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ABSTRACT Music classification is an essential application of Music Information Retrieval (MIR) in
organizing extensive collections of music. The tasks to classify different music with reliable accuracy
observed to be challenging. Most of these tasks employ handcrafted feature engineering to build a classifier,
yet unable to identify the original characteristics of music. Several combinations of neural networks using
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been in consideration of
many researchers. However, it has been noticed that the joint architecture of CNN and RNN suffers some
problems due to batch normalization, which causes low accuracy and more training time. To handle these
issues, the Global Layer Regularization (GLR) technique is proposed on the hybrid model of CNN and
RNN using Mel-spectrograms for the evaluation of training and accuracy. Our experiments, with few hyper-
parameters, improve performance on GTZAN and Free Music Achieve (FMA) datasets by achieving modest
accuracy of 87.79% and 68.87% respectively. Empirically, our proposed model takes the advantages of
spatiotemporal domain features and the global layer regularization technique to accomplish reliable accuracy
as compared to the other state of art works.

INDEX TERMS Information retrieval, information systems, convolutional neural networks (CNNs),
recurrent neural networks (RNNs), global layer regularization (GLR), music classification, spatiotemporal
domain.

I. INTRODUCTION
The purpose of music classification is obvious due to the
rapid increase in the volume of music in recent years. Music
samples are continually growing, making it difficult to ana-
lyze and maintain the order of music databases manually.
Automating the task of music classification and analysis can
result better in music organization that has a significant role
in Music Information Retrieval (MIR), Music Recommen-
dation, and Online Access. However, music classification
is a challenging task due to the presence of fuzzy nature
among different music samples. Thus, music classification
with reliable accuracy is worth investigating.

The associate editor coordinating the review of this manuscript and
approving it for publication was Nadeem Iqbal.

The emergence of digital skills and complexmodels gained
significant consideration of the researchers in music clas-
sification. Most of the music classification techniques use
acoustic features of the audio signal for comparisons like
rhythm, pitch, tonality, intensity, timbre, and Mel-frequency
cepstrum coefficients (MFCCs). The handcrafted features,
for instance, Local Binary Pattern (LBP), Robust Local
Binary Pattern(RLBP), Rotational Invariant Co-occurrence
(RIC), Local Ternary Pattern (LTP) have also performed well
in the field of music [1]. Despite the extensive use of acoustic
and handcrafted features, the Visual Domain Features using
Mel-spectrograms are found to be similar to the human audi-
tory system and ideal for the methodologies based on Deep
learning [2].

Deep learning helps in designing the end-to-end systems
for numerous applications. These systems are capable enough
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for automatic feature extraction, free from feature biases, and
beneficial in comparison with the traditional methods. Neural
Networks such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) are among the influ-
ential methods for music classification [3]–[5]. CNNs are
favorable to record the spatial dependencies concerning fea-
ture domain [6], [7], whereas RNNs reasonably handle tem-
poral dependencies in sequential data [8]. Many of these
works performed music classification by using GTZAN [9]
dataset that became the benchmark for music analysis. Later
on, another dataset called Free Music Achieve (FMA) [10]
has been developed for public use, whose small-subset
(small -FMA) is similar to GTZAN.

The normalization techniques in these neural networks
are sufficient in reducing the activities of the neurons to
improve training time through computing mean and variance
for fixed-size input [11]. However, the major shortcomings
are the presence of feature biases and training complexity
due to a fixed batch size, which is not appropriate to achieve
consistent training performance [12]. In this paper, a new
layer regularization is introduced, which is an effective and
robust technique that is compatible with both CNN and RNN
referred to Global Layer Regularization (GLR) to address the
issues. This technique adequately removes the limitation of
fixed batch sizes and discourages the use of traditional regu-
larization techniques. Therefore, in this work, a global regu-
larization term is used for the joint CNN-RNN architecture as
an alternative for batch normalization to impact the influence
of training samples as a whole for the improved results. Our
method extracts features from the spatiotemporal domain that
is independent of feature biases. Further, this technique is
capable of computing statistics with layer regularization from
the input where each neuron has its own adaptive bias and
gain before non-linearity operation. Following are the main
contributions of this work:
• A unified architecture that first performs convolution
operations through CNN to perform feature extraction
from Mel-spectrograms and makes it free from feature
biases, and then the temporal aggregation of extracted
features with RNN.

