multi-plane commands to serve
GC operations and blocked normal I/O requests on the planes
of a single die simultaneously.With this scheme, we can allow
multiple migration workers in our scheme to leverage the
multi-plane commands within a die. Therefore, our scheme
can accelerate I/O-parallelized GC by reducing total GC time
to further improve the performance of SSDs.

V. EVALUATION
In this section, we evaluate our proposed scheme and compare
it with existing and recent GC schemes. In subsection V-B,
we compare our proposed scheme with an existing GC
scheme. In subsection V-C, we compare our scheme with
a state-of-the-art GC scheme (IPPBE). In subsection V-D,
we discuss how command latency and the number of valid
pages can affect the performance of our proposed scheme.

A. EXPERIMENTAL SETUP
To evaluate the performance of our scheme, we implemented
our parallel GC using the Microsoft Research’s SSD exten-
sion [1] with Disksim [6]. This is a sophisticated and trace-
driven simulator that is widely used in many studies [9], [34],
[51]. In this simulator environment, the experiment results are
statically generated based on the SSD organization settings
and predefined static time values, such as the time of a
read/write command, and the time to transfer data between
the processor and flash memory. Thus, the experimental
results are always identical if the given SSD settings and
workloads are unchanged.

1) SIMULATOR SETTINGS
Table 1 lists the SSD parameters that we used in the simulator.
The page read latency is the time that a page read command
reads data from a flash memory page to the data register in
each plane. Similarly, the page write latency is the time that
a page write command writes data from the data register in
a plane to a flash memory page. The block erase latency

TABLE 1. SSD simulator parameters. (‘‘←’’ indicates the same setting as
the SLC chip).

is the time that a erase command erases a flash memory
block. We used two sets of parameters. The parameters of
the SLC chip were from the MS SSD extension [1] which
is collected from a SAMSUNG SSD. The timing information
and organization setting for MLC chip was fromMicron [38].

For each simulated SSD, there are four channels and each
channel has four chips. There are two dies per chip, two
planes per die, and 2048 blocks per plane. For SLC chip, there
are 64 pages per block; for MLC chip, there are 256 pages
per block. Therefore, the size of SLC SSD is 32GB, and
the size of MLC SSD is 128GB. The GC’s victim block
selection strategy is the greedy algorithm that chooses the
block with the least number of valid pages in a plane as the
victim block [8]. Thus, this policy can minimize the number
of migrations for valid pages during GC. The simulator uses a
page-mapping FTL. The FTL scheduler gives GC the highest
priority, reads have the second highest priority, and writes
have the lowest priority.

The GC threshold determines when GC procedure starts.
Thus, the activation of GC procedure depends on the remain-
ing number of free blocks according to the threshold. For
example, if we set the GC threshold to 10%, the GC will start
running when the number of free blocks available is less than
10%. In our study, we set the value of the GC threshold as
5% and 10% by referencing the previous studies [1], [20],
[23], [37], [44]. We set the greatest threshold to 14% because
the overprovisioning value in our simulator is set to 15%
and the threshold cannot bigger than the overprovisioning
value. In summary, we use three GC thresholds to show the
performance according to the different thresholds.

We note that the average proportion of valid pages in
a victim block can reach more than 40% under high disk
utilization in the read-world workloads as shown in a previous
study [41]. So, we choose main performance criteria when
a GC threshold is 10%. It is because our evaluation shows
that the average proportion of valid pages in a victim block
is approximately 40% at this GC threshold for more realistic
evaluation.

2) WORKLOADS
We use both synthetic and real-world traces to analyze the
efficiency of the proposed scheme as shown in Table 2. There

223582 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

FIGURE 5. Performances of existing GC, IPPBE, and our scheme on SLC chip with different GC thresholds.

TABLE 2. Workload parameters.

are random write traces provided by Disksim (SYN) and
IOzone (IOZONE) [39]. Postmark (POSTMARK) [25] is a
synthetic trace which simulates the behavior of mail servers.
Financial 1 (FIN1) and financial 2 (FIN2) are real-world
traces that were collected from two large financial institu-
tions [3]. MSN file server (MSNFS) [11] is a real-world trace
that was collected fromMSN storage server. SYSTOR17 [31]
is also a real-world trace that were collected from virtual
desktop infrastructure [32]. The workloads consist of write-
intensive and read-intensive traces. The workloads of SYN
and IOzone are 100% random writes. Financial 1 is also a
write-intensive trace that has 78.3%write requests. Postmark,
Financial 2, MSN file server, and Systor17 are read-intensive
workloads that have 83.2%, 81.4%, 76.4%, and 80.9% read
requests, respectively.

