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ABSTRACT This paper presents a neural-like network-based signal detection method for orbital angular
momentum multiplexing systems with uniform circular array antennas. The signal detection network is
derived by unfolding the alternating direction method of multipliers (ADMM), and in addition, a parallel
interference cancellation (PIC) function is integrated, which enhances the tolerance to inter-mode interfer-
ence while keeping the complexity feasible. The number of parameters to be learned in each layer of the
network is a linear order of the number of antenna elements. Simulation results show that the ADMM-PIC
detector exhibits excellent error performance, which cannot be achieved by a conventional minimum mean
square error-based detector.

INDEX TERMS Interference cancellation, millimeter wave communication, MIMO, neural network learn-
ing, orbital angular momentum (OAM), uniform circular array (UCA).

I. INTRODUCTION
Improving data transmission capacity with multi-input and
multi-output (MIMO) multiplexing technologies [1] has
become increasingly important for wireless communication
systems to meet continuous demand for higher data rates over
limited frequency resources. Recently, MIMO multiplexing
using orbital angular momentum (OAM) [2], [3] has attracted
attention for application to high capacity wireless commu-
nication systems, especially to point-to-point (PTP) line-of-
sight (LOS) micro-wave/mm-wave radio systems for mobile
fronthaul and backhaul links [4]–[7].

The OAM-MIMO multiplexing is realized by utilizing
electro-magnetic waves with different OAM-modes, which
are inherently orthogonal to each other. Several methods
have been proposed to generate OAM waves, such as heli-
coidal parabolic antennas [3], spiral phase plates [8]–[10] and
thin metamaterial plates [11]. Among them, uniform circular
array antenna (UCA) is considered as one of most promising
because of its simple structure and low cost. Indeed, sev-
eral experimental studies have demonstrated the effective-
ness and feasibility of OAM-MIMO multiplexing systems
using UCAs [4]–[7], [12]. Moreover, [13] has investigated
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theoretically the UCA-based OAM-MIMO channel and has
shown an equivalence to a precoded MIMO channel in terms
of channel capacity.

In this paper, we consider OAM-MIMO multiplexing
systems with UCAs (especially with multi-ring UCAs
[4]–[6], [14]) and investigate its channel capacity as a pre-
coded MIMO system. The set of OAM-modes for a multi-
ring UCA-based OAM-MIMO channel can be thought of
as a collection of LOS-MIMO channels [15]. While these
LOS-MIMO channels are ideally orthogonal to each other,
component subchannels in each LOS-MIMO channel are
not orthogonally multiplexed in general. Thus, conventional
MIMO receiver with mode-wise zero-forcing (ZF) or min-
imum mean square error (MMSE) detector will not give
optimum performance for the OAM-MIMO systems. Fur-
thermore, the mode-wise capacity as well as signal detector
performance deteriorates seriously when transmitter (Tx) and
receiver (Rx) UCAs are not ideally aligned. The antenna
misalignment is likely to be time-varying due to various
reasons like when they are mounted on a tower that sways
in the wind, etc. It is thus of great concern to alleviate the
performance degradation due to the misalignment, and this
has been studied in [16]–[18] for the single-ring UCA case.
To address the above issue, in this paper we consider to apply
machine learning techniques.
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Machine learning techniques such as deep learning have
recently been widely and successfully applied to many
research areas in communication systems, and they have
also been being applied to solve research problems in
physical-layer communications. In [19], [20], the MIMO
detection problem has been investigated in a machine learn-
ing framework, and a deep learning network, referred to as
the DetNet, has been presented for MIMO detection. The
DetNet consists of multiple layers, each of which corresponds
to an iteration of a projected gradient descent algorithm.
While it has been demonstrated that the DetNet performs
well for signal detection of MIMO channels, it has a large
number of parameters needed to be trained, which incurs
a high computational cost for training. In [21], a different
network architecture has been presented, which is derived
by unfolding the Alternating DirectionMethod of Multipliers
(ADMM) iterative algorithm [22], [23]. It has been shown by
simulations that for MIMO channels with BPSK and QPSK
modulation, the ADMM-Net in [21] can achieve competitive
performance with a small number of trainable parameters.

Inspired by the work in [19]–[21], we present a learn-
ing, neural-like network-based signal detection method
for UCA-based OAM-MIMO transmission systems. The
OAM-MIMO channels discussed in this paper are assumed
to be LOS while most of the prior work on machine
learning-basedMIMO detection has focused onMIMO chan-
nels which are assumed to contain rich multipath components
but no strong LOS component, and which are character-
ized by Gaussian random matrices. There are few attempts
to apply machine learning techniques to signal detection
for MIMO channels where LOS components are dominant.
The main contributions of this paper can be summarized as
follows: (i) the channel capacity is investigated for multi-
ring UCA-based OAM-MIMO multiplexing with mode-wise
MMSE detectors. It is shown that the performance of the
MMSE detector is sometimes far from optimum and is very
sensitive to antenna misalignment. (ii) In order to improve
the detector performance, a neural-like network-based signal
detector is presented for the OAM-MIMO systems, which is
derived by unfolding the ADMM [22]. In addition, in order
to enhance the tolerance to antenna misalignment, parallel
interference canceller (PIC) is integrated into the unfolded
ADMM network. The main difference of the ADMM part of
our ADMM-PIC from the ADMM-Net presented in [21] is
the selection of the trainable parameters, which contributes to
improve the detector performance. It is shown by simulations
that the ADMM-PIC detector exhibits excellent error perfor-
mance even when there is severe inter-mode interference due
to antenna misalignment, which cannot be achieved by the
conventional MMSE-based detector.