• AGlobal Layer Regularization (GLR) technique to com-
pute the statistics from summed inputs directly to the
hidden layer neurons without involving any new depen-
dencies.

• A novel degree of compatibility of GLR and joint
CNN-RNN architecture by operating the spatiotemporal
features that result in better training and classification.

The rest of this paper is organized as follows: Section II
contains related work while the proposed architecture is elab-
orated in section III. Section IV consists of data description
and experimentation. Discussion is in section V. The paper is
concluded in section VI.

II. RELATED WORK
Music Classification techniques are mostly built on feature
descriptors extracted from the music files. The frequently

adopted features with some nonconventional engineering
methods are Zero-Cross Rate (ZRC), Spectral Roll Off (SR),
Spectral Centroid (SC), Chroma, and MFCCs, as explained
in [13]–[15]. Among these, MFCCs are considered an appro-
priate feature-set to provide strength for the classification of
diverse genres. However, the Low-Level Audio Features of
MFCCs affect model performance. Further, the handcrafted
feature engineering has also been used for music classifica-
tion in [16]. Although it was better compared to previous
methodologies, it still required intense manual labeling and a
robust understanding of signal processing methods. Another
work demonstrated that the perceptual nature of features with
the primary auditory cortex is not enough to provide discrim-
inative strength for classification; therefore, it is desirable to
combine generation and perception phenomena in represent-
ing music [17].

Currently, deep learning techniques are emerging as an
alternative to handcrafted feature engineering due to auto-
matic feature extraction, as introduced in [18]. These tech-
niques perform automatic feature extraction for the music
classification tasks [6], [19], [20].

Dieleman et al. [21] used the unsupervised fea-
ture extraction method by stacked Restricted Boltzmann
Machine (RBM). They learned arguments to initialize the
CNN perceptron for the classification of music genre but
obtained low accuracy. Vishnupriya and Meenakshi [20]
proposed a model built on CNNs for the classification of
music genres by utilizing MFCCs for feature extraction and
CNN for training and classification but unable to achieve a
reliable outcome.

Costa et al. [2] successfully attained remarkable results and
found to bemore favorable inmusic classification by utilizing
CNNs as compared to the approaches based on handcrafted
features and SVMclassifiers.Manymethods usingRNNvari-
ants such as Long-Short-Term-Memory (LSTM), constructed
on segment features for classification by focusing on the
sequential nature of the music, have been defined in [22], [23]
to capture a long-range. Similarly, Soboh et al. [24] developed
the RNNs model for the Arabic music classification and
found satisfactory results in terms of training and classifica-
tion accuracy.

Furthermore, Fulzele et al. [25] presented a joint model
of LSTM and SVM for music classification and resulted
in improved accuracy of prediction of the individual meth-
ods. Similarly, Choi et al. [26] used CRNN (Convolutional
Recurrent Neural Network ) for the music auto-tagging. They
compared CRNN findings with three CNN structures when
monitoring the number of parameters in terms of output
and training time per sample. Adiyansjah et al. [27] used a
hybrid form of convolutional and recurrent neural network for
the music recommendation by considering the frequency as
well as time-domain features. Their work indicated the users
prefer recommendations for music genres compared with
recommendations based on solely similarity. The works pre-
sented in [28]–[30] utilized joint neural networks composed
of Recurrent and Convolution Neural Networks. Thus, many
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works, asmentioned above, provided consistent performance,
but were not adequate in training and density, which leads to
computational overheads.

In neural networks, training through Stochastic Gradi-
ent Descent (SGD) has given significant results in com-
puter vision [31] and processing speech [32], but due to
data-intensive nature, it required massive time for training
data. The training speed could be enhanced by splitting the
dataset on different machines [33]. Having a complex com-
munication setup and software also increases the concept
of parallelization. In all the mentioned works, the authors
utilized a technique in terms of normalization to reduce
training time. This technique stores statistics separately for
every hidden layer with static depth. However, RNNs often
require summed input of dynamic sequence length and dis-
tinct computations for various time-steps. Empirically, this
normalization is not suitable to apply on large distributed
architectures where batches are small. It is beneficial to
stabilize the dynamics of hidden states by using global
layer regularization on the architecture based on CNN and
RNN.

