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ABSTRACT In recent years, natural disasters occur frequently, and secondary disasters induced by major
disasters will also cause huge losses. The diversity of secondary disasters makes humanitarian emergency
logistics (HEL) more challenging but often overlooked by researchers. In order to solve the comprehensive
HEL problem of major and secondary disasters, a three-stage mixed integer linear optimization (TS-MILO)
model is proposed. Among them, the uncertainty of the demand for relief supplies is also extremely difficult
to deal with. In order to resist the interference of uncertainty, based on robust optimization, the TS-MILO
model is further transformed into a three-stage mixed integer robust optimization (TS-MIRO) model, which
are respectively BTS-MIRO (Box set), PTS-MIRO (Polyhedral set), and ETS-MIRO (Ellipsoid set). The
experimental results show that the TS-MILO model can provide the lowest cost but cannot solve the
uncertainty problem. The improved TS-MIRO model will pay a robust price (increase by at least 10.05%),
but maintains supply stability even in the worst-case scenario. Specifically, ETS-MIRO model has strong
robustness, and its cost increase only accounts for 44.66% of BTS-MIRO model in the worst case. The
service level of the three TS-MIRO models increases with the safety parameters, among which the service
level in the ETS-MIRO model increases significantly from 88.53% to 96.44%. The research results can
provide a strong support for the decision making of disaster relief management department.

INDEX TERMS Secondary disasters, robust optimization, humanitarian emergency logistics.

I. INTRODUCTION
In recent years, large-scale natural disasters have frequently
occurred, which resulted in a large number of casualties and
property losses. In addition to the great damage caused by
major disasters, the enormous losses brought about by sub-
sequent secondary disasters cannot be ignored. The Hua-xian
earthquake (M = 81; Jan., 1556) is the largest earth-quake
recorded in Shanxi, CHN, in which secondary disa-sters
such as landslides and floods are induced by major disas-
ters. According to historical records, 830,000 people were
killed [1]. The Xingtai earthquake (M = 6.8; Mar., 1966)
occurred in Heibei, CHN. Secondary disasters such as land-
slides, collapses, flood and water spraying occurred, which
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1M indicates the magnitude of the earthquake, with destructive and seis-

mic intensity increasing progressively from I to XII.

submerged large quantities of farmland and water conser-
vancy facilities [2]. The San Francisco earthquake (M = 8.3;
Apr., 1906) led to fire and other secondary disasters [3], [4].
TheKobe earthquake happened in JPN (M = 7.2; Jan., 1995),
which resulted in the cracking of natural gas pipelines and
further triggered secondary disasters such as fires [5], [6].
Besides, an earthquake (M = 6.8; Jul., 2006) occurred in
the southwest of Java, IDN, causing a secondary disaster
tsuna-mi [7]. The earthquake in Nepal killed 8,790 people,
injured 22,300 people and damaged millions of buildings [8].
Secondary disasters refer to a series of disasters that followed
strong earthquakes, such as fire and tsunami. Those events
indicate that the losses caused by secondary disasters may
even exceed those of major disasters. Con-sequently, wemust
pay high attention to secondary disa-sters.

HEL plays an indispensable role in post-disaster res-
cue. At present, scholars usually concentrate on the
major disasters but neglect the secondary disasters. As an
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extraordinary specialized emergency logistics, HEL can sat-
isfy the de-mands of emergency materials like food and
medicine in the post-disaster rescue, and play a very impor-
tant part in reducing casualties and property losses [9].
Bussieres et al. (2017) believe that the implementation of the
distribution system can achieve the target of large-scale mate-
rial supply after major disasters [10]. Benini et al. (2003)
used geo-graphic information system to analyze rescue data
in major disasters and concluded that the benefits are con-
siderable, but the costs are also high, especially the hidden
costs [11]. Olness et al. (2005) consider training programs
for rescue personnel to be an effective tool to improve rescue
capa-bilities [12]. Chen et al. (2008) used artificial immune
algori-thm to confirm the effectiveness of the HEL vehicle
path planning model in major disasters [13]. According to the
actual situation, there are some challenges in HEL manage-
ment. Potential secondary disasters can easily inter-fere with
the rescue plan, which makes the rescue in the disaster areas
more difficult. The previous research often focused on the res-
cue work after a single stage of major disasters, whereas few
scholars paid attention to secondary disasters. Therefore, this
paper attempts to meet the rescue demands of major disasters,
further planning to satisfy the rescue needs of secondary
disasters, and to improve comprehensive rescue capacity of
HEL. Considering the impact of secondary disa-sters and
the limitations of current research, the purpose of this study
is to explore the relationship between major and secondary
disasters, and to develop models to respond to uncertain
disasters.

In the research of HEL, the previous literature often
focused on certain scenarios, while few scholars carried out
research on its uncertainty. The uncertainty of the HEL pro-
cess has a great impact on the rescue plan. It is not only
reflected in the uncertainty of transportation demands, but
also in that of the supply of relief materials. Because of
the uncertainty, it is difficult to obtain accurate information.
Secondary disasters are mainly caused by major disasters.
Besides, the formers are more difficult to predict in advance
and will undoubtedly be more laborious. Some scholars have
analyzed and modeled the uncertainty in the actual opera-
tion management. Li et al. (2019) proposed an opportunity
con-strained programming model to settle the energy stor-
age problem under uncertainty [14]. Balcik and YanıKoğLu
(2020) studied the uncertain routing problem by constructing
a robust duration constraint model [15]. These studies have
proved that compared with the certainty model, the uncer-
tainty model method is more suitable for the actual situation
and has more practical application value.

In view of the uncertainty in the HEL, scholars and
experts have carried out research by using heuristics, fuzzy
program-ming and stochastic programming. As for heuris-
tics, some scholars have established models to figure out
the total costs of all possible factors in HEL. However,
these studies ignored the influence of possible secondary
disasters. Xu et al. (2011), using ant algorithm under the
condition of determined demand, verified the effectiveness

of the model with the objective of minimizing supply imbal-
ance [16]. Liu et al. (2016) studied the disruption manage-
ment issue of post-earthquake HEL system, and worked out
the problem via employing hybrid heuristic algorithm [17].
Zhang et al. (2013) proposed a new biome-metic method for
the path selection of emergency logistics under the condi-
tion of known demand [18]. Zeng et al. (2014) proposed a
neighborhood descent algorithm to resolve the problem of
cumulative multi warehouse vehicle routing in emergency
logistics under the condition of inventory determination [19].
Wang et al. (2015) established a mini-mum objective mathe-
matical model in HEL, and used two-stage heuristics to figure
out the problem [20]. And with regard to fuzzy programming
and stochastic programming, there are still few scholars who
have studied theHEL under uncertain conditions. For the sake
of solving the issue of uncertainty, Xu et al. (2016) proposed
an ambiguous two-level model and verified the practicability
of the model [21]. Yang et al. (2008) proposed a new two-
stage stochastic programming model to solve the problem of
relief allocation [22]. Dai and Ma (2008) proposed hybrid
clustering optimization model for large-scale disaster relief
with the aim of minimizing the total number of deaths in
major disasters [23]. Shen et al. (2019) proposed a trian-
gle model to meet the demand of emergency logistics, and
made use of a hybrid two-stage algorithm to solve it [24].
On the whole, the above scholars have studied the uncertainty
decision-making problem of HEL from various dimensions.
Heuristic algorithm, fuzzy programming and stochastic pro-
gramming have developed more syste-matically, but there are
still some limitations.
• The deterministic linear optimization model only
focuses on the single stage decision-making problem.