The rest of this paper is organized as follows: In Section II,
we briefly review the UCA-based OAM-MIMO trans-
mission model and then investigate its Shannon capac-
ity and mode-wise MMSE capacity. Section III presents
a neural-like network-based OAM-MIMO detection algo-
rithm. Section IV presents numerical simulation results for

256QAM OAM-MIMO channels with single, double and
triple-ring UCAs. Section V summarizes our results and con-
cludes the paper.
Notation:Uppercase and lowercase boldface letters denote

matrices and (column) vectors, respectively. The superscripts
T , ∗, and † stand, respectively, for transposition, element-wise
conjugation and Hermitian transpose; and< and = denote the
real and imaginary part, respectively. Additionally, I denotes
the identity matrix of an appropriate size, and ◦ and⊗ are the
Hadamard and Kronecker products, respectively. For a vector
x, diag(x) denotes the diagonal matrix with diagonal entries
from x, and ‖x‖2 denotes the `2-norm of x. For a square
matrix A, tr(A) denotes the trace of A. Finally, we denote the
N -point discrete Fourier transform (N -DFT) matrix by FN ,
i.e., FN = (1/

√
N )[exp(−j2πkl/N )]0≤k,l<N .

II. SYSTEM MODEL AND CAPACITY
A. OAM-MIMO TRANSMISSION MODEL
We consider an OAM-MIMO multiplexing system equipped
with UCAs at Tx and Rx sides. The Tx and Rx UCAs are
composed of M concentric circular array antennas, each of
which consists of N antenna elements equidistantly arranged
on a ring, and we refer it to as (N ,M )-UCA. Fig. 1 illustrates
an OAM-MIMO systemwith (8, 2)-UCAs. Hereafter, indices
i and j denote integers in {0, 1, . . . ,M − 1}, and similarly,
indices k and l denote integers in {0, 1, . . . ,N − 1}. The
(N ,M )-UCA transmitter generates and transmits signals of
the form of

s(k)i =
1
√
N

N−1∑
l=0

x(l)i exp
(
j
2πkl
N

)
, (1)

where x(l)i denotes the original complex information signal
transmitted through OAM mode-l channel and s(k)i denotes
the signal transmitted from the k-th antenna element in the
i-th of M rings. Denoting si = (s(0)i , s

(1)
i , . . . , s

(N−1)
i )T and

xi = (x(0)i , x(1)i , . . . , x(N−1)i )T , (1) can be written in matrix
form as si = F†

Nxi.

FIGURE 1. OAM-MIMO multiplexing with (8,2)-UCAs.
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The free space transmission model [13], [16]–[18] is used
to simulate an OAM-MIMO channel, in which the transfer
function between a pair of Tx and Rx antenna elements is
written as

h(d) = G
λ

4πd
exp

(
−j

2πd
λ

)
, (2)

where d is transmission distance, λ is wavelength, λ/(4πd)
represents the free space loss, and G contains all relevant
constants such as attenuation and phase rotation caused by
antennas and their patterns on both sides. We denote by d (k,l)i,j
the distance between the k-th antenna element in the i-th ring
on the Rx side and the l-th antenna element in the j-th ring on
the Tx side. The channel matrix of an OAM-MIMO system
with the (N ,M )-UCAs can then be expressed as the following
block matrix:

H0,0 H0,1 · · · H0,M−1
H1,0 H1,1 · · · H1,M−1
...

...
...

HM−1,0 HM−1,1 · · · HM−1,M−1

 , (3)

whereHi,j is anN×N matrix whose (k, l)-th entry is h(d (k,l)i,j ),

i.e., Hi,j = [h(d (k,l)i,j )]0≤k,l<N . As illustrated in Fig. 1,
we denote by θx , θy and θz, respectively, the misalignment
angles around x-, y- and z-axes between Tx and Rx UCAs.
Note here that when Tx and Rx UCAs are ideally aligned,
i.e., θx = θy = θz = 0, Hi,j’s can be seen as circulant
matrices, and thus in this case, FNHi,jF

†
N becomes a diagonal

matrix. We denote by h(k,l)i,j the (k, l)-th entry of the matrix

FNHi,jF
†
N .

The signal received at Rx UCA is then post-processed
by applying the N -DFT, and thus the (N ,M )-UCA receiver
generates signals of the form of

y(l)i =
1
√
N

N−1∑
k=0

r (k)i exp
(
−j

2πkl
N

)
, (4)

where r (k)i denotes the signal received at the k-th antenna
element in the i-th ring. Consequently, the OAM-MIMO
multiplexing system with (N ,M )-UCAs at Tx and Rx sides
can be modeled as follows:

y(0)

y(1)
...

y(N−1)

 =


H (0,0)
· · · H (0,N−1)

H (1,0)
· · · H (1,N−1)

...
...

H (N−1,0)
· · · H (N−1,N−1)




x(0)

x(1)
...

x(N−1)

+ n
(5)

where y(k), x(k) and H (k,l) denote (y(k)0 , y
(k)
1 , . . . , y

(k)
M−1)

T ,
(x(k)0 , x(k)1 , . . . , x(k)M−1)

T and [h(k,l)i,j ]0≤i,j<M , respectively, and
n is a complex Gaussian vector noise n ∼ CN (0, σ 2I). In the
following, we write (5) as y = Hx + n for simplicity. Note
that the matrix H can be obtained by multiplying (3) with
I⊗FN from the left and with I⊗F†

N from the right and then
by rearranging the columns and rows appropriately. When Tx

and RxUCAs are ideally aligned,H becomes block diagonal,
i.e., H (k,l)

= 0 if k 6= l.
It is well-known that the information signal x can be

extracted by multiplying the inverse of H by y, i.e., x̂ZF =
H−1y = x + H−1n, which is referred to as the ZF detector.
An alternative approach is based on MMSE estimation. In an
MMSE detector, an estimate of x is given by x̂MMSE = Wy,
where W = PH†(HPH†

+ σ 2I)−1 and P = E[xx†]. The
computational complexity of the ZF and theMMSE detectors
is mainly determined by matrix inversions and multiplica-
tions, which is of order O((NM )3). Since we may assume
tr(H (k,l)H (k,l)†)� tr(H (k,k)H (k,k)†) for k 6= l, the size of the
matrices whose inverse are needed can be reduce to M×M
by applying MMSE in a mode-wise manner. Indeed, the k-th
entry x(k) of x can be estimated as x̂(k) = W (k)y(k), where

W (k)
= P(k)H (k,k)†

(
H (k,k)P(k)H (k,k)†

+ σ 2I
)−1

, (6)

and P(k)
= E[x(k)x(k)†]. When Tx and Rx UCAs are ideally

aligned (i.e., θx = θy = θz = 0), the MMSE matrix W can
be written as W = diag(W (0),W (1), . . . ,W (N−1)), and the
computational complexity of the mode-wise MMSE detector
becomesO(NM3). In this case, the OAM-MIMO channel can
be thought of as a collection ofN parallelM×M LOS-MIMO
channels.

