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ABSTRACT Federated learning (FL) is a promising decentralized deep learning technique that allows users
to collaboratively update models without sharing their own data. However, due to its decentralized nature,
no one can monitor workers’ behavior, and they may thus deviate protocols (e.g., participating without
updating any models). To solve this problem, many researchers have proposed blockchain-enabled FL to
reward workers (or users) with cryptocurrencies to encourage workers to follow the protocols. However,
there is a lack of theoretical discussions concerning how such rewards impact workers’ behavior and how
much should be given to workers. In this article, we propose a mechanism-design-oriented FL protocol on
a public blockchain network. Mechanism design (MD) is often used to make a rule intended to achieve a
specific goal. With MD in mind, we introduce the concept of competition into blockchain-based FL so that
only workers who have contributed well can obtain rewards, which naturally prevents workers from deviating
from the protocol. We then mathematically answer the following questions with contest theory, a novel field
of study in economics: i) What behavior will workers take?; ii) how much effort should workers exert to
maximize their profits?; iii) how many workers should be rewarded?; and iv) what is the best proportion for
reward distribution?

INDEX TERMS Federated learning, decentralized deep learning, blockchain, mechanism design, contest
theory.

I. INTRODUCTION
Artificial intelligence (AI) has been widely used to make
decisions about our daily lives. However, the accuracy of AI
is still not satisfactory in many sectors, such as autonomous
vehicle systems. A straightforward approach to improving
accuracy is to collect more training data from the wide
range of users. That said, most people are not willing to
share personal data such as images, audio, and location
information. To overcome this problem, Google has pro-
posed federated learning (FL), an iterative and decentralized
approach that allows those who possess data to update a
deep learning (DL) model without disclosing their data [1].
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approving it for publication was Mingjun Dai .

More specifically, users (or workers)1 locally update mod-
els using their own data and submit it to a central server,
in which models are merged together. This approach prevents
users from disclosing their data, as only updated models are
submitted.

Although the concept of FL is novel, many remaining
issues prevent it from being practical. For example, users
could be ‘‘volunteers’’ who work to update the model. In this
situation, users can be free riders, meaning that they can
obtain improved models without exerting any effort. To solve
this problem, giving workers a monetary incentive is an
effective approach.2 Recently, researchers have proposed the

1The terms of users andworkers are interchangeably used in the following.
2Some similar applications, for example, Waze (www.waze.com), can

provide an incentive for workers without offering any monetary incentive.
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concept of blockchain-enabled FL to incentivize workers to
contribute using cryptocurrencies (e.g., [2], [3]).

However, no existing work has theoretically clarified how
rewarding impacts workers’ behavior and what the optimal
conditions are. Previously, we introduced a concept of com-
petition to the model update process that allows only workers
who have contributed to earn rewards [4]. However, the pre-
vious work was somewhat incomplete, and the following
problems remain unsolved and questions unanswered:

1) The protocol is not fully described, and elaboration is
needed.

2) How much effort should workers exert to maximize
their profits?

3) How many workers should be rewarded?
4) What amounts should workers receive?
In this article, we first present a full-fledged mechanism-

design-oriented FL protocol on a public blockchain network,
which is inspired by mechanism design (MD), an economic
rule-making approach to achieve a specific goal. We then
present a theoretical analysis to address the remaining prob-
lems by leveraging contest theory. A contest is an auc-
tion where participants must expend costly and irreversible
efforts, and prizes are determined based on the quality of
their output [5]. Workers must update a model, which is an
irreversible effort, and thus the model update process of FL
can be seen as a contest.

The contributions of this article compared to our previous
article [4] are as follows:

1) We provide a more complete survey of related work.
2) We provide a full-fledged protocol design.
3) We provide a complete theoretical analysis of the opti-

mal reward policy based on the contest theory. In par-
ticular, we provide answers to the following questions:
a) What is the condition for a worker to join a task?
b) How much effort should workers exert to maxi-

mize their profits?
c) How many workers should be rewarded?
d) How much rewards should be given to the

workers?
The rest of this article is organized as follows: Section II

explains the fundamentals of FL, cryptocurrency, and
blockchain. Section III summarizes related work. Section IV
describes the proposed protocol, while Section V presents a
theoretical analysis. Finally, Section VI concludes this article.

II. PRELIMINARIES
A. FEDERATED LEARNING
Federated learning enables users to collaboratively train a
deep neural network (DNN) model while keeping all the
training data on the user side [1]. FIGURE 1 depicts the basic
flow chart of an FL system with a total of K workers. Let
us assume that a central server delegates a DNN task, for
example, teaching a DNN model that can identify objects
in given images, to distributed workers. The central server
first distributes an initialized model to K ′ = max(dK ·Ce, 1)
workers, where C denote the fraction of workers in a round.

FIGURE 1. FL’s fundamental procedures.

Each worker updates the received model with his or her own
data and sends an updated model, that is, a set of weights and
biases, to the central server. The central server distributes a
new model, which can be obtained by averaging the models
updated by the workers in the first round to those in the sec-
ond round. These procedures are repeated until the model is
converged or at specific round, say N rounds. As workers
only submit the model, their original data is not shared with
the central server, and their privacy thus can be somewhat
preserved.