• It is tough to offer a theoretical exact solution through
the heuristic algorithm model, which depends on the
selection of termination criteria.

• It is difficult to describe the actual situation by means of
the linear chance constrained model. Besides, the solu-
tion easily leads to NP-hard problem, is complex.

• It is also hard to describe the membership function via
stochastic fuzzymodel, which results in lower feasibility
of the results.

• Due to the lack of sufficient historical data in stochastic
programming model, the blind assumption of probabil-
ity distribution has high risk.

Therefore, it is necessary for us to conduct in-depth
research on the uncertainty of HEL and seek a more
compati-ble and more practical research methodology.

With the rapid development of theory, robust optimiza-
tion has been proved to be able to overcome the limita-
tions of stochastic optimization in uncertain problems [25].
Although the research on robust optimization theory is rel-
atively ma-ture, its application still needs to be further
enriched, espe-cially in the field of HEL. The advantage of
robust optimi-zation is that the model performs reasonably
well, even if we estimate the cost at the worst case, and
that a robust solution can be acquired. Robust optimization
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theory was first put forward by Bertsimas et al [26]. As a
tool for optimization under uncertain conditions, robust opti-
mization does not depend on probability distribution or
membership function, but represents uncertainty through a
specific set [27]. Some scholars have used its theory to study
decision making problem of path planning. In the case of
uncertainty, Zhang proposed a two objective robust opti-
mization model to re-solve the emergency medical service
problem [28]. Chen et al. constructed the two-stage robust
security-constrained unit commitment model and applied it to
a number of research areas [29]–[32]. Through actual cases,
it has been proved that it can effectively reduce the conser-
vatism of uncertain sets and ensure the economy of opti-
mization results. Robust optimization can take the uncertainty
of parameters and the heterogeneity of risk preference of
decision makers into consideration, which will undoubtedly
provide valuable empirical suggestions for the research of
HEL. Some school-ars have applied the robust optimization
to the research of supply chain management [33], [34] and
decision planning [35]. Jadidbonab et al. (2020) adopted the
non-probability information interval method to optimize the
self-scheduling problem under the uncertainty with the goal
of maximizing the benefits under the circumstance of uncer-
tainty of renew-able resources [36]. Gholinejad et al. (2019)
proposed an energy management system for multiple home
energy hubs in a community, and the simulation results have
displayed the effectiveness [37]. Nazari-Heris et al. (2019)
proposed a multi-objective two-stage random unit model,
which was applied to a new flexible energy gas electric
networking system [38]. In terms of new energy applications,
Mirzaei et al. proposed a great many robust optimization
models for uncertain energy demand and variable wind direc-
tion, and verified the performance of the robust optimization
model [39]–[41]. Al-Sumaiti et al. (2019) proposed a more
pro-mising approach to meet the demands of power supply by
considering the impact of the probability uncertainty nature
of weather [42]. As is mentioned above, robust optimization
has been applied to the fields of supply chain management,
decision planning and new energy by experts and scholars
from all walks of life. However, in the research of HEL, few
people use the robust optimization. Therefore, it is innovative
to apply the robust optimization theory to researching HEL.

In addition to the application of robust optimization, this
paper further extends the single-stage HEL path planning
to three-stage. Through careful observation of the actual
activities, we can find that in the rescue process, the relief
materials are not only transported from the origin to the
disaster relief point, but there are also logistics operations
of multiple transshipment. However, the single stage model
is too idealistic to reflect the reality. Thus, it is necessary to
explore and study the multi-stage model. Most of the related
researches only involve the design of one or two of the three
sub-stages. There is no research on integrating these three sub
stages to systematically solve the path planning problem of
HEL. In addition, the relationship among the three sub-stages
is interdependent, since some inputs of the first stage

planning model are the outputs of the second stage model
and some inputs of the second stage model are obtained from
the third stage. Therefore, the sub-stages must be designed
simultaneously with the overall planning model. This method
can be used to design a seamless emergency rescue supply
network integrating three disaster ma-nagement sub-stages.
In the field of application, especially in the HEL, it has
not been found whether the two-stage or even multi-stage
problem model can be solved by robust optimization.

In summary, the contributions and innovations of this
research are as follows. In general, this research can play a
guiding role in the construction of the model for HEL, and
help decision makers to formulate an appropriate emergency
relief strategy to respond to natural disasters.
• This paper not only focuses on the impact of major dis-
asters, but also further analyses the impact of secondary
disasters and the internal relationship between them.

• Based on the comprehensive consideration of three sub-
stages of disaster management, a three-stage mixed inte-
ger linear optimization (TS-MILO) model is proposed.

• Robust optimization theory is applied to the research of
three-stage HEL problem. TS-MILO model is further
transformed into TS-MIRO model.

• According to the real location data of HEL, computer
simulation analysis is carried out. This model pro-
vides valuable decision support for government relief
departments.

The rest of this paper is organized as follows. In Section II,
the description of the problems and TS-MILO model are
given. In Section III, the TS-MILO model is constructed and
it is further transformed into TS-MIRO model in Section IV.
The contents in Section V and VI are about the numerical
analysis. In Section VII, the conclusion and future research
are put forward.

II. PROBLEM DESCRIPTION
Fire, tsunami and other secondary disasters are mainly
brought about by major disasters such as earthquakes, and
the occurrence of major disasters is the premise of their gen-
eration. HEL planning can be divided into three stages. The
HEL rescue process of major disasters includes emer-gency
preparation stage (the first stage) and rescue stage (the second
and third stage). At the same time, on the basis of meeting
the rescue requirements, reasonable planning and allocation
of resources can reduce the loss caused by unnecessary oper-
ation. Decision making in the first stage is influenced by the
results of the second stage. Similarly, the decision making in
the second stage is affected by the third stage (Fig. 1).