3) PRE-CONDITIONING
To evaluate the effect of GC, we need to perform pre-
conditioning on SSDs before evaluations. For example,
before evaluating each workload, we run a real-world work-
load which we use in the evaluation to fill the SSD. However,
the amount of writes of many traces of real workloads is less
than 60 GB [49]. To make it possible to use real-world traces
to perform pre-conditioning, we use a method from the previ-
ous study [10], [49] to generate pre-conditioning traces. More
specifically, we first use the information of read requests (e.g.,
LBAs, request sizes) to generate write requests to fill the SSD.

We use LBAs and request sizes in read requests because the
write operation should be performed before reading the data.
If the read requests are not enough for steady-state, we then
use the write requests of the workloads. If both read and write
requests are not enough for pre-conditioning the flash storage
space, we shift the LBAs of workloads to generate new write
requests to fill the remaining space. This approach makes
SSDs into steady-state before evaluation and also keeps the
data placement characteristics of each workload.

B. COMPARING EXISTING SCHEME WITH
PROPOSED SCHEME
In this section, we compare the performance between the
existing GC scheme and our proposed scheme. In this GC
scheme, when a victim block is selected, valid pages in the
victim block are moved to a clean block one by one in
sequence. We present the performance results in terms of the
total GC time and the average latency (normal I/O) which are
normalized to the existing GC scheme as shown in Fig. 5.

1) TOTAL GC TIME
Fig. 5a, 5b, and 5c show the total GC time under different
GC threshold settings. In the case of 5% GC threshold, our
scheme reduces the total GC time by 33% and 49% on aver-
age, compared with the existing scheme, when using two and
four workers, respectively. It is because our scheme performs
the GC procedure in parallel instead of a serialized manner,
and the performance gap increases as the number of workers
increases. With 10% GC threshold, our scheme reduces the
total GC time by 43% and 60% on average in the case of
two and four workers, respectively. In the case of 14% GC
threshold, our scheme further reduces the total GC time by
46% and 70% on average when using two and four workers,
respectively. Especially, in this case, four workers reduce the
GC time by up to 44% compared with that for two workers
since the number of valid pages to be migrated is relatively
large.

VOLUME 8, 2020 223583

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

TABLE 3. The average number of valid pages and its proportion in a
victim block under different GC thresholds.

This result shows the performance difference according
to the GC threshold since the threshold affects the number
of valid pages in victim blocks. Table 3 shows the average
number of valid pages in a victim block for each workload.
As shown in Fig. 5 and Table 3, the total GC time gap between
existing and proposed schemes increases as the number of
valid pages in victim blocks increases. It is because more
migrated valid pages significantly increase themigration time
among the total GC time.When the number of valid pages are
similar, the performance trend is similar in the both cases of
write-intensive and read-intensive workloads.

As the number of workers increases, more valid pages are
moved in the same time period, so the performance is also
improved. However, the relative proportion of performance
improvement decreases as the number of workers increases.
When using two workers under 10% threshold, the GC time
is reduced by 40% on average. When using four workers
under 10% threshold, GC time is reduced by 60% on average.
Therefore, the number of workers should be chosen carefully
according to the workload and computational power of the
target SSDs.

2) AVERAGE LATENCY
Fig 5d, Fig. 5e, and Fig. 5f show average normal I/O latencies
under different GC thresholds. In the case of 5% GC thresh-
old, our scheme reduces the latency by up to 40% and 53%
compared with the existing scheme when using two and four
workers, respectively. In the case of 10% GC threshold, our
scheme reduces the latency by up to 59% and 74%when using
two and four workers, respectively. With 14% GC threshold,
our scheme reduces the latency by up to 80%.

Unlike total GC time, the change of latency is related to
the characteristics of workloads. As shown in Fig. 5e, when
a workload is write-intensive, the latency is further reduced
comparedwith that of read-intensive workloads. As expected,
it is because the write-intensive workload frequently triggers
the GC operations.