Although the concept of FL is promising, many issues,
such as the following, must be solved:

1) Some workers may intentionally (or unintentionally)
submit negatively affecting models.

2) Data used for training a model may be leaked from a
set of weights and biases [6].

3) Workers may be less motivated to contribute to the
model update process, as they do not obtain explicit
rewards.

To solve these issues, some researchers, for example, [2],
[3], [7]–[9] have proposed leveraging blockchain technolo-
gies to give monetary incentives to workers in the form of
cryptocurrencies and to track the updating of a model in a
trustworthy manner. To better understand their work, the fun-
damentals of blockchain technologies are explained in the
next section.

B. BLOCKCHAIN TECHNOLOGIES
A cryptocurrency is a digital currency, some of which (e.g.,
Bitcoin and Ethereum) can be exchanged from/to fiat cur-
rencies. In general, an address is used to receive and send
cryptocurrencies, and it is transferable among addresses via
a transaction. Transactions are stored in a blockchain, which
is a distributed append-only ledger. Blockchain is classified
according to two types: public and private (or permissioned)
blockchains. A public blockchain is a blockchain on which
anyone can check the stored transactions. By contrast, a pri-
vate blockchain is run by predefined users, and its content is
only accessible by them. Hyperledger Fabric is an example
of a private blockchain.
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TABLE 1. Comparison of related work and our study. ‘−’ and ‘‘NA’’ denote ‘‘not mentioned’’ and ‘‘not applicable,’’ respectively.

FIGURE 2. An example of Ethereum’s smart contract.

A smart contract is another important invention that
enables us to execute a computer program on the
blockchain [10]. The code of a smart contract itself is stored in
the blockchain and can be executed by sending a transaction
to the address of a smart contract with program arguments.
There are two advantages to executing programs with a smart
contract: The first is that cryptocurrencies can be transferred
via computer programs. The second is transparency: the
status of programs is stored in the blockchain, and the history
of code execution can be tracked. These are the funda-
mentals that allow FL workers to submit their DNN model
updates and to receive cryptocurrency via smart contracts.
The procedures involved in an FL, namely, user registration,
task creation, model updating and averaging, can be fully
described with smart contracts and executed via transactions.
FIGURE 2 shows a smart contract for user registration.
Through the function regUser(), a user can be regis-
tered as a requester and/or worker. A functionality of access
control can be implemented, for example, onlyAdmin in
FIGURE 2, restricting the execution of a function to a specific
user.

III. RELATED WORK
Our work is relevant to blockchain-based (i) decentralized
machine learning (ML) and (ii) crowdsourcing. However,
we only summarize the former, and the latter is presented in
Appendix, as space is limited here.

TABLE 1 lists the state-of-the-art distributed ML work
using a blockchain technology. Shae and Tsai proposed a
concept that leverages the smart contract of blockchain for
large medical data processing [7]. However, they only show
the concept and do not discuss any details.

Lu et al. proposed an approach to crowdsource ML tasks
with a public blockchain [13]. In their proposal, a commit-
ment scheme is introduced to avoid the situation in which a
malicious worker simply copies and submits other workers’
outputs. In addition, a strategic game is leveraged to incen-
tivize workers to behave appropriately.

Preuveneers et al. proposed a permissioned blockchain-
based FL platform that enables the auditing of trained ML
models [12]. Their platform is implemented on Multichain.
The authors demonstrated its practicability with a network
trace dataset for network anomaly detection.

Idé proposed a permissioned blockchain-enabled collabo-
rative platform for anomaly detection [16]. The author gave
an example of factories located in different places being able
to collaborate with each other to build a common model
with local sensor data. A permissioned blockchain is used to
accumulate and update models from decentralized factories.

Chen et al. proposed a privacy-preserving decentralized
ML platform, LearningChain [14]. Although the user’s
privacy is somewhat preserved in FL, the authors noted that
users’ inputs could be revealed by analyzing the weights of
neural networks [6]. To address this problem, the authors
applied differential privacy, allowing workers to update their
own data with perturbation to preserve privacy.

Kim et al. analyzed the end-to-end latency of blockchain-
enabled FL [15]. When mobile devices participate in the
model training processes, network latency can heavily impact
the performance of FL [17]. In [15], several metrics, such as
latency, were evaluated on the authors’ own blockchain.

Weng et al. proposed a blockchain-enabled privacy-
preserving ML platform, DeepChain [2]. To prevent the
leakage of user information, the additive homomorphic
encryption of threshold Pailler encryption was introduced.
An original coin, DeepCoin, is distributed to users as incen-
tive, but misbehaviors, such as providing stale reports and
incorrect execution, are punished.

Syayan et al. proposed a public blockchain-based privacy-
preserving ML platform, Biscotti [3]. Users with data
update a neural-networkmodel by stochastic gradient descent
and store the updated model on the blockchain. To pre-
serve the privacy of the contributing users, perturbation,
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a commitment scheme, and Shamir’s secret sharing scheme
are applied. Furthermore, to improve the quality of the model,
negatively contributing updates are to be eliminated.

Zhu et al. proposed a blockchain-enabled decentralized
ML platform to eliminate malfunctioning nodes that nega-
tively influence the model update [11]. The global ML model
is repeatedly updated. In each round, one of the participants
broadcasts his or her local model update, and other partic-
ipants sends back feedback based on how much their local
models improve.