In HEL emergency rescue network, there are I original
warehouses, J major disaster sites and K secondary disaster
sites (Fig. 2). First of all, TS-MILOmodel is established. The
purpose of the model is to explore how to reduce the total
costs as many as possible on the basis of meeting the demand
to the maximum extent. The first stage is the post-disaster
preparation stage. In this stage, under the circumstance of
only knowing the location of the disaster, it is necessary to
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FIGURE 1. Description of the internal relationship of three stage HEL.

FIGURE 2. Description of HEL vehicle routing plan.

estimate the demand of disaster relief materials, and then
select the location of disaster relief sites. The selection of res-
cue nodes should meet the demand of the maximum service
and the feasibility of practical operation. The second stage is
the material distribution stage of the main disaster areas. The
goal of this stage is to solve the initial path planning problem
of emergency supplies. On the basis of comprehensive con-
sideration of the practical feasibility (cost and capacity), the
rescue materials are transported from the original warehouses
to the main disaster affected areas, in which the demands
of emergency materials are not only affected by their own
demands, but also by the demands of the third stage of
secondary disaster. The third stage is the material distribution
stage of the secondary disaster area. The goal of this stage is
to solve the problem of vehicle routing in secondary disaster
areas. Considering the potential demand of the secondary
disaster areas, the surplus materials should be allocated to the
secondary disaster areas after meeting the demand of major
disaster.

The three-stage HEL rescue network has the following two
functions. On the one hand, overall planning needs to ensure
that humanitarian relief needs are satisfied to the maximum
extent. It includes not only the demands of the main disaster
areas, but also the material demands of the secondary disaster

sites. On the other hand, it is also necessary to reduce the costs
of operation management through reasonably plan-ning path.
The costs are divided into three types: fixed operating costs,
vehicle transportation costs and time costs [43], [44].

A. ABBREVIATIONS AND ACRONYMS
The specific parameters are shown in Table 1.

TABLE 1. Parameters and variables.

B. ASSUMPTION
Combinedwith the above analysis, following assumptions are
made for the three-stage HEL problems.
• It is assumed that in addition to meeting their own needs,
the major sites can also supply materials to multiple
second-ary disaster relief sites.

• The rescue demands of all sites must be met. And any
rescue demand site has at least a supply site to supply.

• The vehicles used at the same stage are of the same type
with the same fuel consumption and load capacity.

• The geographical location and timewindow of candidate
initial disaster relief sites are known.
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• The average speed of vehicles in different regions are
different, which depends on road conditions and time
period in the area.

III. MODEL CONSTRUCTION
In this section, the basic three-stage mixed integer linear
optimization (TS-MILO) model is constructed to analyze the
three-stage HEL problem deeply.

A. TS-MILO MODEL
According to the actual situation of HEL, the specific costs
involved include: the fixed cost, handling cost, transportation
cost and path time cost [45], [46]. TS-MILO model is con-
structed, which aims to meet the demands of human-itarian
relief, achieve the goal of selecting material storage sites and
calculating the minimization of overall costs. According to
the real situation, the first stage of TS-MILO is shown below.

min

{∑
J

xjcf +
∑
I

∑
J

chyijDj+
∑
I

∑
J

yij[E(Dj : c2m)]

}
(1)

s.t.
∑
J

yij ≤ 1, ∀i ∈ I (2)∑
J

yijDj ≤ HMax
j , ∀i ∈ I (3)

yij ≤ xj, ∀i ∈ I , ∀j ∈ J (4)

xj ∈ {0, 1}, yij ≥ 0, ∀i ∈ I , ∀j ∈ J (5)

Among them, the first item of (1) is fixed cost, which
is infrastructure investment cost, including office equipment
loss cost and basic water and electricity cost. Fixed cost has
nothing to do with vehicle routing planning. The second is the
handling cost, which is affected by the demand. The third cost
is affected by the second stage of vehicle routing planning.

Specific constraints: (2) represents that the total handling
capacity cannot be higher than the total demand, and there is
no other outflow part; (3) shows that the maximum handling
capacity is less than its maximum capacity; (4) only the
selected initial sites participate in the corresponding logis-
tics operation; constraint (5) is related variable constraint,
in which only participates in the corresponding emergency
material distribution when xj = 1.

C2(Dj : c2m)

= min



∑
I

∑
J

(c2vyijDjdij)
/
h2

+

∑
I

∑
J

c2t xi(dij
/
v̄i − t

j
0)

+

∑
J

∑
K

zjkE[C3(Dk : c3n)]


(6)

s.t.
∑
J

yij ≤ 1, ∀i ∈ I (7)∑
J

yijDj ≤ HMax
j , ∀i ∈ I (8)⌈

yij
⌉
· (dij

/
v̄j) ≤ TMaxij , ∀j ∈ J , ∀k ∈ K (9)

yij ≤ xi, ∀i ∈ I , ∀j ∈ J (10)

xi ∈ {0, 1}, yij ≥ 0, zjk ≥ 0, ∀i ∈ I , ∀j ∈ J ,

∀k ∈ K (11)

In the second stage of TS-MILO, the transportation cost
is minimized on the basis of meeting the demand of initial
sites. Among them, the first item of (6) is the vehicle trans-
portation cost of the second stage. The second is the time
cost, and the third one is related to the path planning in the
third stage. Specific constraints: (7) represents that the total
distribution volume cannot be higher than the total demand;
(8) represents the maximum storage capacity; (9) represents
time constraint; (10) only the selected initial node participates
in the corresponding emergency logistics operation; (11) is
related variable constraint.

C3(Dk : c3n)

= max


c3t
∑
J

∑
K

⌈
zjk
⌉
(djk

/
v̄j − tk0 )

+c3v
∑
J

∑
K

(zjkDkdjk )
/
h3

 (12)

s.t.
∑
J

zjk ≤ 1, ∀k ∈ K (13)∑
j∈J

zjkDk ≤ HMax
k , ∀k ∈ K (14)

⌈
zjk
⌉
· (djk

/
v̄j) ≤ TMaxjk , ∀j ∈ J , ∀k ∈ K

(15)

yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K (16)

In the third stage of TS-MILO, the purpose is to minimize
the total cost on the basis of meeting the needs of secondary
disaster relief sites to the maximum extent. The first term
of (12) is the time penalty cost of the third stage, and the sec-
ond term is the vehicle transportation cost. Specific con-
straints: (13) represents the total distribution volume unable
to be higher than the total material supply; (14) represents the
maximum storage capacity; (15) represents time constraint;
(16) is related variable constraint.