B. CHANNEL CAPACITY
We next investigate the transmission capacity of the OAM-
MIMO channel presented in the previous subsection. When
Tx and Rx multi-ring UCAs are ideally aligned, the Shannon
capacity of the OAM-MIMO channel is given as follows:

C =
N−1∑
k=0

M−1∑
i=0

log2

(
1+ λ(k)i

P(k)i
σ 2

)
, (7)

where (λ(k)0 , λ
(k)
1 , . . . , λ

(k)
M−1) denotes the eigenvalues of

H (k,k)†H (k,k) and the sum of all the available power P is
assumed to be distributed across the channels, according to
the water-filling principle, such that

∑N−1
k=0

∑M−1
i=0 P(k)i = P.

Note that the capacity of (7) is achieved when the perfect
channel state information (CSI) is known at the transmitter
and the transmitted signal x(k) is in the form of x(k) =
V (k)u(k), where u(k) is uncorrelated Gaussian signal vector
with E[u(k)u(k)†] = diag(P(k)0 ,P

(k)
1 , . . . ,P

(k)
M−1) and V

(k) is
the right singular matrix of H (k,k). If the CSI is not known at
the transmitter, a simpler transmit scheme with equal power
allocation (P(k)

= P/(NM )I) yields

C =
N−1∑
k=0

M−1∑
i=0

log2

(
1+ λ(k)i

P
NMσ 2

)
, (8)

which in general is inferior to (7) as power is wasted in
eigenchannels with zero eigenvalue. It is known that if all
eigenvalues are non-zero, (8) is asymptotically optimal at
high signal-to-noise ratio (SNR).
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We next consider the capacity for OAM-MIMO channel
with the mode-wise MMSE estimation discussed in the pre-
vious subsection. The signal-to-interference-plus-noise ratio
(SINR) for eachMMSE estimated symbol x̂(k)i of x̂(k) is given
by

SINR(̂x(k)i ) = (β(k)i )2
(
α
(k)
i − (β(k)i )2

)−1
, (9)

where α(k)i and β(k)i denote, respectively, diagonal entries of
E[̂x(k )̂x(k)†](= W (k)E[y(k)y(k)†]W (k)†) and W (k)H (k,k). The
mode-wise MMSE capacity of the OAM-MIMO transmis-
sion model discussed in the previous subsection can be
defined as follows:

max∑N−1
k=0 tr(P(k))≤P

N−1∑
k=0

M−1∑
i=0

log2

(
1+

(β(k)i )2

α
(k)
i − (β(k)i )2

)
. (10)

Similarly to (8), the policy of equal power allocation yields

SINR(̂x(k)i ) = β
(k)
i (1− β(k)i )−1 (11)

and

CMMSE = −

N−1∑
k=0

M−1∑
i=0

log2
(
1− β(k)i

)
. (12)

The mode-wise MMSE capacity of (12) approaches (8) when
Tx and Rx UCAs are well-arranged, taking into account
transmission distance and carrier frequency.
Example 1 (Single-ring UCA): As a typical example, let

us consider an OAM-MIMO transmission system with
single-ring (8, 1)-UCAs. The system consists of eight trans-
mission modes, each of which can be thought of as a
single-input and single-output (SISO) channel. We evaluate
its channel capacity by (7) and (12) under the following
conditions, which were selected with reference to those of the
field trial experiment reported in [7]: (a) the Tx-Rx separation
distance d is 40m; (b) the carrier frequency fc is 84.5GHz
(E-band); (c) the radius of the UCA is 0.265m. Fig. 2 (Left)
shows C and CMMSE for each transmission mode1 −4 < k ≤
4, where the SNR P/σ 2 was set to 35 dB and misalignments
θx , θy and θz were assumed to be zero. The Shannon capacity
C was computed by the water-filling method while CMMSE
was computed under the assumption of equal power allo-
cation. In the setting of (a), (b) and (c), the approximation
C ≈ CMMSE holds for a wide range of SNR. The OAMmodes
of k = ±2 have the highest capacity and the othermodes have
almost the same capacity. Fig. 2 (Right) shows the mode-wise
MMSE capacity versus z-axis misalignment θz, where θx and
θy were fixed to zero. It should be noted that the MMSE
capacities of all OAM-modes almost uniformly decrease with
increasing misalignment angle.
Example 2 (Multi-ring UCA): Next we exhibit two exam-

ples of multi-ring UCA-based OAM-MIMO transmission

1By convention, we use integers−N/2 < k ≤ N/2 asOAM-mode indices
rather than 0 ≤ k < N , which are congruent modulo N each other; and
for simplicity, we denote by C(k) the Shannon capacity of mode k and by
C(k)MMSE,i the MMSE capacity of the i-th channel in mode k .

FIGURE 2. Channel Capacity for OAM-MIMO system with (8,1)-UCAs. Left:
Comparison of C and CMMSE for each mode; Right: CMMSE versus θz (rad).