Since no one can monitor the behavior of workers, some
measures must be introduced to prevent workers from deviat-
ing from protocols. An example of such a measure would be
the use of zero knowledge proof and a hardware-based attes-
tation, in which one can assure that programs have actually
been executed in a secure environment (e.g., [2], [3]). How-
ever, considering that FL is mainly used inmobile devices [1],
such functional requirements significantly impair usability.
Hence, it is necessary to devise an approach that does not
require special hardware or heavy computation for an audit.
Given this requirement, we focus on MD, which is often used
to make a rule intended to achieve a specific goal and has
been well-studied in economics. The design of Bitcoin was
inspired by the MD. In Bitcoin, a monetary incentive, that
is, cryptocurrency, is given to basically untrusted miners who
are supposed to verify transactions and seal them in a new
block. Bitcoin is innovative in the sense that the combina-
tion of competition and incentive makes miners work well,
and we adopt a similar approach for the blockchain-enabled
FL. We explain the proposed protocol in detail in the next
section.

IV. PROPOSED PROTOCOL
Before examining the procedures in detail, we explain how
our protocol works in FIGURE 3. We assume that our pro-
tocol has been deployed on a public blockchain network, for
example, Ethereum, as valuable cryptocurrencies provide a
straightforward way to give workers incentives. Furthermore,
as listed in TABLE 3, we assume that there are three enti-
ties, namely i) Admin (an administrator who deploys SCs
on the blockchain), ii) R (requesters who post DNN tasks
with cryptocurrencies), and iii) W (workers who train DNN
models to earn rewards). A requester adds a task to a smart
contract with an initial DNN model. Interested workers join
such a task and are randomly assigned into N rounds. The
workers in the first round fetch the initialized model, update
it with their own data, and submit their local updates. The
workers in the second round fetch all the previously submitted
models, evaluate them with their own data and vote top-k
models based on classification accuracy. Each worker trains
the chosen top-k models with his or her own data and submits
the trained model.3 Cryptocurrencies are given to the workers
in the first round based on the vote. These procedures are
repeated until N .

3Chosen top-k models may differ by workers.

TABLE 2. List of notation.

A. PROCEDURES
We then explain the entire procedure, which is composed of
six stages: i) user registration, ii) task solicitation, iii) task ini-
tiation, iv) model update, v) reward distribution, and vi) task
closure. The list of notation is shown in TABLE 2.

1) USER REGISTRATION
All the participating users, namely requesters and workers,
must register themselves on the system via a smart contract.
FIGURE 2 shows a code snippet of the smart contract for
user registration. Admin is expected to register a user by
giving (i) address and (ii) two Boolean values to indicate
whether he or she is registered as requester and/or worker.
Once registered, requesters can post tasks, while workers can
join tasks.

2) TASK SOLICITATION
FIGURE 4 shows the flowchart of task solicitation. To post a
task, a requester must give i) a description of the DNN task,
for example, input data format, number of layers, number
of units, loss function, learning rate, and activation function;
ii) other parameters, for example, starting time T and total
amount of reward; and iii) cryptocurrencies for rewards d .
A posted task is solicited to registered workers, and they
can determine whether to participate in the task. Interested
workers must register themselves via a smart contract before
the task has started.

3) TASK INITIATION
FIGURE 5 shows the procedures of task initiation. When
starting time T arrives, the number of rounds N and the
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FIGURE 3. Overview of our FL platform with blockchain.

TABLE 3. Comparison of entities’ roles.

FIGURE 4. Task solicitation.

FIGURE 5. Task initiation.

number of workers in a round K ′ are calculated based on
the number of participating workers Wt . For each task, K ′

workers are randomly chosen fromWt every round. None of
the participants will be chosen in the future rounds, meaning
that every participant will join a round only once. Note that if
few workers join, such a task is immediately closed, and the
deposited cryptocurrencies are paid back to a requester.

As is explained in Section IV-A6, N must be hidden from
workers until all the rounds are finished, and a requester must
reveal N thereafter. For this purpose, a commitment scheme,
a technique to conceal a value until a specific point [18],
is applied to N . More specifically, a requester sends a hash
value h, which is calculated by H(N , s), to a smart con-
tract before a task starts, and reveals N with s that satisfies
h = H(N , s) when N is revealed.

The requester initializes a DNN model w0 with an existing
algorithm (e.g., [19]), encrypts w0 with a symmetric key K0,
and places the encrypted model (i.e., enc(w0,K0)) in the
data storage. The data storage can be either a blockchain
or a database, and this must be determined by a system
operator.

4) MODEL UPDATE
FIGURE 6 illustrates the procedures of model update. Every
round K ′ workers are randomly chosen from the participants.
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FIGURE 6. Model update.

The requester sends two symmetric keys,Ke−1 andKe, a key
to decrypt the model updates in the previous round (not
applicable for the workers in the first round) and a key to
encrypt model updates, to the workers in round e. The two
keys must be securely distributed to the workers. Hence, they
are encrypted with each worker’s public key and distributed
individually.