IV. CONSTRUCTING TS-MIRO MODEL
Based on the TS-MILO model, this section further
constructs three robust optimization models under uncer-
tain conditions, which are three-stage mixed integer robust
optimization model based on box set (BTS-MIRO model),
three-stagemixed integer robust optimizationmodel based on
polyhedron set (PTS-MIRO model), and three-stage mixed
integer robust optimization model based on ellipsoid set
(ETS-MIRO model).

A. UNCERTAINTY SCENARIOS
In the process of post disaster rescue, there is no ideal model.
On the contrary, the external environment is full of com-
plexity and uncertainty. It is very difficult to obtain the precise
value or probability distribution of key parameters, especially
the demand parameters [47]. The idealization of theoretical
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research may lead to low degree of feasibility in reality,
in other words, the stability of deterministic model under
uncertain conditions is infeasible. Therefore, we intro-duce
the concept of robust optimization. In reality, the problem
to be solved is uncertain, which is reflected in the uncer-
tainty of parameters. Robust model can provide an effective
uncertainty measurement method, so the research of robust
optimization has high applicability. Applying the theory of
robust optimization [48], the TS-MILOmodel is transformed
into TS-MIRO model. The uncertain parameters change in
uncertain sets, so it can be studied without depending on the
probability distribution. The greater the volatility of the first
type of initial rescue sites demand is, the greater the uncer-
tainty and uncontrollability will be. The uncertain parameter
D̃j0 = Dj + D̂j, where, Dj0 is nominal value, D̂j = εDj0

is fluctuation demand and ε is disturbance proportion. The
demand fluctuation of secondary disaster stations is high and
uncontrollable. It is defined as a random demand parameter
D̃k = D0

k + D̂k , D
0
k is nominal value, D̂k = ξD0

k is demand
fluctuation and ξ is disturbance proportion. Therefore, BTS-
MIRO, PTS-MIRO and ETS-MIRO models are established,
respectively [49].

B. BTS-MIRO MODEL
In BTS-MIRO model, the uncertain demand is D̃j, D̃k
and the uncertainty set is box. BTS-MIRO. According to
robust optimization, TS-MILO model is further transformed
into BTS-MIRO equivalent model [50], [51]. The set is
defined as D : UB1,B2

=
{
{ς, ζ } ‖ε, ξ‖∞ ≤ 9j,k

}
={

{ς, ζ } : |εj, ξk | ≤ 9j,k
}
, where, 9j,k is uncertain parameter

(i.e. Safety Parameter, SP), which means that at most |9|
parameters deviate from the nominal value.
Theorem 1: Under uncertain situation, when the box

uncertainty set is empty, the BTS-MIRO model will degrade
to TS-MILO model. When the box uncertainty parameter set
is non-empty, (1) - (16) robust equivalent model is (17) - (34).

The first stage of BTS-MIRO is (17) - (22), and its goal is
to minimize the total cost under uncertain conditions.

min ZB (17)

s.t. max



∑
J

xjcf +
∑
I

∑
J

yij[C2(D0
j , c

2
m)]

+

∑
I

∑
J

xjchyijD0
j +

∑
I

∑
J

xichyijD̂j

+9j

∑
I

∑
J

yij[C2(D̂j, c2m)]


≤ZB

(18)∑
J

yij ≤ 1, ∀i ∈ I (19)∑
J

yijD0
j +9j

∑
J

yijD̂j ≤ HMax
j , ∀i ∈ I (20)

yij ≤ xj, ∀i ∈ I , ∀j ∈ J (21)

xj ∈ {0, 1}, yij ≥ 0, ∀i ∈ I , ∀j ∈ J (22)

The second stage of BTS-MIRO is (23) - (28), and its goal
is to minimize the distribution cost of emergency materials on

the basis of maximizing the demand of major disaster relief
sites.

min C2(D̃j : c2m) (23)

s.t. max



c2v
∑
I

∑
J

yijD0
j dij

h2
+ c2t

∑
I

∑
J

xi(
dij
v̄i
− t j0)

+9j(c2v
∑
I

∑
J

yijD̂jdij
/
h2)

+9j[c2t
∑
I

∑
J

xi(dij
/
v̄i − t

j
0)]

+

∑
J

∑
K

zjkC3(D̃k , c3m)


≤ C2 (24)∑
J

yij ≤ 1, ∀i ∈ I (25)∑
J

yijD0
j +9j

∑
J

yijD̂j ≤ HMax
j , ∀i ∈ I (26)⌈

yij
⌉
· (dij

/
v̄j) ≤ TMaxij , ∀j ∈ J , ∀k ∈ K (27)

xj ∈ {0, 1}, yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K (28)

The third stage of BTS-MIRO is (29) - (34), and its goal is
to minimize the cost of secondary disaster rescue on the basis
of maximizing the demand of secondary disaster sites.

min C3(D̃k : c3n) (29)

s.t. max


∑
J

∑
K

c3t zjk (
djk
v̄j
−tk0 )+

∑
J

∑
K

c3vzjkD
0
kdjk

h3

+9k [c3v
∑
J

∑
K

(zjk D̂kdjk )
/
h3]


≤ C3 (30)∑
J

zjk ≤ 1, ∀k ∈ K (31)∑
J

zjkD0
k +9k

∑
J

zjk D̂k ≤ HMax
k , ∀k ∈ K (32)⌈

zjk
⌉
· (djk

/
v̄j) ≤ TMaxjk , ∀j ∈ J , ∀k ∈ K (33)

yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K (34)

C. PTS-MIRO MODEL
In the PTS-MIRO model, the uncertain set of demand sites is
polyhedron set, which is defined by l1 norm: D : UP1,P2

={
{ς, ζ } : ‖ε, ξ‖1 ≤ 0j,k

}
=

{
{ε, ξ} ·

∑
|εj,k | ≤ 0j,k

}
,in

which 0j,k is the uncertain parameter [52]–[55].
Theorem 2: Under uncertain situation, when the polyhe-

dron uncertainty set is empty, the PTS-MIRO model will
degrade to TS-MILO model. When the box uncertainty
parameter set is non-empty, (1) - (16) robust equivalent model
is (35) - (52).