Reduction of the average I/O latency is also related to the
size of the request. Table 2 shows the category and average
request sizes for each workload. SYN, IOzone, and Financial
1 are all write-intensive workloads, but the latency reduction
of IOzone is the largest among them since the request size of
IOzone is much larger than those of the other workloads. Sim-
ilarly, even though MSNFS is a read-intensive workload, its
latency has been well reduced. This is because MSNFS con-
tains some larger requests compared to other traces. Because

of the parallelism within SSDs, a write request with a large
size will be serviced by multiple dies. This makes the write
request with a large size issues several GC procedures in
different dies. Therefore, in a given time period, more victim
blocks will be reclaimed simultaneously.

C. COMPARING STATE-OF-THE-ART SCHEME WITH
PROPOSED SCHEME
In this section, we compare the performance between IPPBE
and our proposed scheme. IPPBE shares a similar idea with
our scheme in terms of improving the internal parallelism
of the SSD plane. The difference is that IPPBE achieves
block-level parallelism by erasingmultiple blocks in the same
plane at the same time, while our scheme achieves page-level
parallelism by moving multiple pages in parallel. We set the
number of blocks erased at a time to two like shown in IPPBE.
Same as the previous section, the results are presented in
terms of the total GC time and the average latency which are
normalized to the existing GC scheme.

1) TOTAL GC TIME
Fig. 5a, 5b, and 5c show the total GC time under different GC
threshold settings. IPPBE reduces the total GC time by 32%,
26%, and 13% on average compared with the existing scheme
in the case of 5%, 10%, and 14% GC threshold, respectively.
In the three cases of 5%, 10%, and 14%GC threshold settings,
the performance of our scheme outperforms IPPBE by 17%,
34%, and 57%, respectively.

As shown in the figure, the performance of IPPBE under
eachworkload varies greatly. This is because the performance
of IPPBE relays on the ability to reduce the number of valid
page migrations. Table 4 shows the number of valid page
migrations in each workload when using IPPBE, which is
normalized to the number of valid page migrations when
using the existing scheme. As the table shows, the more the
number of valid pages migration is reduced due to the use
of IPPBE, the better the performance of IPPBE. Postmark
is a special case. In the case of no reduction in the amount
of the number valid page migrations, Postmark still has a
performance improvement under 5% GC threshold. This is
because IPPBE erases two blocks at a time within one block
erase latency, and the average number of valid page migra-
tions of Postmark is only 4.5 (not listed in the table). The
time to migrate valid pages (1 ms) is less than the time
required to erase one block (1.5ms), thus reducing the overall
time of the GC. In addition, our scheme has more steady
performance improvement in all workloads compared with
IPPBE.As shown in the results, we demonstrate that the page-
level parallelism may increase more performance compared
with block-level parallelism in our evaluation case.

2) AVERAGE LATENCY
Fig 5d, Fig. 5e, and Fig. 5f show average normal I/O laten-
cies under different GC thresholds. As shown in the figure,
IPPBE’s improvement in latency is less than its improvement
in total GC time. In addition, sometimes the latency becomes

223584 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

TABLE 4. The number of valid page migrations when using IPPBE
(normalized to that of the existing scheme).

FIGURE 6. Performances of existing GC, IPPBE, and our scheme on MLC
chip under 10% GC thresholds.

longer. This is because IPPBE erases two victim blocks at a
time, and then needs to migrate the valid pages in the two
blocks to other free blocks. As a result, when the number
of valid pages to be migrated is not reduced, the latency
of a single GC procedure becomes much longer. Especially
for a read-intensive workload with a low request interval,
like MSNFS, its average latency can increase by more than
10 times compared with the existing GC scheme. In contrast,
the latency of our scheme is always smaller than that of the
existing scheme.

D. IMPACT OF COMMAND LATENCY AND THE NUMBER
OF VALID PAGES
In order to observe how the latency of read, write, and erase
operations affects our scheme, we also evaluate our parallel
GC scheme on MLC chips which have high read, write, and
erase latencies as shown in Table 1. For example, as shown
in Table 1, the page read, page write, and block erase latencies
of SLC chip are 25µs, 200µs, and 1.5ms, respectively; the
page read, page write, and block erase latencies of MLC chip
are 75µs, 1300µs, and 3.8ms, respectively. Fig. 6 shows the
normalized total GC time and average latency of MLC chip

TABLE 5. The average number of valid pages and its proportion in a
victim block in the case of MLC chip with 10% GC threshold.

with a 10%GC threshold. As shown in the figure, our scheme
reduces the total GC time by 46% and 70% on average when
using two and four workers, respectively. The average latency
is reduced by up to 44% and 74% when using two and
four workers, respectively. This result shows that the overall
performance gap between the existing and proposed schemes
in the case of MLC increases compared with that of SLC.