FIGURE 3. Channel Capacity for OAM-MIMO system with (8,2)-UCAs. Left:
Comparison of C and CMMSE for each mode; Right: CMMSE versus θz (rad).

systems. The first one equips with (8, 2)-UCAs, and thus
there are eight transmission modes, each of which can be
thought of as a 2 × 2 LOS-MIMO channel. Fig. 3 (Left)
shows its capacities C and CMMSE at an SNR (P/σ 2) of 35 dB,
where the power allocation method used was the same as in
Example 1. Here, the transmission distance d and the carrier
frequency fc were set to 100m and 130GHz (D-band), and the
outer and inner radiuses of the (8, 2)-UCA were set to 0.48m
and 0.30m, respectively. These radiuses were optimized to
maximize the Shannon capacity C subject to constraints on
d , fc and maximum antenna size. As can be seen from
Fig. 3 (Left), the difference between C and CMMSE is around
5.38 bps/Hz at SNR = 35 dB. The difference is almost
constant for a wide range of SNR and is mainly due to the
fact that the component subchannels in the 2× 2 LOS-MIMO
channels are not orthogonally multiplexed. More precisely,
the columns of the channel matrixH (k,k) are far from orthog-
onal for k = 0,±2, 4. Fig. 3 (Right) shows the MMSE
capacity for each mode k versus z-axis misalignment θz. Sim-
ilarly to the case of Fig. 2 (Right), the MMSE capacities of
all OAM-modes almost uniformly decrease with increasing
misalignment angle. The next example is a case of (8, 3)-
UCA. In this case, there are eight transmission mode, each
of which can be thought of as a 3 × 3 LOS-MIMO channel.
Similarly to Figs. 2 and 3, Fig. 4 shows C and CMMSE at
SNR = 35 dB,where d and fc were set to 140m and 157GHz,
and the radiuses of (8, 3)-UCAwere set to 0.80m, 0.49m and
0.33m, respectively. While the radiuses of the (8, 3)-UCA
are optimized to maximize C under some constraints, the
component subchannels in the 3×3 LOS-MIMO channels are
not orthogonallymultiplexed.With regard to the sensitivity of
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FIGURE 4. Channel Capacity for OAM-MIMO system with (8,3)-UCAs. Left:
Comparison of C and CMMSE for each mode; Right: CMMSE versus θz (rad).

antenna misalignment, the same tendency as noted above can
be observed from Fig. 4.

The above Examples 1 and 2 show typical use of OAM-
MIMO multiplexing for high capacity, PTP, LOS micro-
wave/mm-wave radio systems [4]–[7], and these examples
will be used in later sections as simulation settings to demon-
strate performance of our learning-basedOAM-MIMOdetec-
tion algorithms.

III. LEARNING-BASED SIGNAL DETECTION
This section discusses and presents learning-based OAM-
MIMO detection algorithms.

A. UNFOLDING ADMM FOR OAM-MIMO DETECTION
In the following discussions, we will use the same notation y,
x and H to denote its real-valued matrix representation:[

<(y)
=(y)

]
,

[
<(x)
=(x)

]
,

[
<(H) −=(H)
=(H) <(H)

]
.

Given channel matrix H ∈ R2NM×2NM and received vector
y ∈ R2NM , the original information vector x can be estimated
by solving the following optimization problem:

x̂ = arg min
x∈S2NM

‖y−Hx‖22 , (13)

where S denotes the set of I/Q values for signal constellation
points, i.e., we may assume S = {±1,±3, . . . ,±(2Q + 1)}
for some appropriate non-negative integer Q. Unfortunately,
the constraint of x ∈ S2NM makes (13) computationally hard
to solve, and the MMSE estimate discussed in Section II is a
solution of the problem obtained by relaxing the constraint
to x ∈ R2NM and by adding an regularization term to the
objective function. The MMSE estimate is known as a com-
putationally efficient approximate solution of (13).

In the following, we consider the problem of (13) in the
ADMM framework [22]. By introducing an auxiliary vector
variable z, one can rewrite (13) as follows [21]:

minimize
1
2
‖y−Hx‖22 + IS (z),

subject to z = x, (14)

where IS (z) is defined by

IS (z) =

{
0 if z ∈ S2NM ,

+∞ otherwise.
(15)

The augmented Lagrangian function for (14) is written in
scaled form as

Lρ(x, z, v) =
1
2
‖y−Hx‖22 + IS (z)

+
1
2
‖ρ ◦ (z− x+ v)‖22 −

1
2
‖ρ ◦ v‖22 , (16)

where v is the scaled dual variable vector and ρ is the penalty
parameter vector. Then an ADMM-based algorithm for solv-
ing (14) can be described by the following iterations:

x`+1 = (HTH + Dρ)−1(HT y+ Dρ(z` + v`)), (17)

z`+1 = 5S (x`+1 − v`), (18)

v`+1 = v` + η ◦ (z`+1 − x`+1), (19)

where ` denotes the iteration number; Dρ denotes the diag-
onal matrix diag(ρ ◦ ρ); 5S (·) is the entry-wise projection
onto the set S; and η is an update rate vector. Note that if
S = {±1,±3, . . . ,±(2Q + 1)} for some Q, 5S (x) can be
given as

5S (x) =
Q∑

ι=−Q

sign(x − 2ι), (20)

where sign(x) = 1 if x ≥ 0 and −1 otherwise.
Similarly to the ADMM-Net presented in [21], [23],

we can construct a network with multiple layers by
unfolding the iterations of (17)–(19) into layers and
replacing parameters ρ and η with layer-wise param-
eters which can be trained using a gradient-descent
method. More precisely, the unfolded ADMM network con-
sists of L layers each with the same structure and the
`-th layer corresponds to the `-th iteration of (17)–(19) for
` = 0, 1, . . . ,L − 1. Each layer inputs (x`, z`, v`) and
outputs (x`+1, z`+1, v`+1), and the input-output relation can
be expressed as follows:

x`+1 = (HTH + Dρ` )
−1(HT y+ Dρ` (z` + v`)), (21)

z`+1 = ψS,t`(x`+1 − v`), (22)

v`+1 = v` + η` ◦ (z`+1 − x`+1), (23)

where ρ` and η` are layer-dependent learnable parameters
and ψS,t` (x) is an entry-wise non-linear function with learn-
able parameter t`. The non-linear function ψS,t (x) corre-
sponding to (20) can be given as [19], [20]:

ψS,t (x) =
Q∑

ι=−Q

(
−1+

R(x − 2ι+ t)
t

−
R(x − 2ι− t)

t

)
,

(24)

where R(x) denotes the ReLU function max{x, 0}. Note that
the function ψS,t (x) approaches 5S (x) as t goes to zero.
The computational complexity of the above ADMM-based
detector is governed bymatrix inversions andmultiplications,
which is of order O((NM )3L). Recall here that it may be
assumed tr(H (k,l)H (k,l)T ) � tr(H (k,k)H (k,k)T ) for k 6= l.
Similarly to the MMSE case mentioned in Section II-B,
the size of the matrices whose inverse are needed can be
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reduce toM×M by applying ADMM in a mode-wise manner.
In addition, by performing parallel interference cancellation
(PIC) layer by layer, the mode-wise ADMMwill enhance the
tolerance to inter-mode interference due to antenna misalign-
ment. The resulting ADMM-PIC detector consists of multiple
layers, and at the first layer, the k-th entry (x(k)1 , z

(k)
1 , v

(k)
1 ) of

(x, z, v) is estimated from H (k,k) and y(k) for all k . Then, at a
subsequent layer `+ 1, they are refined by using y(k)− γ (k)

` ◦∑N−1
l=0,l 6=k H

(k,l)x(l)` rather than y(k), where γ (k)
` is a learnable

parameter vector.
The processing of the ADMM-PIC detector can be sum-

marized as the following pseudocode, which we will refer to
as Algorithm 1.