The first stage of PTS-MIRO is (35) - (40), and its goal is
to minimize the overall rescue cost.

min ZP (35)

s.t.
∑
J

yij ≤ 1, ∀i ∈ I (36)
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∑
J

yijD0
j + 0j

∑
J

yijD̂j ≤ HMax
j , ∀i ∈ I (37)

yij ≤ xj, ∀i ∈ I , ∀j ∈ J (38)

max



∑
J

xjcf +
∑
I

∑
J

xjchyijD0
j

+

∑
I

∑
J

yij[C2(D0
j , c

2
m)]+

∑
I

∑
J

xichyijD̂j

+0j
∑
I

∑
J

yij[C2(D̂j, c2m)]


≤ ZP

(39)

xj ∈ {0, 1}, yij ≥ 0, ∀i ∈ I , ∀j ∈ J (40)

The second stage of PTS-MIRO Model is (41) - (46), and its
goal is to minimize the initial rescue cost.

min C2(D̃j : c2m) (41)

s.t. max



∑
I

∑
J

c2vyijD
0
j dij

h2
+ c2t

∑
I

∑
J

xi(
dij
v̄i
− t j0)

+

∑
J

∑
K

zjkC3(D̃k , c2m)

+0j(c2v
∑
I

∑
J

yijD̂jdij
/
h2)

+0j[c2t
∑
I

∑
J

xi(dij
/
v̄i − t

j
0)]


≤ C2 (42)∑
J

yij ≤ 1, ∀i ∈ I (43)∑
J

yijD0
j + 0j

∑
J

yijD̂j ≤ HMax
j , ∀i ∈ I (44)⌈

yij
⌉
· (dij

/
v̄j) ≤ TMaxij , ∀j ∈ J , ∀k ∈ K (45)

xj ∈ {0, 1}, yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K

(46)

The third stage of PTS-MIRO is (47) - (52), and its goal is
to minimize the cost of secondary disaster relief.

min C3(D̃k : c3n) (47)

s.t. max


c3t
∑
J

∑
K

⌈
zjk
⌉
(
djk
v̄j
− tk0 )

+c3v
∑
J

∑
K

zjkD0
kdjk
h3

+ 0k (c3v
∑
J ,K

zjk D̂kdjk
h3

)


≤ C3 (48)∑
J

zjk ≤ 1, ∀k ∈ K (49)∑
J

zjkD0
k + 0k

∑
J

zjk D̂k ≤ HMax
k , ∀k ∈ K (50)⌈

zjk
⌉
· (djk

/
v̄j) ≤ TMaxjk , ∀j ∈ J , ∀k ∈ K (51)

yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K (52)

D. ETS-MIRO MODEL
In ETS-MIRO model, the uncertain parameters float in the
ellipsoid set. Through the l2 norm, UE1,E2 are defined as:

{
{ς, ζ } : ‖ε‖2 , ‖ξ‖2 ≤ �j,k

}
=

{
ε

√∑
J
ε2j , ξ

√∑
K
ξ2k ≤�j,k

}
,

in which �j,k is the adjustable SP and also the spherical
diameter of uncertain set [56]. The set {UE1,E2

} of uncertain
D̃j,k is {D̃ ∈ R,

∑
J ,K [(D̃j,k − D0

j,k )
/
D̂j,k ]2 ≤ �2

j,k}. Since

the model is a nonlinear problem, set UE1,E2 is equivalent
to {(D̃j,k − Dj,k )TC−1(D̃j,k − Dj,k ) ≤ �2

j,k}, where C is an
n-order diagonal matrix with D̂2

j,k (nonzero) elements, then

get C(D0
j,k )+�j,k

√∑
J ,K (D̂2

j,k )[
∑

I ,J (yij, zjk )cv,t,c]2 ≤ ZE .

Set rj,k =
∑
J

∑
K
cv,t,c(yij, zjk ),Pj,k =

√∑
J

∑
K
D̂2
j,kr

2
j,k . Then,

the above formula is converted to C(D0
j,k ) + �j,kPj,k ≤ ZE .

Since the goal is to minimize the cost, relaxation constraint
P′j,k ≥

√∑
J ,K D̂

2
j,kr

2
i , r
′
j,k ≥

∑
J

∑
K
cv,t,c(yij, zjk ) are added.

Theorem 3: Under uncertain situation, when the ellipsoid
uncertainty is empty, the ETS-MIRO model will degrade to
TS-MILO model. When the box uncertainty parameter set is
non-empty, (1)-(16) robust equivalent model is (53) - (76).

The first stage of ETS-MIRO is (53) - (60), and its goal is
to minimize the total cost under uncertain conditions.

min ZE (53)

s.t. max



∑
J

xicf +
∑
I

∑
J

xichyijD0
j

+�j(
∑
I

∑
J

xichyijD̂j

+�j[
∑
I

∑
J

yijC2(D̂j, c2m)]


≤ ZE

(54)∑
J

yij ≤ 1, ∀i ∈ I (55)∑
J

yijD0
j +�jP′ ≤ HMax

j , ∀i ∈ I (56)

Pj ≥

√∑
J
D̂2
j r
′2
i (57)

r ′j ≥
∑
I

∑
J

cv,t,c(yij, zjk ) (58)

yij ≤ xj, ∀i ∈ I , ∀j ∈ J (59)

xj ∈ {0, 1}, yij ≥ 0, ∀i ∈ I , ∀j ∈ J (60)

The second stage of ETS-MIRO is (61) - (69), and its goal
is to minimize the cost of major disaster relief.

min C2(D̃j : c2m) (61)

max {C(D0
j )+�jPj} ≤ C2 (62)∑

I

∑
J

c2vyijD
0
j dij

h2
+ c2t

∑
I

∑
J

xi(
dij
v̄i
− t j0) ≤C(Dj)

(63)∑
J

yijD0
j +�j

∑
J

yijD̂j ≤ HMax
j , ∀i ∈ I (64)∑

J

yij ≤ 1, ∀i ∈ I (65)
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⌈
yij
⌉
· (dij

/
v̄j) ≤ TMaxij , ∀j ∈ J , ∀k ∈ K (66)

xj ∈ {0, 1}, yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K

(67)

The third stage of ETS-MIRO is (68) - (76).

min C3(D̃k : c3n) (68)

s.t. max
{
C(D0

k )+�kP′k
}
≤ C3 (69)

r ′k ≥
∑
I

∑
J

cv,tzjk , ∀k ∈ K (70)

ct
∑
J

∑
K

(

⌈
zjk
⌉
djk

v̄j
− tk0 )+

∑
J

∑
K

zjkc2vD
0
kdjk

h3

≤ C(D0
k ) (71)

P′k ≥
√∑

J

D̂2
kr
′2
i (72)

∑
J

zjkD0
k +�k

∑
J

zjk D̂k ≤ HMax
k , ∀k ∈ K

(73)∑
j∈J

zjk ≤ 1, ∀k ∈ K (74)⌈
zjk
⌉
· (djk

/
v̄j) ≤ TMaxjk , ∀j ∈ J , ∀k ∈ K (75)

yij ≥ 0, zjk ≥ 0, ∀j ∈ J , ∀k ∈ K (76)

E. ALGORITHM DESIGN
Through MATLAB (R2016a) as programming platform,
the algorithm process of model is shown (Table 2). All data
analysis is carried out on the same PC, which has 2.44 GHz
4-core CPU (Inter Core), 256GB SSD and 8GB RAM.