We propose a CNN-RNN based model for the music clas-
sification, which exploits CNN for automatic feature extrac-
tion from Mel-spectrogram that eliminates feature extraction
biases while RNN to capture temporal aggregation distinc-
tively by employing a global layer regularization that can sig-
nificantly improvemodel training and classification accuracy.

III. THE PROPOSED GLOBALLY REGULARIZED CNN-RNN
ARCHITECTURE
The proposed globally regularized CNN-RNN architecture
aims to classify the music by capturing the spatiotemporal
statistics directly from music files, as in FIGURE 1.

The workflow initiates to generate Mel-spectrograms by
using the Librosa Library (a python package used for music
analysis). These Mel-spectrograms are given to our joint
architecture that consists of CNN and RNN. CNN trans-
forms low-level features of Mel-spectrograms into high-level
semantics by using some specific kernels. Just like images
and textual data, music also consists of meaningful informa-
tion in a graded structure that can be extracted by CNNs,
as defined in [34]. The output of CNN is pooled to a feature
map of a smaller dimension as an input to RNN, keeping an
aptitude to process sequential data by utilizing its memory
unit. By this ability, it examines the long term dependency
and important patterns hidden in sequential data explained
in [35]. A Global Layer Regularization (GLR) is applied to
the combined model that reduces the dimensions by com-
puting statistics across each feature and helps in finding
optimal parameters quickly for training. No restriction on the
size of the mini-batch is applied by this technique. It also
prevents the summed input from being rescaled to a layer
and allows the hidden state dynamics more stable by com-
puting statistics along feature dimension rather than batch
dimension. Our proposed architecture has succeeding steps as
follows:

FIGURE 1. Proposed globally regularized CNN-RNN architecture.

1) Generating Mel-Spectrograms
2) CNN to Extract Features
3) RNN to Perform Temporal Aggregation
4) Global Layer Regularization

A. GENERATING MEL-SPECTROGRAMS
A music signal requires suitable representation to compre-
hend by the neural network architectures. A spectrogram is
a 2-dimensional depiction of frequency facts over time that
refers to the squared degree of Short-Time Fourier Trans-
formation (STFT) of the audio signal [36]. Mathematically,
an isolated STFT is calculated as in Eq. (1) :

STFT {x (n)} (m, ω) =
∑∞

n=−∞
x[n]ω [n-m]e−jωn (1)

where x[n] refers to an input signal, and ω[n] is a window
function [37].

Usually, the representation for the music data is a
time-domain; however, distinct features are related to the
frequency domain entirely for content-based audio classi-
fication [38]. Comparatively, Mel-Scale refers to the non-
linear transformation of the frequency scale that reflects how
humans hear the sound. TheMel-scale is essentially a percep-
tual scale of frequencies that people consider to be equal in
distance from each other. It is computed as a power spectral
density P(f , t) which is useful in testing the various points for
time (ti) and frequency (fj) instants that are equally spaced.
The frequency at Mel-scale is computed as:

Mel = 2, 595 ∗ log10(1+ hertz
/
700) (2)

The inverse can be calculated as:

Hertz = 700 ∗
(
10.0mel/2,595.0 − 1

)
(3)

To acquire this representation, all the music samples are
encoded with mp3 format, and each is having a duration
of 30 seconds. We divide the datasets with the ratio 8:1:1 into
training, validation, and test datasets respectively, and per-
form three iterations on both GTZAN and FMA datasets.
For every iteration, each dataset contains an equal number
of randomly shuffled samples. Shuffling data resolves the
issue of reducing variance and assures that models remain
general and less overfit [39]. In this work, we tend to use
Mel-spectrograms to record temporal form for music anal-
ysis, as elaborated in [40].
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B. CNNs TO EXTRACT FEATURES
CNNs have been developed specifically to examine the image
data [41]–[43]. In CNNs, multiple layers act as feature extrac-
tor and can be used to balance the learning cost and extensive
use [44]. CNNs use various filters to drive the final output
feature map. Then an activation function is used to reduce
the dimensions into a specific range. A typical framework of
CNN [45] is demonstrated in FIGURE 2.

FIGURE 2. Block diagram of typical convolutional neural network.