Algorithm 1 Unfolded ADMM-PIC

Input: (y(0), y(1), . . . , y(N−1)) and (H (k,l))0≤k,l<N
Output: (̂x(0), x̂(1), . . . , x̂(N−1))
1: (x(k)0 , z

(k)
0 , v

(k)
0 )← (0,0,0) for 0 ≤ k < N

2: for ` = 0, 1, . . . ,L − 1 do
3: for k = 0, 1, . . . ,N − 1 do
4: ỹ(k)` ← y(k) − γ (k)

` ◦
∑N−1

l=0,l 6=k H
(k,l)x(l)`

5: end for
6: for k = 0, 1, . . . ,N − 1 do
7: x(k)`+1←

(
H (k,k)TH (k,k)

+ D
ρ
(k)
`

)−1
8: ·

(
H (k,k)T ỹ(k)` + Dρ(k)`

(z(k)` + v
(k)
` )
)

9: z(k)`+1← ψS,t(k)`
(x(k)`+1 − v

(k)
` )

10: v(k)`+1← v(k)` + η
(k)
` ◦ (z

(k)
`+1 − x

(k)
`+1)

11: end for
12: end for
13: x̂(k)← ψS,t(k)L

(x(k)L ) for 0 ≤ k < N

The computational complexity of Algorithm 1 is of order
O(NM3L + (NM )2L). For each layer ` = 0, 1, . . . ,L − 1,
the learnable parameters in Algorithm 1 are ρ(k)` , t(k)` , η(k)`
and γ (k)

` for k = 0, 1, . . . ,N − 1, and thus the number of
parameters to be learned in each layer is 8NM . This is much
less than the number used in the DetNet [19], [20] which is
determined not only by the number of antenna elements but
also by hyperparameters such as the number of hidden neu-
rons. For details on the learnable parameters in the DetNet,
refer to Appendix A-B. The loss function we use for training
these parameters is given by

E(x, x̂) =
1
2

N−1∑
k=0

‖x(k) − x̂(k)‖22, (25)

where x = (x(0), x(1), . . . , x(N−1)) is the original information
and x̂ = (̂x(0), x̂(1), . . . , x̂(N−1)) is its estimate obtained by
Algorithm 1.
The number of matrix inversion operations of sizeM ×M

required in Algorithm 1 is NL, which can be reduced to N
by replacing L parameters ρ(k)0 , ρ

(k)
1 , . . . , ρ

(k)
L−1 with a sin-

gle common parameter ρ(k). Similarly, while the estimation

accuracy may be degenerated, the computational complexity
required for training and testing the ADMM-PIC network
can be further reduced by replacing parameters t(k)` , η

(k)
` , γ

(k)
`

with appropriate predetermined values. For example, η(k)` and
γ
(k)
` may be replaced with all-one vector, and t(k)` may be

replaced with all-zero vector (which means replacing the
non-linear function ψS,t(k)`

with 5S ).
The following algorithm (referred to as Algorithm 2) is a

simplified version of Algorithm 1, in which the total number
of parameters to be learned is 2NM (1+L) and the number of
the matrix inversion operations is N .

Algorithm 2 Simplified Version of Algorithm 1

Input: (y(0), y(1), . . . , y(N−1)) and (H (k,l))0≤k,l<N
Output: (̂x(0), x̂(1), . . . , x̂(N−1))
1: (x(k)0 , z

(k)
0 , v

(k)
0 )← (0,0,0) for 0 ≤ k < N

2: G(k)
← (H (k,k)TH (k,k)

+ Dρ(k) )
−1 for 0 ≤ k < N

3: for ` = 0, 1, . . . ,L − 1 do
4: for k = 0, 1, . . . ,N − 1 do
5: ỹ(k)` ← y(k) − γ (k)

` ◦
∑N−1

l=0,l 6=k H
(k,l)x(l)`

6: end for
7: for k = 0, 1, . . . ,N − 1 do
8: x(k)`+1← G(k)(H (k,k)T ỹ(k)` + Dρ(k)(z

(k)
` + v

(k)
` ))

9: z(k)`+1← 5S (x
(k)
`+1 − v

(k)
` )

10: v(k)`+1← v(k)` + (z(k)`+1 − x
(k)
`+1)

11: end for
12: end for
13: x̂(k)← 5S (x

(k)
L ) for 0 ≤ k < N

Note here that lines 7–11 of the pseudocode of Algorithm 2
corresponds to the ADMM-Net presented in [21]. More pre-
cisely, the ADMM-Net [21] can be obtained from lines 7–
11 of the above pseudocode by replacing5S (·) in line 9 with
ψS,t(·) with learnable parameter t. We also note that if, for
k = 0, 1, . . . ,N − 1, ρ(k) is set as Dρ(k) = (NMσ 2/P)I , then
the mode-wise MMSE estimate of x(k) is obtained in the first
iteration of the above algorithm, i.e., x(k)` = W (k)y(k) when
` = 1. It is thus expected that the subsequent iterations of
Algorithm 2 yield more accurate estimate than the MMSE
method.