Algorithm 1 shows the procedures of model update. Except
for the first round, after retrieving the models in the previous
round, that is, {wi,e−1}, by deciphering the encrypted models
with Ke−1, each worker chooses their top k models. To do
this, the loss for each model is evaluated using his or her
own data Di, and those k models whose loss is the lowest
are chosen. Any loss function (e.g. mean absolute error) can
be used as a criterion to measure the goodness of models.
As each worker has a different dataset, chosen top k models
may differ by workers. A base model, w′i,e, is then calculated
by averaging the chosen models (see line 10 in Algorithm 1).
We assume that a stochastic gradient descent, an algorithm to
iteratively optimize a loss function with batch data, is used to
update w′i,e with Di, as in [1].
Updated models are encrypted with Ke and stored in

data storage. However, to prevent an updated model from
being exposed to other workers, a commitment scheme is

Algorithm 1: Procedures of Model Update
Input :Models submitted by the workers in the round

e− 1, {wi,e−1}i∈K ′ (when e ≥ 2) or w0 (when
e = 1) Dataset Di = {xj, yj}

Output: wi

/* 1. Choose the top k models by
evaluating them with its own
dataset: */

1 if e ≥ 2 then
2 for m ∈ K ′ do
3 lm = 1

|Di|

∑
j∈|Di|

L(xj, yj;wm,e−1)
4 end
5 Mi,e← Choose k models’ indices of which lm is in

the k lowest values.
6 end

/* 2. Average the chosen models */
7 if e == 1 then
8 w′i,e← w0

9 else
10 w′i,e←

1
k

∑
m∈Mi,e

wm,e−1
11 end

/* 3. Model update with its own data

*/
12 B← split(Di,B)
13 wi,e← w′i,e
14 for each local epochs E do
15 for each batch b in B do
16 wi,e← wi,e − η∇L(wi,e, b)
17 end
18 end
19 return wi,e

FIGURE 7. Reward distribution.

applied, as in [13]. Specifically, the procedure of storing a
new model is divided into two phases, namely, i) the commit
phase and ii) the reveal phase. In the commitment phase,
the commitment of wi,e is calculated as commit(wi,e) =
H(wi,e, si,e), and commit(wi,e) is encrypted with Ke as
enc(commit(wi,e),Ke) and is submitted to data storage.
In the reveal phase, the used salt should be revealed by Trev.
The requester checks whether the commitments are valid on
an individual basis.

5) REWARD DISTRIBUTION
FIGURE 7 illustrates the procedures of reward distribution.
At the end of round, k models are voted by K ′ workers, and
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FIGURE 8. Task closure.

the ranking is determined by tallying kK ′ votes. This process
can be automated in the smart contract. At the end of round,
a reward is distributed to the workers in the previous round
as r1 ≥ r2 ≥ · · · ≥ rK ′ ≥ 0 (

∑
j∈[1,K ′] rj = r). Hence,

the most-voted worker receives r1 and the first runner-up
receives r2 and so on. Such an order is determined by the
number of models chosen by the workers in the current round.
Obviously, the more a worker’s model is chosen, the more
reward should be given to him or her. Hence, the smart
contract counts votes for each worker in the previous round
and determines their rankings. The optimal distribution of rj
is discussed in Section V.

6) TASK CLOSURE
The procedures of model update and reward distribution are
repeated for N rounds, with the exception of the last one.
The workers in the final round will not be voted, since no
subsequent workers exist. Hence, as shown in FIGURE 8,
a reward is equally distributed as r1 = r2 = · · · =
rK ′ = r/K ′. However, if the workers knew that this is the
final round, such distribution would demotivate them, as they
would be able to receive rewards without having updated the
model. This is why the requester cannot reveal N before N
rounds have been finished and a commitment scheme is used
to N in Section IV-A3. Clever workers may guess N from
the remaining reward. To avoid this, the requester must put
total rewards d larger than what are actually needed, that is,
d > N ·r . The requester will not lose excessive rewards, since
the excess will be returned by the smart contract.

B. DISCUSSION
1) ADVANTAGES
The proposed design has some noticeable advantages over
the existing ones: First, implementation will be feasible,
as our design can be implemented with an existing public
blockchain, for example, Ethereum, and it only requires sym-
metric key cryptography and a commitment scheme. Hence,
neither special hardware nor a custom-built blockchain is
required for implementation. Second, as is proven later,
if workers are rational, they will not be lazy and will expend
effort, and this is mathematically guaranteed. In particular,
the latter is important, as it will allow requesters to feel certain
that they can obtain accurate models and that their rewards
will not be wasted.

2) CAVEAT OF TIME-SENSITIVE PROCEDURES
Our design contains time-sensitive procedures, for example,
the deadlines for (i) joining a task and (ii) the submission

of commit and reveal in a commitment scheme. Major
blockchains provide a time function, which should be used to
realize the time-sensitive procedures. For example, Ethereum
has block.timestamp to obtain the current time based
on the mined time written in a block. However, participants
should be mindful that this value may vary up to 900 seconds,
as miners can specify any timestamp as long as the block
timestamp is greater than that of the previous block and is
within 900 seconds of their local computer [20].

3) COMPLEXITY OF KEY DISTRIBUTION
In Section IV-A4, two keys, Ke−1 and Ke, are encrypted
with each user’s public key and are distributed to workers.
Hence, the complexity of calculation and communications is
O(K ′). Although this would not be a problem in a real-world
scenario, a group key distribution method, for example, [21],
may reduce computation.