In this framework, convolution operation represents the
computations on element-wise multiplication of the specific
kernel function with the input source. This filter traverses
the whole source input to detect patterns. Consequently,
CNNs automatically extract the real and natural patterns from
the Mel-spectrograms [46] and requires fewer computations
required in [47]. Each convolution layer uses kernels to learn
a feature map that gives results to the next layer. Following
Eq.(4) demonstrates to learn a feature map mti with the use of
specified filters:

mti = f
(
Vi;i+w−1 �W t

+ bt
)

(4)

where W t is the weight matrix, Vi;i+w−1 shows vectors,
b is bias value and � refers to the convolution operation.
However, various kernels with different lengths and weight
matrices are also considered to get an adequate feature map.
The obtained result is transformed into a non-linear form
by the use of the Rectified Linear Unit (ReLU) activation
function.

The pooling layer in CNN architecture is used between the
convolutional layers. This layer performs downsampling on
the output given by the convolutional layer. It also creates
nonoverlapping partitions for the output, and for each such
partition, the maximum value is taken as a final result. So,
we utilized max-pooling after each convolutional layer to
reduce the dimensions of the input feature map.

C. RNN TO PERFORM TEMPORAL AGGREGATION
In our work, RNNs perform an essential task to accommo-
date sequential data through a single RNN layer. A directed
cycle (DC) is created through the connections among
artificial neurons. The unfolding structure of RNN can be
seen in FIGURE 3. Multiple time steps share the same
weights, such as U, V, andW. Sharing weights refer to capture
temporal dynamic behavior in RNN.

To design music classification systems, the sequential and
contextual nature of the data is of much significance. The
RNN performs temporal aggregation on the feature map by
keeping long term dependencies. So, we use the temporal

FIGURE 3. Unfolding structure of recurrent neural network [3].

structure in RNN by following a convolution that can achieve
better performance in music classification without losing rich
information in feature maps.

The statistics about the hidden state and output can be
calculated as:

hst = f
(
U .mti +Whst−1 + b

)
(5)

Ot = softmax (V .hst) (6)

wheremti is input at time step (t),W is theweight andOt refers
to the output at the time step (t). Normally hidden state (hst−1)
is initialized with all zeros. Further, regularization embedded
with neural networks enhances the ability of neural networks
that are committed to yielding an output in terms of training
performance and classification accuracy.

D. GLOBAL LAYER REGULARIZATION (GLR)
One uncertainty in the neural network is related to overfitting
that can be addressed with the use of regularization in the
dense connections [48]. During the training, some nodes
are kept with the probability p, and some are dropped with
the probability 1-p to reduce the network size. The batch
normalization (BN) technique has been implemented to nor-
malize the input data over a mini-batch [49], but some short-
comings have also been observed, such as fixed batch-size
limitation and incompatible with the recurrent connections of
RNN [12].

BN normalizes the summed input to every hidden unit over
the training cases and rescales summed input according to
the variances of the distribution of the data. In contrast by
using GLR, every hidden unit of a layer shares the same
normalization terms (µ, σ ) but these terms are different for
different training cases. This technique does not impose any
limit on the size of the mini-batch. It also avoids rescaling
the summed input to a layer that makes the hidden state
dynamics more stable. Thus, we implement Global Layer
Regularization (GLR) for normalizing the data by computing
statistics in terms of improving the training performance by
capturing the local and global parts of the music information.
We used the term global to preserve the relative features of
the music, in which the adaptive mechanism focuses on the
combination of the local tasks and the relative parameters
of the local tasks automatically configured. GLR computes
statistics along the feature dimension to provide high compat-
ibility to the joint unified architecture. In GLR, each feature
is incorporated for computing the statistics independently
with no batch size limit and causes to stabilize the hidden
state dynamics [50]. Note that variations in the behavior of
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one layer, particularly with ReLU units whose outputs can
change by a lot, tend to cause highly correlated changes in
the summed inputs to the next layer. This implies that by
correcting themean and variance of the summed inputs within
each layer, the ‘‘covariate change’’ issue can be minimized.
So, we calculated the GLR as:

µl =
1
H

∑H

i=1
ali (7)

σ l =

√
1
H

∑H

i=1
(ali − µ

l)
2

(8)

where H represents the number of hidden units in a layer and
al is the vector of summed input to the neurons. Additionally,
Backpropagation through time (BPTT) is applied to deal
with errors by incorporating different time steps [51]. This
technique helps in acquiring gradients as in [52] by keeping
resident data of hidden layers for various time steps.