The performance gap between SLC and MLC chips
depends on the ratio of read/write command latency to erase
command latency and the number of valid pages in victim
blocks. The GC time consists of two parts. One is the migra-
tion time of valid pages, and the other is the time of erasing the
victim block. When using the SLC chip setting, the migration
time of one valid page is 0.225 ms (one read and one write
command), and the latency of erase command is 1.5ms. The
ratio of migration time of one page to a erase command
latency is 1:6.6. When using the MLC chip setting, the corre-
sponding ratio is 1:2.8. As the ratio of migration time of one
page to a erase command latency increases, the proportion of
the time required to migrate valid to total GC also increases.
Thus, our scheme can show better performance.

Similarly, because the block erase command is issued only
once in the GC procedure, as more valid pages in victim
blocks, our scheme can more reduce the migration time for
valid pages. In addition, the average number of valid pages
in victim blocks affects the scalability. Table 5 shows the
average number of valid pages in victim blocks in the case of
the MLC chip. When using 10% GC threshold, the average
number of valid pages in victim blocks is 26.8 and 82 in
the SLC and the MLC chip, respectively. In the case of the
SLC chip, the performance increment when using two and
four workers is 1.7x and 2.5x, respectively. In this situation,
there is a huge diminishing marginal benefit as the number of
workers increases. This is because when the number of valid
pages is relatively small, the time required to erase the block
accounts for a large proportion of the overall GC time. How-
ever, in case of MLC chip, the performance increment when
using two and four workers is 1.74x and 3.4x, respectively. In
this situation, the results show an almost ideal performance
increase.

When the number of valid pages in victim blocks is rela-
tively large, the time to read/write valid pages can dominate
the GC time while the time for erasing block is insignificant.
Under this situation, our scheme can show much better scal-
ability like the case in our evaluation. Consequently, as we
mentioned in section IV-B, how many computing resources

VOLUME 8, 2020 223585

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

that we should add can depend on the specific SSD internal
resources. In future work, we will try to evaluate our scheme
on a hardware emulation platform to perform precise anal-
ysis in terms of the scalability and the computing resource
utilization.

The performance of IPPBE under MLC and its perfor-
mance under SLC show similar characteristics. That is,
the performance of IPPBE relays on the ability to reduce the
number of valid page migrations during GC.

VI. CONCLUSION
SSDs have a performance variability problem due to GC
overheads. To handle this issue, we present a parallel garbage
collection scheme base on a new multi-register flash chip
architecture which provides page-level parallelism inside
SSDs. Our scheme reads valid pages from a victim block and
writes the valid pages to a target block in a parallel manner.
We implement and evaluate our scheme using Disksim with
the Microsoft SSD extension. Experiment results demon-
strate that our scheme can reduce the total GC time by 70%
and 57% on average compared with the existing scheme and
a state-of-the-art GC scheme IPPBE, respectively. In future
work, we will verify our scheme on a real machine and
architecture. Also, we will evaluate whether the volume and
energy impacts are acceptable for mobile devices.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and

R. Panigrahy, ‘‘Design tradeoffs for SSD performance,’’ in Proc. Annu.
Tech. Conf., vol. 57, 2008, pp. 1–14.

[2] A. Aravindan. (2018). Flash 101: The NAND Flash Electrical Interface.
[Online]. Available: https://www.embedded.com/flash-101-the-nand-
flash-electrical-interface/

[3] K. Bates and B. McNutt. (2003). Umass Trace Repository. [Online].
Available: https://traces.cs.umass.edu/index.php/Main/Traces

[4] R. Bez, E. Camerlenghi, A.Modelli, andA.Visconti, ‘‘Introduction to flash
memory,’’ Proc. IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.