B. NETWORK TRAINING
The set of learnable parameters in the ADMM-PIC network
of Algorithm 1 is {(ρ(k)` , t

(k)
` , η

(k)
` , γ

(k)
` ) | 0 ≤ k < N , 0 ≤

` < L}. These parameters can be learned by using stochastic
gradient descent and back-propagation. We mention here the
gradient computation for back propagation of the ADMM-
PIC network. The following notation will be used in this
section: For a vector u = (ui), ∂E/∂u denotes the gradient
(column) vector of the loss function of (25) w. r. t. u, and for
two vectors v = (vi) and w = (wi), ∂v/∂w denotes a matrix
whose (i, j)-th entry is ∂vj/∂wi.

VOLUME 8, 2020 219349



N. Kamiya: Learning-Based Signal Detection for Wireless OAM-MIMO Systems With UCA Antennas

Then, for 0 ≤ k < N and 0 ≤ ` < L, the gradient vector
∂E/∂ρ(k)` is computed as follows:

∂E

∂ρ
(k)
`

=
∂x(k)`+1
∂ρ

(k)
`

·
∂E

∂x(k)`+1
= diag

(
2ρ(k)` ◦ (z

(k)
` + v

(k)
` − x

(k)
`+1)

)
· q(k)` , (26)

where q(k)` is defined as

q(k)` =
(
H (k,k)TH (k,k)

+ D
ρ
(k)
`

)−1 ∂E

∂x(k)`+1
. (27)

For the parameter vector t(k)`−1, we have

∂E

∂t(k)`−1
=

∂z(k)`
∂t(k)`−1

·
∂x(k)`+1
∂z(k)`

·
∂E

∂x(k)`+1
= diag

(
(1+ η(k)`−1) ◦ ϕS,t(k)`−1

(x(k)` − v
(k)
`−1)

)
·D
ρ
(k)
`

· q(k)` , (28)

where ϕS,t(x) denotes (∂ψS,ti (xi)/∂ti). Similarly, for the
parameter vectors η(k)`−1 and γ

(k)
` , we have

∂E

∂η
(k)
`−1

=
∂v(k)`
∂η

(k)
`−1

·
∂x(k)`+1
∂v(k)`

·
∂E

∂x(k)`+1
= diag

(
z(k)` − x

(k)
`

)
· D

ρ
(k)
`

· q(k)` , (29)

∂E

∂γ
(k)
`

=
∂x(k)`+1
∂γ

(k)
`

·
∂E

∂x(k)`+1

= −diag
( N−1∑
l=0,l 6=k

H (k,l)x(l)`
)
·H (k,k)

· q(k)` . (30)

Next, ∂E/∂x(k)` can be computed as follows:

∂E

∂x(k)`
=

N−1∑
l=0

∂x(l)`+1
∂x(k)`

·
∂E

∂x(l)`+1
= diag

(
(1+ η(k)`−1)◦φS,t(k)`−1

(x(k)` − v
(k)
`−1)− η

(k)
`−1

)
·D
ρ
(k)
`

· q(k)` −
N−1∑

l=0,l 6=k

H (l,k)TH (l,l)q(l)` , (31)

where φS,t(x) denotes (∂ψS,ti (xi)/∂xi). By (31), the partial
derivatives ∂E/∂x(k)` for 0 ≤ k < N are computed in the
order of ` = L − 1,L − 2, . . . , 1. The gradients ∂E/∂ρ(k)` ,
∂E/∂t(k)`−1, ∂E/∂η

(k)
`−1 and ∂E/∂γ (k)

` are then determined by
(26), (28), (29), and (30), respectively.

Finally, we mention the training of the parameters γ (k)
`

and ρ(k) in Algorithm 2. Note that the gradient w. r. t. the
parameter ρ(k) is computed as follows:

∂E
∂ρ(k)

=

L−1∑
`=0

∂x(k)`+1
∂ρ(k)

·
∂E

∂x(k)`+1

=

L−1∑
`=0

diag
(
2ρ(k)◦ (z(k)` + v

(k)
` − x

(k)
`+1)

)
· q(k)` ,

where q(k)` = G(k)
· ∂E/∂x(k)`+1. We also note that ∂E/∂γ (k)

`

and ∂E/∂x(k)` can be computed in a similar manner as noted
above.

IV. SIMULATION RESULTS
This section presents simulation results for the ADMM-based
OAM-MIMO detectors presented in the previous section.
We consider the UCA-based OAM-MIMO systems discussed
in Examples 1 and 2 of Section II-B. In all our simulations,
the equal transmission power allocation is assumed, and thus
the SNR per transmit symbol Es/N0 is given by P/(NMσ 2).
We also assume that all information symbols are modulated
using the Gray-coded 256QAMwith the constellation points
S = {±1, ±3, . . . ,±15}. For convenience, we define the
following signal-to-interference ratio (SIR) for each mode k:

SIR(k) =
tr(H (k,k)H (k,k)T )∑N−1

l=0,l 6=k tr(H
(k,l)H (k,l)T )

. (32)

We use the average of SIR(k) over k = 0, 1, . . . ,N − 1 to
measure the degree of inter-mode interference due to antenna
misalignment.

Fig. 5 (Left) shows the flowchart of the training pro-
cess of our ADMM-PIC network for OAM-MIMO detec-
tion. At each epoch of the training process, transmit signal
sequence x of length equal to the batch size is uniformly
randomly generated, and Gaussian noise signal sequence n
of the same length is generated, where the SNR of each
noise signal is chosen independently and uniformly from
the predetermined range. In addition, the channel matrix H
is generated under the conditions described in Examples 1
and 2, where the misalignment angles are chosen indepen-
dently and randomly at each epoch so that the resulting SIR
is distributed in the predetermined ranges depending on the
type of UCA. Then, given the received signal sequence y and
the channel matrixH , the ADMM-PIC detector computes by
Algorithm 1 (or 2) the estimate x̂ of x. The training procedure
then computes the squared error between x̂ and x and updates
the parameters in the ADMM-PIC network by using back
propagation as noted in Section III-B. In our simulations,
the batch size and the number of epochs used for training
were set to 2,000 and 10,000, respectively. The number of the
layers of the ADMM-PIC network was set to L = 5, and the
Adamoptimizer [24] with a learning rate of 10−3 was used for
training. Table 1 (upper) summarizes the training conditions
for the ADMM-PIC networks.