SoftMax layer provides the range of probabilities to sam-
ples space. In our case, we used a SoftMax output layer with
specific hidden units (neurons) to determine the probabilities
for the concernedmusic files. The following expression deter-
mines the probability measures. The following expression
determines the probability as:

P
(
ij |k, θ

)
=

exp
(
xj (k, θ)

)∑
1≤i≤|X | exp (xi (k, θ))

1 ≤ j ≤ |X | (9)

where xj(k, θ) refers to the input vector with θ representing
parameters. j refers to the output instance of the class, and X
represents class space. The above expression calculates the
exponential value of the input and then the sum of all the
exponential terms for all input values. Then the ratio between
the exponential of the input value and the aggregated sum
of all the exponential terms refers to the final result of this
activation function.

In our formulation, we build a single model based on
CNN-RNN as joint learning and take global information as
the regularization. We focused that both the local and global
parts play important roles in capturing the music information.
By dividing the target music files into local batches, most
problems in music classification can be effectively detected
and addressed. Meanwhile, the global term can preserve the
relative features of the music, which improves the robustness
of the model. From another point of view, the combination
of the local tasks is considered as the adaptive mechanism,
where the parameters of the local tasks are automatically
adjusted by the global regularization term. The global regular-
ization is completely data-driven, which well retains the over-
all structure of the music file. These local tasks adequately
address the music classification problem as well and guide
the update of the model.

IV. EXPERIMENTS
This section presents the experimentation of our proposed
model that includes dataset description, baseline models,
experimentation setup, and results and analysis.

A. DATASET DESCRIPTION
We have used two public datasets for the evaluation of our
proposed model. Each of the datasets has some common
and distinct features with associated labels. The first dataset
is GTZAN which consists of 1000 samples with 10 dif-
ferent genres, each having 100 songs as ‘‘blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae, and rock’’
with a duration of 30 sec each as in [3], [5]. All files are
mp3 and encoded with the sample rate of 22050 Hz with a
size of 16 bit with the mono channel. The second dataset is
Free Music Achieve (FMA), a suitable music dataset for the
various evaluating tasks inMIR, such as searching, browsing,
and organizing extensive music collections [10]. This dataset
is available in different sizes, such as Full, Medium, and
Small size depending upon the number of samples in it.
With the definite objective, we selected a small-FMA dataset
containing 8000 music files distributed over the 8 genres,
such as rock, pop, instrumental, international, hip-hop, folk,
experimental, and electronic, each having 1000 clips with
the 30s each. All files are mp3 encoded with a sample
rate of 44.1KHz and a sample size of 320 kb/s with stereo
channels.

B. BASELINE MODELS
Only for the reference related to the CNN and RNN assess-
ment, we first illustrate baseline models by using batch
normalization performed on GTZAN and FMA datasets,
as shown in TABLE 1. Then we tuned these baseline models
by employing the Global Layer regularization (GLR) on the
proposed architecture, as shown in TABLE 2.

TABLE 1. Baseline models with GTZAN and FMA datasets.

TABLE 2. Proposed model with GTZAN and FMA datasets.

C. EXPERIMENTATION SETUP
Our experimentations involved the assessments of the param-
eters of our proposed architecture. During the process of
model building, we first transformed samples of both the
datasets into its equivalent Mel-spectrograms by using the
Librosa library. The outcome is scaled by the log function of
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TABLE 3. Parameter configurations for building proposed model.

TABLE 4. Accuracy of the baseline models using GTZAN dataset.

the audio files by setting the window length 2048, hop length
512, and obtained the shape of (640, 128). This technique
determines loudness in decibels (dB) according to human
perception.

Additionally, it is significant to decide network size and
hyperparameter settings for the training of neural network
models. Applying the same hyper-parameters for all datasets
is not appropriate as various datasets have different impacts
on different architectures. So, we performed a series of exper-
iments to find the best parameters, including the number of
CNN layers, kernel length, number of kernels, number of neu-
rons (hidden units) in RNN, and learning rate. All optimized
parameters from candidate sets can be seen in TABLE 3.