[5] M. Bjørling, J. Gonzalez, and P. Bonnet, ‘‘Lightnvm: The linux
open-channel SSD subsystem,’’ in Proc. 15th USENIX Conf. File
Storage Technol., Santa Clara, CA, USA, Feb. 2017, pp. 359–374.
[Online]. Available: https://www.usenix.org/conference/fast17/technical-
sessions/presentation/bjorling

[6] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, ‘‘Contributors
the disksim simulation environment version 4.0 reference manual,’’ Par-
allel Data Lab., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.,
2008.

[7] C. Burch. (Oct. 2011). The Hierarchy of Memory & Caches. [Online].
Available: http://www.toves.org/books/cache/

[8] W. Bux and I. Iliadis, ‘‘Performance of greedy garbage collection in flash-
based solid-state drives,’’ Perform. Eval., vol. 67, no. 11, pp. 1172–1186,
Nov. 2010.

[9] W. Choi, M. Jung, M. Kandemir, and C. Das, ‘‘Parallelizing garbage
collection with I/O to improve flash resource utilization,’’ in Proc. 27th
Int. Symp. High Perform. Parallel Distrib. Comput., Tempe, Arizona, 2018,
pp. 243–254.

[10] CMU-SAFARI. Mqsim Perform Precondition. Accessed: Sep. 2, 2020.
[Online]. Available: https://github.com/CMU-SAFARI/MQSim/blob/
1d1a2f73f84e47a41a1f62a14f75719d0179d5e7/src/ssd/FTL.cpp

[11] M. Corporation. Microsfot Production Server Traces. Accessed: Aug. 15,
2020. [Online]. Available: http://iotta.snia.org/traces/158.

[12] J. Cui, W. Wu, X. Zhang, J. Huang, and Y. Wang, ‘‘Exploiting latency
variation for access conflict reduction of NAND flash memory,’’ in Proc.
32nd Symp. Mass Storage Syst. Technol. (MSST), 2016, pp. 1–7.

[13] C. Du, Y. Yao, J. Zhou, and X. Xu, ‘‘VBBMS: A novel buffer management
strategy for NANDflash storage devices,’’ IEEE Trans. Consum. Electron.,
vol. 65, no. 2, pp. 134–141, May 2019.

[14] Intel Itanium Processor-Specific Application Binary Interface (ABI), FS
Foundation, Jaipur, Rajasthan, 2005.

[15] T. Garrett, J. Yang, and Y. Zhang, ‘‘Enabling intra-plane parallel block
erase in NANDflash to alleviate the impact of garbage collection,’’ inProc.
Int. Symp. Low Power Electron. Des., Jul. 2018, pp. 1–6.

[16] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, ‘‘Lever-
aging value locality in optimizing nand flash-based ssds,’’ in Proc. FAST,
2011, pp. 91–103.

[17] D. He, F. Wang, H. Jiang, D. Feng, J. N. Liu, W. Tong, and Z. Zhang,
‘‘Improving hybrid FTL by fully exploiting internal SSD parallelism with
virtual blocks,’’ ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 1–19,
Jan. 2015.

[18] F.-C. Hsu, ‘‘Methods and apparatus for NAND flash memory,’’
U.S. Patent 16 849 875, Jul. 30, 2020.

[19] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, ‘‘Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity,’’ in Proc. Int. Conf. Supercomput.,
2011, pp. 96–107.

[20] J.-H. Huang and R.-S. Liu, ‘‘DI-SSD: Desymmetrized interconnection
architecture and dynamic timing calibration for solid-state drives,’’ in
Proc. 23rd Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2018,
pp. 34–39.

[21] Atomic Builtins Using the Gnu Compiler Collection (GCC), Intel, Moun-
tain View, CA, USA, 2001.

[22] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kandemir, ‘‘HIOS:
A host interface I/O scheduler for solid state disks,’’ in Proc. ACM/IEEE
41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 289–300.

[23] M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S. Kim,
and M. Kandemir, ‘‘SimpleSSD: Modeling solid state drives for holistic
system simulation,’’ IEEE Comput. Archit. Lett., vol. 17, no. 1, pp. 37–41,
Jan. 2018.

[24] V. Kasavajhala, ‘‘Solid state drive vs. hard disk drive price and performance
study,’’ Proc. Dell Tech. White Paper, 2011, pp. 8–9.