4) ASSUMPTION OF DATA DISTRIBUTION
We assume that datasets that workers use for specific tasks
are independent and identically distributed. This assumption
is natural, as, after a requester posts a model, only the workers
who have data relevant to the task will join. For example, if a
task is to train a model that recognizes cats in images, only
those workers who possess cat images will join this task.

5) POSSIBILITY OF COLLUSION
Possible attacks should be kept in mind for secure protocol
design. In our design, collusion might be possible if an adver-
sary could register a group of decoy workers so as to increase
the chance of winning rewards or even to contaminate a
model by submitting bogus model updates. Our design is
robust against this attack, as (i) users must be approved by
an administrator to register themselves and (ii) workers are
randomly chosen every round. Implementing such a function
is possible even though the underlying blockchain is public.
For instance, Ethereum has a logic to restrict access [22],
and the user management function can be implemented as
shown in FIGURE 2. Another effective mitigation approach
to reduce the number of decoy workers would be to impose a
registration fee for workers to register themselves. Such fee
can be paid by cryptocurrency, as our design is deployed on
a public blockchain.

6) PUNISHING DISHONEST WORKERS
Some existing methods penalize dishonest workers, those
who deteriorate the quality of models (e.g. [2]). However,
we do not do so because of the following two reasons. First,
it is infeasible to differentiate honest and dishonest workers.
Even if workers are ‘‘honest’’ they may not contribute much
(or even negatively contribute). This could happen, for exam-
ple, when a model is already over-trained, and obviously,
they should not be punished in this case. Second, dishonest
workers’ payoffs will be likely negative without a punishing
mechanism, as their updates will hardly be chosen in top-k
models despite their ‘‘efforts’’ to deteriorate models. Hence,
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the competition mechanism will demotivate such dishonest
workers.

7) CLIENT SELECTION METHOD
We follow the random client selection method proposed
in the original FL article [1]. However, there may be bet-
ter client selection methods in terms of faster convergence.
We may work on the better worker selection method in the
future.

8) MULTI-ROUND VERSUS SINGLE-ROUND
We follow the iterated training process proposed in [1]. Some
may feel that this is inefficient in terms of training speed. This
is true, but there are two reasons why we adopt the multi-
round style. First, low quality models can be naturally elimi-
nated (including negatively-affecting models by adversaries)
through the iterated competition process. Second, our method
will not work in the single-round style. If this were a single
shot contest, a task requester would obtain a total of NK ′

models and must choose the best models and merge them.
As a task requester may not have a dataset to evaluate the
quality of models, he or she will not be able to determine the
ranking of workers, and rewards thus cannot be determined
either.

V. THEORETICAL ANALYSIS
For our design to work, it would be necessary to mathe-
matically prove that workers’ contributions pay off and to
determine an optimal reward policy.We use contest theory for
our analysis [23]–[25]. Contest theory has been employed to
analyze the efforts and payoff of workers. A contest is defined
as a game in which costly and irreversible efforts must be
exerted by workers, and rewards are determined based on the
quality of their output [5]. The series of procedures can be
seen as a contest, since workers must update a model, which
is an irreversible effort, and rewards are distributed based on
their quality (determined by votes). The following analysis
may confuse the readers who are familiar with auction theory
but contest theory. We admit that this may not be exactly
same, but we call the following first and second character-
istics as individual rationality and Bayesian-Nash incentive
compatibility, respectively.

1) Individual rationality: We find a condition in which all
rational workers join model updates.

2) Bayesian-Nash incentive compatibility: We find an
optimal strategy that workers can maximize their pay-
offs so that there exist no other advantageous strategies.

3) Optimal reward distribution:We find an optimal reward
distribution policy.

We analyze the above characteristics and rule in order.
As the same amount of rewards r are distributed every
round, all rounds are identical in terms of theoretical analysis.
Hence, the worker’s ordering sequence does not affect the
analysis, and we do not differentiate rounds in the following
analysis.

TABLE 4. Comparison of information that requester and worker know.

A. SETUP
We explain the mathematical notations used for theoretical
analysis. We first define prizes for workers. The j-th ranked
worker’s prize is denoted as rj, where r1 ≥ r2 ≥ · · ·
≥ rK ′ ≥ 0, meaning that the top worker will be given
r1 and the first runner-up will be given r2, and so on.
As the total rewards in a round is r ,

∑
j∈[1,K ′] rj = r

holds. To quantify cost and effort, the number of data and
processing cost per data are denoted as x and c, respectively.
Every worker is assumed to not know the other workers’ c,
making it a so-called imperfect (or incomplete information)
contest. TABLE 4 shows the comparison of information that
a requester and worker know. For the sake of simplicity, each
datum x equally contributes to the improvement of the model
update. We assume that the cost of the model update, denoted
as C(·), linearly increases with the number of data, x. Hence,
C(·) is expressed as follows:

C(c, x) = cx. (1)

c is determined by workers’ competence. More specifically,
the abler the worker, the lower c. The highest c, mean-
ing the c of the least skilled worker, is denoted as c̄. For
example, a worker with a small c can process more data
at the same cost. c is sampled from a uniform distribution
of [0, 1]. Hence, its cumulative distribution function (CDF),
F(c), is simply expressed as follows.