Fig. 5 (Right) shows the flowchart of the testing process.
Similarly to the training process, transmit signal sequence x
and Gaussian noise signal sequence n are generated, where
the SNR is fixed to the predetermined value. The channel
matrixH is also generated in a similar manner to the training
process, where the misalignment angles are chosen indepen-
dently and randomly at each epoch so that the resulting SIR is
approximately equal to the predetermined value. The testing
procedure computes the estimate x̂ of x from y andH by using
Algorithm 1 (or 2) with the parameters determined by the
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FIGURE 5. Flowcharts of the training process (Left) and the testing process (Right).

TABLE 1. Training conditions for ADMM-PIC (upper) and DetNet-PIC (lower).

above training process. These training and testing processes
were implemented by TensorFlow [25] on NVIDIA GeForce
RTX 2080 with 8CPU cores and 2GPUs each with 8GB
RAM.

The following figures (Figs. 6, 7, and 8) show the bit
error rate (BER) performance of Algorithms 1 and 2 for
the 256QAMOAM-MIMO systems described in Examples 1
and 2. For purposes of comparison, these figures also show
the BER performance of the MMSE-PIC and the DetNet-PIC
detectors which are explained in the appendix. Similarly
to the ADMM-PIC detector presented in Section III-A, the
MMSE-PIC detector (resp. the DetNet-PIC detector) consists
of iterations of the mode-wise MMSE (resp. DetNet [20])
process, in each of which the PIC process is integrated. The
MMSE-PIC has no trainable parameters and thus the training
process is not necessary. On the other hand, the DetNet-PIC
has a large number of trainable parameters. In our simula-
tions, while the training process for the DetNet-PIC was the
same as that for the ADMM-PIC, the number of epochs for
training the DetNet-PIC was five time as much as that for the
ADMM-PIC. The training conditions for the DetNet-PIC are
summarized in Table 1 (lower).
Fig. 6 (Left) plots the BER versus SNR per transmit sym-

bol Es/N0 for the (8, 1)-UCA based OAM-MIMO system

described in Example 1. The BERs were computed with the
above testing process, where the SIR was fixed to 6 dB and
10 dB while Es/N0 was varied from 6 dB to 30 dB. From
Fig. 6 (Left), it can be seen that when SIR is relatively
low (6 dB) the MMSE-PIC performs poorly in comparison
to the others and the ADMM-PICs are slightly better than
the DetNet-PIC in BER performance, while when SIR is
relatively high (10 dB), all the OAM-MIMO detectors yield
similar BER performance (the DetNet-PIC is slightly better
than the others). To further observe the impact of inter-mode
interference, Fig. 6 (Right) plots the BERs for various values
of SIR, when Es/N0 was fixed to 23 dB and 26 dB. It can
be seen that the ADMM-PIC and the DetNet-PIC detectors
achieve better BER performance than the MMSE-PIC over a
wide range of SIR, especially whenEs/N0 = 26 dB.Note that
when Es/N0 = 23 dB, the BER curves for the ADMM-PIC
and the DetNet-PIC detectors exhibit error-floors at a BER
of around 10−4 and that the performance of these detectors
become almost the same as that of the MMSE-PIC in a
relatively high SIR region (SIR ≥ 10 dB). As can be seen,
the location of the error-floor depends on the setting ofEs/N0,
and it goes down as increasing Es/N0. From Fig. 6, it can be
observed that in this case, where (N ,M ) = (8, 1), both Algo-
rithms 1 and 2 perform much better than the MMSE-PIC and
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FIGURE 6. Bit error rate (BER) performance of MIMO detectors for 256 QAM OAM-MIMO transmission system with
(8,1)-UCAs. Left: BER versus Es/N0, where SIR = 6 dB and 10 dB. Right: BER versus SIR, where Es/N0 = 23 dB and
26 dB.

FIGURE 7. Bit error rate (BER) performance of MIMO detectors for 256 QAM OAM-MIMO transmission system with
(8,2)-UCAs. Left: BER versus Es/N0, where SIR = 8 dB and 12 dB. Right: BER versus SIR, where Es/N0 = 23 dB and
26 dB.

that they achieve almost the same level of BER performance
as the DetNet-PIC while requiring much smaller number of
learnable parameters. From Table 1 the number of learnable
parameters of Algorithms 1 and 2 are, respectively, only 9
percent and 3 percent of that of the DetNet-PIC.

Next we show the simulation results for OAM-MIMO
systems with multi-ring UCAs. Fig. 7 shows the BER per-
formance for the (8, 2)-UCA based OAM-MIMO system
in Example 2. Fig. 7 (Left) plots the BER versus SNR per
transmit symbol Es/N0, where the SIR was fixed to 8 dB and
12 dB while Es/N0 was varied from 6 dB to 26 dB. Similarly
to the case of Fig. 6, while the ADMM-PIC detectors per-
form very well, the MMSE-PIC performs poorly when the
power of inter-mode interference is relatively high (SIR =
8 dB), and the DetNet-PIC performs worse than the ADMM-
PIC detectors. It can also be observed that the complete
ADMM-PIC (Algorithm 1) performs much better than its
simplified version (Algorithm 2), especially in relatively low
interference power regime. Indeed, when SIR = 12 dB,
Algorithm 1 provides more than 2 dB gain at a BER of 10−5

over Algorithm 2. This performance gain comes from the
selection of learnable parameters. As noted in Section III-A,
Algorithm 2 is inherently similar to the MMSE in a low
interference power region and that the MMSE is far from

optimal when component sub-channels in an OAM-mode
(viewed as a 2×2 LOS-MIMO channel) are not orthogonally
multiplexed. Fig. 7 (Right) plots the BERs for various values
of SIR, when Es/N0 was fixed to 23 dB and 26 dB. As can be
seen, Algorithm 1 can achieve better BER performance than
Algorithm 2 and the MMSE-PIC over a wide range of SIR.
The DetNet-PIC performs better than the others at low SIR,
but it performs worse than the ADMM-PICs at higher SIR. It
can be observed that whenEs/N0 = 23 dB, the improvements
in BERs of Algorithm 2 and the DetNet-PIC are saturated
at around SIR = 8 dB, and they become almost the same
as the MMSE-PIC in a high SIR region (SIR ≥ 12 dB).
Similarly to the case of Fig. 6 (Right), the location of the
error-floor depends on the setting of Es/N0, and it goes down
as increasing Es/N0.
Finally, Fig. 8 shows the simulation results for the