[25] J. Katcher, ‘‘Postmark: A new file system benchmark,’’ Network Appli-
ance, New Delhi, India, Tech. Rep. TR3022, 1997.

[26] C. Kim, ‘‘11.4 a 512Gb 3b/cell 64-stacked WL 3D V-NAND flash mem-
ory,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2017, pp. 202–203.

[27] H. Kim and S. Ahn, ‘‘A buffer management scheme for improving random
writes in flash storage,’’ in Proc. 6th USENIX Conf. File Storage Technol.,
2018, pp. 239–252.

[28] J.-K. Kim, ‘‘Multipage program scheme for flash memory,’’
U.S. Patent 9 484 097, Nov. 1, 2016.

[29] S. Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, T. J. Ham, and
J. W. Lee, ‘‘Practical erase suspension for modern low-latency ssds,’’ in
Proc. USENIX Annu. Tech. Conf., 2019, pp. 813–820.

[30] Y. Koya, G. B. Bronner, and F. A. Ware, ‘‘Multi-page parallel program
flash memory,’’ U.S. Patent 8 310 872, Nov. 13, 2012.

[31] C. Lee. Traces From Understanding Storage Traffic Characteristics on
Enterprise Virtual Desktop Infrastructure. Accessed: Aug. 15, 2020.
[Online]. Available: http://iotta.snia.org/traces/4928

[32] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sugawara,
‘‘Understanding storage traffic characteristics on enterprise virtual desktop
infrastructure,’’ in Proc. 10th ACM Int. Syst. Storage Conf., May 2017,
pp. 1–11.

[33] J. Lee and J.-S. Kim, ‘‘An empirical study of hot/cold data separation
policies in solid state drives (SSDs),’’ in Proc. 6th Int. Syst. Storage Conf.,
Haifa, Israel, 2013, p. 1.

[34] J. Lee, Y. Kim, G. M. Shipman, S. Oral, F. Wang, and J. Kim, ‘‘A semi-
preemptive garbage collector for solid state drives,’’ in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., Apr. 2011, pp. 12–21.

[35] M. Lin and S. Chen, ‘‘Efficient and intelligent garbage collection policy
for NAND flash-based consumer electronics,’’ IEEE Trans. Consum. Elec-
tron., vol. 59, no. 3, pp. 538–543, Aug. 2013.

[36] M. Lin and Z. Yao, ‘‘Dynamic garbage collection scheme based on past
update times for NAND flash-based consumer electronics,’’ IEEE Trans.
Consum. Electron., vol. 61, no. 4, pp. 478–483, Nov. 2015.

[37] W. Liu, L. Zeng, and D. Feng, ‘‘CASS: A cooperative hybrid storage
system consisting of an SSD and a SMR drive,’’ in Proc. 6th Int. Conf.
Adv. Cloud Big Data (CBD), Aug. 2018, pp. 24–29.

223586 VOLUME 8, 2020

G. Zhu et al.: Preliminary Study: Towards Parallel GC for NAND Flash-Based SSDs

[38] Mt29f32g08cbaca Mt29f32g08cbecb Datasheet. Accessed: Aug. 1, 2019.
[Online]. Available: https://www.micron.com/media/client/global/
documents/products/data-sheet/nand-flash/die/l73a_die_32gb_nand.pdf

[39] W. Norcott. (2003). Iozone Filesystem Benchmark. [Online]. Available:
http://www.iozone.org/

[40] OCZ. Revodrive Pci-Express SSD Specifications. [Online]. Available:
http://www.ocztechnology.com/ocz-revodrive-pci-express-ssd.html

[41] J. Ou, J. Shu, Y. Lu, L. Yi, andW.Wang, ‘‘EDM: An endurance-aware data
migration scheme for load balancing in SSD storage clusters,’’ in Proc.
IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014, pp. 787–796.

[42] Samsung. K9xxg08uxa Datasheet. Accessed: Apr. 15, 2019. [Online].
Available: http://www.samsung.co.kr/

[43] Samsung. Pm830 Datasheet. Accessed: Dec. 5, 2020. [Online]. Available:
https://www.digchip.com/datasheets/parts/datasheet/3566/PM830-pdf.
php

[44] N. Shahidi, ‘‘Flash translation layer design in solid state drives,’’ M.S. the-
sis, Pennsylvania State Univ. Graduate School, State College, PA, USA,
2017.