F(c) = c. (2)

Similarly, let G(x) denote a CDF of x for x ≥ 0. G(x) is
continuous and strictly increasing in (0, xmax), where xmax is
the maximum x.

B. INDIVIDUAL RATIONALITY
In order for our mechanism to be individually rational,
the expected payoff must not be negative for all partici-
pants. If they were always positive, all workers would have
been guaranteed to obtain rewards even though they do not
update models or even by deteriorating models. We formu-
late the expectation of worker’s payoff, and the condition
of individual rationality can be derived by showing that the
expectation is larger than or equal to the expected minimum
reward.

A worker’s payoff π (c, x) is calculated by subtracting cost,
C(c, x), from his or her prize, rj, when he or she is ranked in
j-th; otherwise, it is simply sunk cost, −C(c, x). Hence,
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π (c, x) can be expressed as follows.

π (c, x)=

{
u(rj)− C(c, x), if a worker is ranked in j− th
−C(c, x), otherwise.

(3)

where u(rj) is a von Neumann-Morgenstern utility function,
which is used to reflect the worker’s risk for a reward [26].4

Since rewards are not necessarily guaranteed for a contribu-
tion, we assume that workers are risk-averse. This means that
the expected payoff is not linear, and u(·) is monotonously
increasing and concave.

A worker will maximize the expectation of payoff,
E[π (c, x)].

E[π (c, x)] = U (x)− C(c, x) = U (x)− cx, (4)

where U (x) denotes the expected utility of worker with x.
When a worker is ranked in j-th place, j− 1 workers exerted
greater efforts than him or her while K ′ − j workers exerted
less effort than him or her. Hence, U (x) is represented as

U (x) =
K ′∑
j=1

(
K ′ − 1
j− 1

)
G(x)K

′
−j (1− G(x))j−1 u(rj). (5)

As can be seen from Eq. (4), rational workers will not
update a model if their expected profits are negative.We iden-
tify a condition in which all workers contributemodel updates
for rewards.
Lemma 1 (Individual Rationality): The following condi-

tion must be satisfied if all the workers exert their efforts.

u(rK ′ ) ≥ E[π (c̄, x(c̄))]. (6)

Otherwise, only the workers with c < c̄ will partici-
pate, and the others will choose not to join model updates
(i.e., x(c) = 0).

Proof: All workers must update models with their own
data, which is irreversible and costs some resources, for
example, time and energy. Hence, the workers will gain a
profit as long as the smallest prize, rK ′ , is larger than their
cost c. By contrast, the other, less skilled workers will not
join a task, as they have little chance of making a profit.
Individual rationality is achievable as every worker can

judge if it is better to join a task by calculating the expected
payoff after a requester advertises it. The rational workers
of which c for the task is larger than c̄ will not join the
competition in the first place.

C. INCENTIVE COMPATIBILITY
We prove that workers have an optimal strategy to maximize
their profits. For this, we first prove Lemma 2 that the abler
worker should contribute more, which is necessary to derive
the optimal amount of effort that workers should exert as
shown in Proposition 1.

4Note that the payoffs can be negative in Equation (3). Instead, the ‘‘expec-
tation’’ of payoffs should not be negative.

Lemma 2: The abler worker contributes more, meaning
that the ablest worker exerts the greatest effort among the
participants.

Proof: This lemma can be proven by showing that x(c)
is non-increasing for (0, c̄). For this, we first show that the
first derivative of x(c), that is, dx(c)/dc, is decreasing. The
workers with c < c̄ choose the optimal x to maximize their
expected profitsE[π (c, x)]. In other words, x is chosen so that
its first and second order conditions are satisfied with respect
to x.

dE[π (c, x)]
dx

= 0⇔
dU (c, x)
dx

=
∂

∂x
C(c, x) = c, (7)

and

d2E[π (c, x)]
dx2

< 0

d2U (c, x)
dx2

−
∂2

∂x2
C(c, x) < 0⇔

d2U (c, x)
dx2

< 0. (8)

In Eq. (8), ∂2

∂x2
C(c, x) = ∂2

∂x2
cx = 0 is used.

We differentiate Eq. (7) with c and obtain the following
equation:

d2U (c, x)
dxdc

·
dx(c)
dc
=

∂2C(c, x)
∂x∂c

dx(c)
dc
=

∂2C(c, x)
∂x∂c

/
d2U (c, x)
dxdc

(9)

As C(c, x) = cx, ∂2C(c, x)/∂x∂c = 1. Using the result of
Eq. (8), we can obtain dx(c)/dc < 0.