To determine the number of convolutional layers, we made
the candidate set of 1, 2, 3, and 4 layers and observed
the highest accuracy for layer size 2. Then dimension 5 of
the convolutional filters was found to be better than 3,7,9.
Similarly, 128 number of filters in each convolutional layer
provided the highest score among the values of 32, 64, 96,
and 128. For RNN, 96 hidden units performed well among
the candidate set of 64, 96, 128, 256. Further, we tuned the
proposed model by implementing the Global Layer Regu-
larization (GLR) in favor of improving the training time.
We usedAdamoptimizer, with 10 to 50 epochs, and a learning
rate of 0.001 with categorical cross-entropy as a loss function.

D. RESULTS AND ANALYSIS
To assess the performance of our proposed model, we com-
pared the accuracies of baseline models and the proposed
model in Tables 4 to 6 and Figures 4 to 6. Our results revealed
a remarkable performance in an average accuracy of 87.79%
for the GTZAN and 68.87% for the FMA dataset, as in

TABLE 5. Accuracy of the baseline models using FMA dataset.

TABLE 6. Average accuracy of the proposed model with GTZAN and FMA
datasets.

FIGURE 4. Accuracy of baseline models with GTZAN dataset.

FIGURE 5. Accuracy of baseline model with FMA dataset.

TABLE 6. In the baseline models for the GTZAN dataset,
we obtained the accuracies of the CNN model for three
different iterations as 72.09%, 88.59%, and 83.01%. Simi-
larly, we obtained 69.40%, 76.53%, and 71.96% for RNN.
And in the last for CNN-RNN by using batch normalization
technique, we found 82.39%, 80.00, and 88.71 as shown in
TABLE 4 and FIGURE 4. Conversely, for the FMA dataset
by using the CNN model, we obtained 59.40%, 44.23%,
and 54.20%. For RNN, we observed 61.34%, 51.50%, and
64.28% accuracies. And further for CNN-RNN, we obtained
68.23%, 57.44%, 73.23% respectively for three iterations,
as in TABLE 5 and FIGURE 5.
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FIGURE 6. Accuracy of proposed model with GTZAN and FMA datasets.

FIGURE 7. Comparison between proposed model and literature models.

To test the proposed model, we performed three itera-
tions on both datasets. In observing individual accuracies,
Iteration-1 attained the highest of 90.12% for the GTZAN,
whereas Iteration-3 exhibited the top accuracy of 72.07% for
FMA, as in TABLE 6 and FIGURE 6. We can also observe
the modest accuracy of the proposed model compared with
other models, as shown in TABLE 7 and FIGURE 7.

Implementing GLR on the proposed model computes the
statistic along with the feature domain instead of the mini-
batch. These computations are considered independent for
the samples rather than making groups of all the elements
together and computing the mean and variance. This mech-
anism considerably reduces the training complexities with
lesser hyperparameters.

To determine how well the model is performing, we have
also computed the precision, recall, and F1-score for the
individual iterations of both datasets as shown in TABLE 8
& TABLE 9. For the GTZAN dataset, iteration-2 is showing
the best value whereas iteration-3 is showing the poor result.
Conversely, for the FMA dataset, iteration-3 is exhibiting the
best performance where iteration-2 is lacking in performing
well. The performance can be described by the fact that some
music samples are highly distinct and some are overlapping.
For example, the beats and rhythm of some music samples
are quite different causing high values of precision, recall,
and f1-score whereas some music samples have fairly sim-
ilar beats and rhythm causing low values of performance
measures [57].

TABLE 7. Comparison between the proposed GLR model and literature
models without GLR.

TABLE 8. Performance measures for each genre of GTZAN dataset.

TABLE 9. Performance measures for each genre of GTZAN dataset.