TABLE 2. Three-stage HEL algorithm based on gurobi.

V. NUMERICAL EXPERIMENT
In this section, a real case is used to verify the effectiveness
of the models in HEL. The model selects Yushu Earthquake
(M = 7.1, Apr., 2010) as an example (Fig. 3).

FIGURE 3. Accurate geographic location of yushu earthquake.

In actual rescue process, the Rescue Department is faced
with the HEL problem. The first stage is to determine the
location of major disaster relief sites, which are determined
according to the disaster situation. Taking Jiegu street as
the center, the location of the main disaster relief sites is
determined first. The goal is to determine the location and
minimize the overall total cost. These major sites offer dual
functions. One is to provide materials for their own disas-
ter areas, and the other is to provide materials for the sec-
ondary disaster areas. The original center of relief materials
is determined as O1 of Batang Airport (Cargo mark), and
Jiegu, et al.2 towns are selected as the major disaster relief
sites (Red Cross), which are M1,M2, · · · ,M5. The second
stage is the path planning from the original center to themajor
sites. There are five major sites, which are selected among the
alternative sites in the first stage. The aim of the second stage
is to minimize the initial distribution costs. The third stage
is the path planning from the major sites to the secondary
sites. Secondary disasters are often caused by the follow-up
effects of major disasters, such as small-scale aftershocks,
landslides, dammed lakes, floods and so on. There are 14 sec-
ondary sites (Black solid), namely as Lixin, et al.,3 which are
represented by S1, S2, · · · , S14. The aim of the third stage is
to minimize the costs from major sites to the second sites.

In the process of route planning, we remove the inter-
ference factors and get the relative position of the sites
(Fig. 4). On the basis of maximizing the satisfaction of
demand, the minimum costs are pursued. In the HEL system,
there is one original center, 5 major sites and 14 secondary
sites. Any alternative path corresponds to different costs. The
transportation costs are determined by the comprehensive
calculation of real-time oil price, actual distance, and traffic
congestion and time limit. On the basis of comprehensive
consideration of relevant costs, the following case simulation
is carried out.

2The 5 major sites are Jiegu, Zhongda, Batang, Anchong and Longbao.
Data sources: http://news.ceic.ac.cn

3The 14 secondary sites are Lixin, Bagan, Gaduo, Labu, Derongma,
Zhenke, Xiaosumang, Xialaxiu, Shanglaxiu, Sahuteng, Anggsai,
Maozhuang, Xiewu and Zhenqi. Data sources: http://news.ceic.ac.cn
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FIGURE 4. The relative location of the site, including the airport,
the major and secondary disaster area.

A. RELATED DATA
The data are mainly from China Seismological Bureau and
National Bureau of Statistics. In this paper, the input parame-
ters are estimated using historical data of a disaster-prone area
(Yushu, Qinghai Province). The basic information includes
information of vehicle (Table 3).

TABLE 3. Vehicle information.

The fixed operating costs, demand for major sites, demand
for secondary sites, and vehicle speed (Table 4). The distance
between sites can be obtained through Google map [57], [58]
as is shown in Table 5.

TABLE 4. Basic parameters of HEL.

B. TS-MILO MODEL RESULTS
The minimum costs (Optimal solution) of TS-MILO model
are 8.5274 E+05 CNY, and the model operating effi-
ciency (Time) is 2570.736 ms. The path planning for the

TABLE 5. Distance betweem major to secondary sites.

FIGURE 5. The distribution planning of TS-MILO model. Notes: the solid
and dotted line for the major and secondary disaster.

TS-MILO model is shown in Fig. 5. We can find that the
all the sites are selected as storage warehouses for major
relief materials. In the second stage, materials will be dis-
tributed in the main disaster relief areas, i.e. from the ini-
tial center (Airport) to major disaster relief sites planned
according to the material transportation. The transportation
of relief materials mainly involves major site M4 and M5,
which respectively account for 32.91% and 32.52% of the
total demands. Both of them are responsible for providing
major relief supplies. The third stage is aimed at offering the
material distribution services of the secondary disaster sites.
On the premise of meeting the demands of each node, the dis-
tribution path of TS-MILOmodel almost traverses all feasible
paths. Through careful analysis, we can find that although the
distribution path can guarantee the supply of basic materials
via the TS-MILO model, there are still some problems in
the specific service process. For example, the long-distance
transportation in the route planning will increase the fuel
cost. The time costs caused by circuitous transportation in
route planning will increase the suffering of the rescued. The
unreasonable use of major disaster relief sites will lead to
the increase of costs of subsequent re transportation. Once
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there is uncertainty in the actual rescue process, for example,
the fluctuation of demands in the target area will increase.
These uncertainties will make the stability and sustainability
of TS-MILO model unable to be guaranteed, which makes
the relief material logistics service face some challenges and
difficulties. As a result, in the rescue process, we must plan
reasonably, explore more optimized improvement strategies,
and seek more robust path planning scheme. According to the
above analysis, we must optimize the distribution path.

C. BTS-MIRO Model
In the BTS-MIRO model, the effect of 9j,k on the total costs
is constantly changing. The results of the BTS-MIRO model
are shown in Table 6 below. The total costs of HEL increase
with the increasing of SP. According to the Theorem 1,
when 9j,k = 0, the BTS-MIRO model corresponds to the
TS-MILO model and the total costs are 8.5274 E+05 CNY.
In BTS-MIRO model, the rate rises from 8.5274 E+05 to
9.3323 E+05, with an increase of 9.44%.

TABLE 6. Cost, site selection and operation efficiency of BTS-MIRO model.

As is shown in Fig. 6, the BTS-MIRO model is compared
with the TS-MILO model: In the first two stages, three major
sites M3,M4,M5 bear more than 81.31% of the material
supply of secondary disaster relief services. In the third stage
of secondary disaster relief logistics planning, the main dis-
aster relief site M3 undertakes a larger distribution service
than before, with the transshipment proportion increasing
from 11.8% to 28.57%. The transshipment proportion involv-
ing M4,M5 declined, but they still account for 27.51% and
29.87% of the main relief sites respectively. Although the
distribution line is centralized to M3, and the route planning
is relatively reasonable, there are still some circuitous trans-
portation problems in other lines, so there is still room to
optimize the BTS-MIRO model.