OAM-MIMO system with (8, 3)-UCAs described in Exam-
ple 2. Similarly to Figs. 6 and 7, this figure plots the BERs
of the four detectors, where the SIR was fixed to 10 dB
and 13 dB in the left figure and Es/N0 was fixed to 22 dB
and 25 dB in the right figure. As can be seen from the
figure, the complete ADMM-PIC (Algorithm 1) performs
very well and outperforms the other three detectors for wide
ranges of SIR and of Es/N0. The simplified ADMM-PIC
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FIGURE 8. Bit error rate (BER) performance of MIMO detectors for 256 QAM OAM-MIMO transmission system
with (8,3)-UCAs. Left: BER versus Es/N0, where SIR = 10 dB and 13 dB. Right: BER versus SIR, where
Es/N0 = 22 dB and 25 dB.

(Algorithm 2) and the DetNet-PIC perform better than the
MMSE-PIC at a low SIR, but they suffer from an error-floor
at higher SIR region where they perform almost the same
as the MMSE-PIC. The range of SIR where the DetNet-PIC
performs better than the others is limited to a very low
SIR region.

V. CONCLUSION
In this paper, we investigated the channel capacity for UCA-
based OAM-MIMO systems and demonstrated using exam-
ples that the mode-wise MMSE capacity and the MMSE
detector performance deteriorate seriously due to inter-mode
interference that occurs when Tx andRxUCAs are not ideally
aligned. To address this issue, we then presented a learning,
neural-like network-based signal detection method, which is
derived by integrating unfolded ADMM with PIC. The num-
ber of parameters needed to be trained is only a linear order
of the number of the antenna elements. We also presented a
simplified version of the ADMM-PIC, where the number of
parameters is reduced to around 30 percent of the complete
version.

Our simulation results show that the proposedADMM-PIC
detector outperforms in BER performance the MMSE-based
detector not only in the case of severe inter-mode interference
but also in the case of low interference. The simulations also
show that the proposed detector is comparable to or outper-
forms the DetNet-based detector with a smaller number of
learnable parameters. The number of learnable parameters in
the proposed detector is about 3–10 percent of that in the
DetNet-based detector. While we focused in this paper on
OAM-MIMO systems with UCAs, our work can be extended
to other MIMO systems such as an LOS-MIMO system with
uniform linear array antennas [15].

The next step for future work is to investigate and evalu-
ate practical performance of the proposed method using an
authentic set of data from real systems in actual physical
environments. The effectiveness of our approach shown in
this work was only evaluated through simulations of math-
ematical model, and at this point, this work is still in a
simulation stage as with most prior work on this topic. The

effectiveness in a real channel environment remains to be
demonstrated in future work.

APPENDIX A
MMSE-PIC AND DetNet-PIC
In this appendix, we explain the MMSE-PIC and the DetNet-
PIC which were introduced and used in Section IV for the
purpose of comparison.

A. MMSE-PIC
The MMSE-PIC detector consists of L stages, where L was
set to 5 in the simulations of Section IV. At the first stage,
the transmitted signal x(k) is estimated from the received
signal y(k) and the mode-wise MMSE filter coefficient W (k)

by x̂(k) = W (k)y(k), where W (k) is given as in (6). Then at a
subsequent stage `, each estimate is simply refined as

x̂(k)` = W (k)
(
y(k) −

N−1∑
l=0,l 6=k

H (k,l)x̄(l)`−1

)
, (33)

where x̄(l)`−1 is the entry-wise projection of the previous esti-
mation x̂(l)`−1 onto signal constellation points. The output of
the MMSE-PIC detector is (x̄(0)L , x̄

(1)
L , . . . , x̄

(N−1)
L ). Note that

the MMSE-PIC detector has no trainable parameters and
thus the training process is not necessary.

B. DetNet-PIC
Next, we give a brief review of the DetNet-PIC used for
the simulations presented in Section IV. The derivation
of the DetNet follows [19], [20], and the DetNet-PIC for
OAM-MIMO detection is derived by integrating a PIC func-
tion with a mode-wise DetNet in a manner similar to the
MMSE-PIC and the ADMM-PIC. The mode-wise DetNet
consists of L layers, each of which performs the following
procedure [20]:

z(k)` = x(k)` − δ
(k)
1,`H

(k,k)Ty(k)+ δ(k)2,`H
(k,k)TH (k,k)x(k)` (34)

u(k)` = R
(
W (k)

1,`

(
z(k)T` , v(k)T`

)T
+ b(k)1,`

)
(35)

v(k)`+1 = W (k)
2,`u

(k)
` + b

(k)
2,` (36)

x(k)`+1 = W (k)
3,`u

(k)
` + b

(k)
3,` (37)
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where R(x) denotes the ReLU function, and where u(k)` and
v(k)` are real intermediate internal vectors. The setting of the
dimensions of the intermediate internal vectors is heuristic
and depends on the modulation scheme used [20]. In the
simulations of Section IV, the dimensions of u(k)` and v(k)`
were set to 32M and 4M , respectively. Thus the learnable
parameters in the `-th layer were δ(k)1,`, δ

(k)
2,` ∈ R, W (k)

1,` ∈

R32M×6M , b(k)1,` ∈ R32M , W (k)
2,` ∈ R4M×32M , b(k)2,` ∈ R4M ,

W (k)
3,` ∈ R2M×32M , and b(k)3,` ∈ R2M . The DetNet-PIC can be

obtained by replacing y(k) in (34) with ỹ(k)` given as

ỹ(k)` = y(k) − γ (k)
` ◦

N−1∑
l=0,l 6=k

H (k,l)x(l)` , (38)

where γ (k)
` is a learnable parameter vector of dimension 2M .

Thus, the total number of learnable parameters per each layer
becomes (384M2

+38M+2)N+2MN , which is much larger
than 8MN (the number of learnable parameters per each layer
in Algorithm 1).
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