We then answer the question of how much effort x workers
should exert. As x is dependent on c, we represent x as x(c)
and find the optimal x with it.
Proposition 1: Bayesian Nash Incentive Compatibility: A

symmetric Bayesian equilibrium function x(c) exists for the
workers with c (< c̄).

x(c) = −
∫ 1

c

(K ′ − 1)
z

K ′∑
l=1

(
K ′ − 2
l − 1

)
·F(z)l−1(1− F(z))K

′
−l−1f (z)1rl dz, (10)

where 1rj = u(rj)− u(rj+1).
Proof: From Lemma 2, the workers with c < c̄ can be

aligned by c. With this in mind, the expected utility of prize
with cost c can be expressed as the summation of probabilities
that a worker is ranked in j-th, j− 1 workers have costs lower
than c, and K ′ − j workers have costs greater than c. As j can
be [1,K ′], the following equation holds:

U (c) =
K ′∑
j=l

(
K ′ − 1
j− 1

)
F(c)j−1 (1− F(c))K

′
−j rj (11)

=

K ′∑
l=1

K ′∑
j=l

(
K ′ − 1
j− 1

)
F(c)j−1 (1− F(c))K

′
−j1rj. (12)
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We calculate the derivative of Eq. (12) and obtain Eq. (13).

dU
dc
=

K ′∑
l=1

K ′∑
j=l

(
K ′ − 1
j− 1

){
(j− 1)F(c)j−2(1− F(c))K

′
−j

− (K ′ − j)F(c)j−1(1− F(c))K
′
−j−1

}
f (c)1rj.

=

K ′∑
l=1

K ′∑
j=l

(K ′ − 1)
{(

K ′ − 2
j− 2

)
F(c)j−2(1− F(c))K

′
−j

−

(
K ′ − 2
j− 1

)
F(c)j−1(1− F(c))K

′
−j−1

}
f (c)1rj

= −(K ′ − 1)
K ′∑
l=1

(
K ′ − 2
l − 1

)
F(c)l−1(1− F(c))K

′
−l−1

· f (c)1rj. (13)

From Eq. (7), we obtain the following equation.

dU (c)
dc
=
U (x(c))
dc

·
dx
dc
=
∂C(c, x)
∂x

·
dx
dc
= c

dx
dc
. (14)

By substituting Eq. (13) into Eq. (14) and calculating its
integral, we obtain Eq. (10).

D. OPTIMAL REWARD DISTRIBUTION
We finally derive the optimal reward distribution policy. This
is required as the requester wants to maximize the quality
of model with a given budget. We find the optimal num-
ber of rewards j̄ and its distribution r1, · · · , rj̄. The basic
idea is to find the optimal number of rewards and distribu-
tion that maximize the expected effort that a requester will
obtain.
Proposition 2: The following conditions should be met for

the optimized reward policy.
• The total reward should be distributed to the top j̄ work-
ers, where j̄ is the less than (K ′ + 1)/2.

• When u(·) is ln(·), which is a common concave function
for risk-averse workers, rj =

K ′−2j+1
K ′−1 r1.

• When u(·) is linear (i.e., when workers are risk-neutral)
all prizes are given to the best worker, as r1 = r,
and other workers are given no prize (i.e., r1 =
· · · = r ′K = 0).

• The total reward sums up to the total reward r, that is,∑j̄
j=1 rj = r .

Proof: From a requester’s perspective, he or she wants
to maximize the workers’ efforts, x. Hence, we find the
optimal number of rewards and its proportion by maximizing
x. We integrate Eq. (7) with respect to c and obtain Eq. (15):

x(c) = cU (c)−
∫ c

0
U (z) dz. (15)

The expectation of x(c) is obtained by integrating workers’ c.

E[x(c)] =
∫ 1

0
cU (c) dc−

∫ 1

0
(1− c)U (c) dc. (16)

By substituting Eq. (11) and Eq. (2), we obtain Eq. (17).

E[x(c)] =
K ′∑
j=1

(
K ′ − 1
j− 1

)[∫ 1

0
cj−1(1− c)K

′
−j+1

−

∫ 1

0
cj(1− c)K

′
−j
]
u(rj). (17)

Since
∫ 1
0 c

a(1− c)b dc = a!b!
(a+b+1)! , E[x(c)] can be simplified

as follows:

E[x(c)] =
K ′∑
j=1

K ′ − 2j+ 1
K ′(K ′ + 1)

u(rj). (18)

To maximize E[x(c)], no element in Eq. (18) should be
negative. Hence, K ′− 2j+ 1 > 0, and the maximum number
of rewards j̄ should be less than K ′+1

2 .
We finally find the optimal proportion of rj by leveraging

Lagrange multipliers. Since the total reward should sum up
to r , we have a constraint

∑j̄
j=1 rj = r . With λ,

E[x(r1, r2, · · · , rj̄, λ)] =
j̄∑

j=1

K ′ − 2j+ 1
K ′(K ′ + 1)

u(rj)

−λ

 j̄∑
j=1

rj − r

 . (19)

For each rj, the following derivative is calculated.

∂E[x(r1, r2, · · · , rj̄, λ)]

∂rj
=
K ′ − 2j+ 1
K ′(K ′ + 1)

u′(rj)− λ = 0.

(20)

By solving this equation, we obtain the following equation.

u′(rj) =
K ′(K ′ + 1)
K ′ − 2j+ 1

λ. (21)

Since u′(r1) =
K ′(K ′+1)
K ′−1 λ is satisfied, we can obtain

u′(rj) = K ′−1
K ′−2j+1u

′(r1). If workers are risk-averse, it is rea-
sonable to assume that u(·) = ln(·).

u′(rj) =
1
rj
, u′(r1) =

1
r1
. (22)

Hence, we can obtain the following rj’s condition:

rj =
K ′ − 2j+ 1
K ′ − 1

r1. (23)

By contrast, if workers are risk-neutral, that is, u(rj) = rj,
u′(rj) = u′(r1) = 1.