D. PTS-MIRO MODEL
In the PTS-MIRO model, the total costs vary with SP. The
results of PTS-MIRO model are shown in Table 7. The total
costs of emergency relief logistics increase with the increase
of SP. According to the Theorem 2, when 0j,k = 0, the
PTS-MIRO model is equivalent to the TS-MILO model.

FIGURE 6. The distribution planning of BTS-MIRO model. Notes: the solid
and dotted line for the major and secondary disaster.

TABLE 7. Cost, site selection and operation efficiency of PTS-MIRO model.

In BTS-MIRO model, the rate rises from 8.5274 E+05 to
1.0205 E+06CNY, with an increase of 19.67%. It can be seen
that compared with BTS-MILO model, PTS-MILO model
requires higher costs.

As is shown in Fig. 7, the PTS-MIRO model is compared
with the BTS-MIRO and TS-MILO models: In the initial
route planning of first two stages, M3,M4,M5 are still the
main material transfer centers. From the comparison of rela-
tive location sites, it can be found that the transfer of transport
transfer center makes the route planning more reasonable
and reduces the circuitous transportation in secondary stage.
Compared with BTS-MIRO model and TS-MILO model,
PTS-MIRO model reduces the proportion of long-distance
line transportation and increases the proportion of short-
distance line transportation in the third stage of secondary
disaster relief path planning, which can provide specific ref-
erence for quickly reaching destination, which has a positive
role in promoting path optimization.

E. ETS-MIRO MODEL
The results of the ETS-MIRO model are shown in Table 8.
Similarly, the total costs increase with the increase of SP of
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FIGURE 7. The distribution planning of PTS-MIRO model. Notes: the solid
and dotted line for the major and secondary disaster.

TABLE 8. Cost, site selection and operation efficiency of ETS-MIRO model.

the model. According to Theorem 3, when �j,k = 0, ETS-
MIROmodel is equivalent to TS-MILOmodel, and the cost is
8.5274 E+05CNY. In ETS-MIRO model, the rate rises from
8.5274 E+05 to 8.8568 E+05CNY, only with an increase
of 3.87%. It can be seen that compared with BTS-MILO and
PTS-MILO model, ETS-MIRO shows higher robustness.

As is shown in Fig. 8, the ETS-MIRO model is compared
with the PTS-MIRO, BTS-MIRO and TS-MILO models: In
the initial planning of the first two stages, the proportion
of transport transfer is relatively evenly distributed in the
major transport centers. The transit capacity and load pressure
of each major disaster relief point are relatively balanced.
The sites have penetrated into the hinterland of the disaster
area and is closer to the affected people. In consequence,
increasing the storage ratio of M2 makes the path planning
more reasonable. In the third stage of planning, the ratio
of PTS-MIRO, BTS-MIRO and TS-MILO models is rela-
tively higher. The proportion of long-distance transportation
is further reduced, while the proportion of short-distance tran-
sportation is increased in the ETS-MIRO model.

Especially after making full use of this node which goes
deep into the disaster area, the performance is more obvious.

FIGURE 8. The distribution planning of ETS-MIRO model. Notes: the solid
and dotted line for the major and secondary disaster.

In comparison, the proportion of services in each path tends
to be short path. The costs of short distance route are fewer,
and its proportion in the supply of materials shows an upward
trend. Due to the higher efficiency of vehicle mileage and
more accurate and quick distribution route, TS-MIRO has
shown better optimization performance.

VI. MODEL SENSITIVITY ANALYSIS
This section compares and analyses the performance of
eachmodel, including operational efficiency, uncertainty, and
demand fluctuation.

A. OPERATING PERFORMANCE COMPARION
This section compares the operation efficiency of each model
by observing the operation time of the models. In order to
ensure the effectiveness of the results, the following settings
are made: running in the same computer environment, setting
the SP as the only variable. We useMATLAB as the platform.
The solvers GUROBI and CPLEX are used to solve the above
models respectively, and the results are shown in Table 9.

TABLE 9. Performance comparison of models.

In the total costs comparison of the model, the costs in the
calculation results of the model is not affected by the algo-
rithm. Gap%<0.1 is found in the error comparison of the cal-
culation, which indicates that the model is effective without
significant difference in different solvers. From com-parison
of the calculation performance of the model, it can be seen
that those two solvers are used to solve the models. GUROBI
can save at least 38% of the time consumption compared with
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the solvers CPLEX. Obviously, the algorithm of GUROBI is
better than that based on CPLEX.

Fig. 9 show that, the TS-MILO model has the highest
running efficiency and the overall operation time is much
shorter than that of MIRO model (≤2600 ms). Detailed
comparison of the four models shows that, when SP ≤ 3,
BTS-MIRO>ETS-MIRO>PTS-MIRO, which means that
the BTS-MIRO model is the most efficient. When
3 ≤ SP ≤ 8, PTS-MIRO>ETS-MIRO>BTS-MIRO, which
means that the PTS-MIRO model is the most efficient. When
9 ≤ SP, ETS-MIRO>PTS-MIRO>BTS-MIRO, which
means that the ETS-MIRO model is the most efficient with a
large number of uncertain parameters. Due to small scale of
this HEL problem, there is little difference in time. However,
when the constraints and variables in the model increase to
tens of thousands or even tens ofmillions, the operational effi-
ciency of the model solution will be significantly different.
There-fore, when solving practical problems, we can build
an ap-propriate model according to real data.

FIGURE 9. Operation efficiency comparison between models.

B. IMPACT OF DEMAND VOLATILITY AND SAFETY
PARAMETERS
In this section, we analyze the impact of demand volatility
on the total cost. The control variable method is used to
analyze the effect of the fluctuation of random parameters
on the total cost, where (9j, 0j, �j = 3;9k , 0k , �k = 7).
The calculation results are shown in Figure 10. Although
TS-MIRO model will pay a certain cost, that is, the total cost
is higher than TS-MILOmodel, it can still give path planning
scheme even if in uncertain situation. The growth rate of
costs is slightly different. The costs of PTS-MIRO model
increase sharply, while that of ETS-MIRO model increases
slowly. In the PTS-MIRO model, when the demand volatil-
ity increases from 0 to 30%, the total costs increase from
8.5512 E+05CNY to 9.6885 E+05CNY, with an increase of
13.6%. In the ETS-MIRO model, when the demand volatility
increases from 0.00% to 30%, the total costs increase from
8.5512 E+05CNY to 8.8907 E+05CNY, with an increase

FIGURE 10. The effect of demand volatility on total costs.