[45] T. Song, J. Jung, W. Rim, H. Kim, Y. Kim, C. Park, J. Do, S. Park, S. Cho,
H. Jung, B. Kwon, H.-S. Choi, J. Choi, and J. S. Yoon, ‘‘A 7nm FinFET
SRAM using EUV lithography with dual write-driver-assist circuitry for
low-voltage applications,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2018, pp. 198–200.

[46] R. Stoica and A. Ailamaki, ‘‘Improving flash write performance by using
update frequency,’’ Proc. VLDB Endowment, vol. 6, no. 9, pp. 733–744,
Jul. 2013.

[47] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-J. Choi, Y.-N. Koh,
S.-S. Lee, S.-C. Kwon, B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, and
H.-K. Lim, ‘‘A 3.3 v 32 mb NAND flash memory with incremental step
pulse programming scheme,’’ IEEE J. Solid-State Circuits, vol. 30, no. 11,
pp. 1149–1156, Dec. 1995.

[48] K. Takeuchi, ‘‘Novel co-design of NAND flash memory and NAND
flash controller circuits for sub-30 nm low-power high-speed solid-state
drives (SSD),’’ IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1227–1234,
Apr. 2009.

[49] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
‘‘Mqsim: A framework for enabling realistic studies of modern multi-
queue ssd devices,’’ in 16th USENIX Conf. File Storage Technol., 2018,
pp. 49–66.

[50] ‘‘Flash interface specification,’’ Open NAND Flash Interfaces (ONFi),
Tech. Rep. Revision 4.1.

[51] S. Wu, Y. Lin, B. Mao, and H. Jiang, ‘‘GCaR: Garbage collection aware
cache management with improved performance for flash-based SSDs,’’ in
Proc. Int. Conf. Supercomput., 2016, pp. 1–12.

[52] G. Xu, Y. Liu, X. Zhang, and M. Lin, ‘‘Garbage collection policy to
improve durability for flash memory,’’ IEEE Trans. Consum. Electron.,
vol. 58, no. 4, pp. 1232–1236, Nov. 2012.

[53] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, ‘‘Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in nand ssds,’’ ACM Trans. Storage, vol. 13, no. 3,
p. 22, 2017.

[54] J. Yang and S. Pei, ‘‘Thermo-GC: Reducing write amplification by tagging
migrated pages during garbage collection,’’ in Proc. IEEE Int. Conf. Netw.,
Archit. Storage (NAS), Aug. 2019, pp. 1–8.

[55] P. Yang, N. Xue, Y. Zhang, Y. Zhou, L. Sun, W. Chen, Z. Chen, W. Xia,
J. Li, and K. Kwon, ‘‘Reducing garbage collection overhead in SSD based
on workload prediction,’’ in Proc. 11th USENIX Workshop Hot Topics
Storage File Syst., 2020, pp. 1–8.

[56] B. Zhou, S.Wan, andC.Xie, ‘‘Isolation: Inexpensively separating cold data
via garbage collection to improve the lifetime and performance of NAND
flash SSDs,’’ Concurrency Comput., Pract. Exper., Jul. 2019, p. 5460.

GUANGYU ZHU received the B.S. degree from
the School of Computer Science and Engineer-
ing, Chung-Ang University, where he is currently
pursuing the M.S. degree. His research interests
include operating systems, and file and storage
systems.

JAEHYUN HAN received the B.S. degree from
the School of Computer Science and Engineer-
ing, Chung-Ang University, where he is currently
pursuing the M.S. degree. He was an Intern with
Bosornd, in 2018 and 2019. His research interests
include distributed systems and operating systems.

YONGSEOK SON received the B.S. degree
in information and computer engineering from
Ajou University, in 2010, and the M.S. and
Ph.D. degrees from the Department of Intelligent
Convergence Systems and Electronic Engineering
and Computer Science, Seoul National Univer-
sity, in 2012 and 2018, respectively. He was a
Postdoctoral Research Associate in electrical and
computer engineering with the University of Illi-
nois at Urbana–Champaign. He is currently an

Assistant Professor with the School of Computer Science and Engineering,
Chung-Ang University. His research interest includes operating, distributed,
and database systems.

VOLUME 8, 2020 223587