V. DISCUSSION
This section discusses the analysis of the proposed
CNN-RNN model by integrating Global Layer Regulariza-
tion (GLR) for music classification tasks. As mentioned
earlier, in [13], [15], utilization of music features like
Zero-Cross Rate, Spectral Centroid, MFCCs, and noncon-
ventional engineering techniques for classification tasks that
restrict model performance. Comparatively, this work holds
spatiotemporal dependencies and normalizes the input fea-
ture map to excellent performance related to the complexity
of training and accuracy. Interestingly, spectrograms gener-
ate Mel-spectrograms by using Mel-Scale. This Mel-Scale
efficiently visualize the samples into the number of points
equally spaced with times (ti) and frequencies (fj). Our work
takes this advantage of the spatiotemporal domain and uses
Mel-spectrograms for better analysis of music. To identify
the patterns from Mel-spectrograms, CNN is the most appro-
priate choice for feature extraction through filters of certain
lengths [34], [42] along with RNN significantly holding long
term dependencies by the temporal aggregation to manage
sequential data [6].

Multiple convolutional layers can be involved in a neural
network that increases computations such as time, as men-
tioned in [31]. These computations depend upon the size of
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FIGURE 8. Training and validation accuracies of proposed model for three
iterations (a)(b)(c) with GTZAN dataset.

the input image, number of layers, number of kernels, size of
the kernels used in a network.

In this work, we used 2 CNN layers to extract features from
the spatiotemporal domain that have an insignificant effect
on network density. Furthermore, the explanation about the
degree of complexity tends to inspect the depth of the network
described in [58], and the width of the network described
in [59], indicated in extending layers and filters. Conversely,
computational complexity also depends upon the power of
hardware that offers additional cost and memory concerns to
the model. The following FIGURE 8 and FIGURE 9 show
the accuracy of our model in terms of training and validation
along the vertical axis concerning the increasing number of
epochs along the horizontal axis.

However, time complexity depends upon the model instead
of the real running time due to the cost of executions
related to hardware [60]. The trainable parameters regulate
the complexity of a neural network. We then accumulate the
upsides of both the neural networks into a single model and

FIGURE 9. Training and validation accuracies of proposed model for three
iterations (a)(b)(c) with FMA dataset.

implement New technique; Global Layer Regularization to
improve performance as compared to the standard normaliza-
tion techniques implemented in the various works [1], [14].

Some works have accumulated the benefits of joining neu-
ral networks such as [4], [19], [26], [27]. They suggested
convolutional recurrent neural network (CRNN) models for
the music auto-tagging and genre classification. The hybrid
nature of neural networks has also been used in [3], [5] for
music recognition tasks. They used batch normalization on
the input feature map, but fail to perform well in the situation
where statistics change for various time steps, as mentioned
in [12]. To overcome this issue, we use the GLR (global
layer regularization), which computes statistics along the
feature dimension and provides high compatibility to the joint
unified architecture. In GLR, each feature is incorporated
for computing the statistics independently. This implies that
each input uses a different normalization function with no
batch size limit, and causes to stabilize the hidden state
dynamics [50].
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Our key findings during the experiments are that the
observing patterns identified with Mel-spectrograms, utiliz-
ing GLR with CNN-RNN give comparable average accuracy
as in TABLE 6 and TABLE 7. Moreover, we analyzed the
causes of low accuracy for FMA as compared to GTZAN due
to its complex nature. This can be addressed in future works
by focusing on the increment of the number of samples or
exploiting metadata associated with it.

VI. CONCLUSION
We have proposed a hybrid model of CNN and RNN to
evaluate the training and accuracy of GTZAN and FMA
datasets for the music classification tasks. The model gen-
erates Mel-spectrograms directly from music files, that are
capable of retrieving the original characteristics of music and
reduces the feature biases. Our work takes the advantages
of both the Convolutional neural network (CNN) and the
Recurrent neural network (RNN) to extract local features and
perform temporal summarization of the extracted features.
We introduce a novel Global Layer Regularization (GLR)
technique in which every hidden unit of a layer shares the
same normalization terms as well as independent of the size
of the mini-batch. Further, to improve the training and accu-
racy, this technique effectively avoids the rescaling of the
summed input to a layer that is useful to make the hidden state
dynamics more stable. We performed a comparison between
the proposed framework with baseline methods having con-
ventional batch normalization techniques together with the
setting of few parameters. Finally, our model obtained robust
performance which signifies the success of the hybrid nature
of the neural network towards feature extraction and tem-
poral aggregation. In the future, diverse techniques of data
augmentation using spectrograms can be employed by using
deep learning models on substantial datasets for improving
the training. We also aim to explore other datasets related to
music classification tasks such as mood classification, artist,
and instrument recognition.
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