1 =
K ′ − 2j+ 1
K ′ − 1

⇒ j = 1. (24)

Eq. (24) indicates that all rewards should be given to r1.
We show two real numerical examples when the workers

are risk-averse. First, when K ′ = 5, from Preposition 2,
the optimal number of prizes is determined to j̄ = 2, and
the optimal reward proportion is given as r1 = 2

3 , r2 =
1
3 ,
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and rj = 0 for 3 ≤ j ≤ 5. Similarly, when K ′ = 9,
j̄ = 4, {r1, · · · , r4} = { 410 ,

3
10 ,

2
10 ,

1
10 }, and rj = 0 for

5 ≤ j ≤ 9. These results do not violate the reward policy,
that is, r1 ≤ r2 ≤ · · · ≤ rK ′ ≤ 0, and might be quite intuitive.

VI. CONCLUSION AND FUTURE WORK
We have proposed a blockchain-enabled incentive-aware FL
with an MD. There are two key contributions of this arti-
cle: First, we introduce the use of competition to motivate
workers to maximize their rewards, and our design thus nat-
urally makes workers follow the protocol without using any
cryptographic approaches, such as homomorphic encryption
and zero knowledge proof. Second, we have mathemati-
cally identified some conditions for the protocol design to
work by leveraging contest theory. These theoretical proof
results are promising in terms of realizing the incentive-aware
blockchain-enabled FL.

In the future, we will implement our design on top of a
public blockchain network, such as Ethereum, and identify
operational costs and system performances, such as latency.

APPENDIX
RELATED WORK ON CROWDSOURCING
Many studies on crowdsourcing have been conducted in
which requesters can issue demands to users, for example,
answers to questions or services, in return for rewards. For
instance, Topcoder is a successful crowdsourcing competi-
tive programming platform on which contestants submit pro-
gramming codes on given subjects by deadlines and by which
top contestant(s) are awarded. In that sense, the incentive-
aware FL is part of crowdsourcing, and it is thus relevant to
our work. In this section, we summarize existing studies that
mainly analyze rewards in crowdsourcing.

Vojnović presented how contest theory is applied in online
services — in particular, crowdsourcing services [27]. Con-
test theory provides insights into the users’ possible behavior
and reward distribution policy and provides algorithms to
estimate users’ abilities based on observed contest outcomes.

Archak and Sundararajan analyzed the optimal reward
distribution for crowdsourcing [25]. They showed that
if requesters are risk-averse, multiple prizes should be
rewarded to workers. By contrast, requesters are risk-neutral,
the reward should be given to the top contributor. This result
does not contradict our result shown in Proposition 2.

Ghosh and McAfee analyzed equilibrium and optimal
reward distribution for two real use cases in crowdsourcing,
namely, (i) online Q&A forums (e.g., Quora and StackOver-
flow) and (ii) competitions (e.g., Topcoder) [28].

Singla and Karuse proposed an optimal price setting for
crowdsourcing with the regret minimization in the online
learning [29]. A mathematical analysis was conducted by
combining procurement auctions and multi-armed bandits.

Luo et al. proposed an optimal reward design with all-
pay auction [30] and Tullock contest [31]. In the all-pay
auction-based approach, they demonstrated that requesters
can maximize the contribution by rewarding only the top

contributor [30]. However, they also demonstrated that partic-
ipants who do not have high ability becomes risk-averse and
are not willing to join contests. The subsequent article, which
uses Tullock contest, mitigates this problem by introducing
a lottery mechanism to give every player a strictly positive
chance of winning as long as he or she participates [31].

Radanović et al. studied a mechanism in which a task
requester cannot evaluate the correctness of outputs by work-
ers [32]. In this case, the best strategy for workers is to sim-
ply submit random answers without solving the given tasks.
To solve this problem, the authors proposed a monitoring
approach in which participants compare their answers with
those of others.

Sarne and Lepioshkin analyzed the participants’ behavior
in amulti-prize contest when the quality of workers’ contribu-
tions is unknown at the time of participation [33]. The authors
of presented several interesting results; for example, in some
cases, a worker’s expected profit is maximized when a second
prize greater than the first is offered.

Chen et al. studied the design of optimal payment schemes
for requesters to maximize their profits and analyzed an
optimalmethod bywhich to select qualifiedworkers for given
tasks [34]. They proposed a reward policy based on a base
salary and additional bonus and a worker selection scheme
based on workers’ workload demands and past performance.

Rokicki et al. conducted a large-scale real experiments
to understand how different reward policies affect the cost
and time efficiency of crowdsourcing [35]. They tested
three reward assignment policies: (i) linear, (ii) ranking,
and (iii) lottery. As a result of the experiment with the Ama-
zon Mechanical Turk (AMT) platform, the ranking-based
policy with an exponential strategy, in which, for instance,
25, 10, 5, 5, 1, 1, 1, 1, 0.5, and 0.5 USD were payed out to the
top-10 users from a total budget of 50 USD, outperformed the
others.

Levy and Sarne conducted a series of experiments using
contests to understand the effect of the workers’ strategy and
determine whether they should participate in contests [36].
They tested 4,000 subjects in AMT using different settings,
for example, whether contests were sequential or parallel
and when the number of participants was different, say three
or five.
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