FIGURE 11. The effect of safety parameters on total cost.

of 4.6%. In addition, the rising trend of costs is quite different.
Among them, BTS-MIROmodel and PTS-MIROmodel have
greater randomness, ETS-MIROmodel has a strong ability to
resist uncertainty.

Fig. 11 analyses the effect of the changes of SP on total
costs, under the condition of ε = 0.10. The costs show an
upward trend with the increasing of SP. Different TS-MIRO
models have different rising rates of costs, while TS-MILO
models are not affected by safety parameters and main-
tain a low level, which can be used as reference standard.
PTS-MIRO models have the highest increasing rate of costs
and the highest robustness costs due to improving safety
level. BTS-MIRO models are centered, while ETS-MIRO
models are the most stable and require the lowest robustness
costs. The analysis suggests that the costs increase by at least
10.05% (ETS-MIRO model). The growth rate of BTS-MIRO
model is 18.16%. The growth rate of ETS-MIRO model
only accounts for 44.66% of BTS-MIRO model. Therefore,
the ETS-MIRO model has high robustness and strong ability
to resist uncertainty.

C. SERVICE LEVEL AND ITS RESPONSIVENESS
The performance is analyzed through Level of Service (SL).
Due to high requirement for timeliness in HEL, this section
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FIGURE 12. The impact of demand volatility on service level.

FIGURE 13. Service level is affected by safety parameters. Note: IJ and JK
represent the major and secondary disaster.

compares the SL of models through time differences, and
analyses the advantages and disadvantages of the differ-
ent models. The SL is calculated by following formula.
Com-puter simulation results under different parameters are
shown in Fig. 12 and 13.

SL =

1−
∑
J

∑
K

(yij,zjk )D̃j,kdij,jk
v̄ij,jk

− tj,k
∑
J

∑
K
D̃j,k

tj,k
∑
J ,K

D̃j,k

× 100%

where, I , J represents the number of arcs in the model.
Fig. 12 shows the influence of volatility on SL, under fixed

SP (9j, 0j, �j = 3;9k , 0k , �k = 7). Through analysis of
the influence of the volatility on the model, the following
three conclusions can be drawn. The SL of TS-MILO model
is not affected by fluctuation, and of course, the problem
under uncertain conditions is unable to solve. Due to the
determined data, the SL is also the highest (SL=92.87% of
the second stage and 86.97% of the third stage). The SL
of three TS-MIRO models shows downward trend with the

increase of volatility. The greater the amplitude of volatil-
ity is, the lower SL is. The impact of demand volatility
on SL in the second stage is greater than that in the third
stage. The reason is that the uncontrollability of rescue work
aggravates the uncertainty in the process of HEL. For the
major disaster areas, the uncertainty of secondary disasters
should be considered in addition to the impact of uncer-
tainty fluctu-ation in their own regions. Due to the lack
of information and low efficiency of resource turnover for
secondary disaster areas, the cumulative uncertainty has a
more significant influence on the second stage (SL down-
ward). Volatility has a higher influence on SL in the second
stage than that on the third stage. The reason is that in the
planning of major disaster relief material dispatch, besides
the impact of uncer-tainty itself, the influence of uncertainty
on secondary disa-ster needs considering. It can be clearly
seen from the com-parison that the ETS-MIRO model has
strong robustness. The BTS-MIRO model is centered and
the PTS-MIRO model is most affected by volatility, which
means that PTS-MIROmodel has the weakest ability to resist
uncertainty, while ETS-MIRO model performs better.
Fortunately, Fig. 13 illustrates the impact of SP on the SL

under the condition of fixed volatility (ε = 0.15).We can see
that the SL tends to increase in SP. SP has a great effect on the
improvement of service quality, and it performs well both in
the second and the third stage. To a certain extent, this makes
up for the robustness cost caused by uncertainty and also
reduces the loss of SL owing to volatility. Careful comparison
shows that ETS-MIRO model has strong robustness. When
SP increases from 1 to 14, SL will increase from 88.53%
to 96.44% in the second stage and from 78.74% to 89.61%
in the third stage. In the process of disaster relief, managers
must pay attention to the rapid responsiveness of rescue.
Considering uncertainties, although each TS-MIRO model
can give path planning plans, the performance and application
scope of each plan are also different. HEL decision makers
must review the situation and make the most reasonable plan
according to local conditions.

VII. CONCLUDING REMARKS
Humanitarian emergency logistics (HEL) management is a
major decision-making related to social economy and peo-
ple’s life safety, which is highly valued by the national
government. Most of the previous studies focused on major
disasters, but the impact of secondary disasters was eas-
ily ignored. On the basis of fully analyzing the internal
relationship between primary and secondary disasters, this
paper establishes a three-stage mixed integer linear opti-
mization (TS-MILP) model based on inventory, vehicle load
and time constraints. Under the condition that all parame-
ters are determined, this paper compiles the algorithm based
on GUROBI, and gives the basic feasible path planning
scheme. In the previous research, it was often carried out
under certain circumstances, while the actual rescue pro-
cess is uncertain. Therefore, the management of HEL under
uncertain conditions has higher research value. In order to
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prevent the dissimilation effect of uncertainty, robust opti-
mization is introduced. By constructing the corresponding
uncertain set, the TS-MILO model is transformed into a
three-stage mixed integer robust optimization (TS-MIRO)
model. Finally, the practicability is verified by experiments.

The main contributions of this article are: First, the tra-
ditional HEL problem in major and secondary disasters is
subdivided, and the single-stage problem is subdivided into
three-stage problem. Secondly, the robust optimization theory
is introduced, and the deterministic optimization model is
further extended to the robust optimization model with uncer-
tainty in mind. Finally, experiments are carried out with real
data, and a feasible route planning scheme is given based on
the model calculation results.

Through the study of this paper, we can draw the following
conclusions. On account of the idealization of parameter data,
the three-stage mixed integer linear optimization model can
give the lowest total costs and the highest service level. How-
ever, in reality, such an ideal data set is extremely difficult
to obtain, even unavailable, so its practical feasibility is not
high. On the whole, the three-stage mixed integer robust
optimization model will pay a certain robust cost, such as the
increase of costs and the increase of complexity of calcula-
tion, due to the influence of stochastic demand fluctuation.
But they can solve uncertain humanitarian logistics problems
and maintain robustness. From the details, the service level of
the improved robust model has been significantly improved.
The ellipsoid set robust optimization model performs best,
while the polyhedron set robust optimization model has the
weakest ability to resist environmental changes. The robust
optimization model proposed in this paper can better solve
the uncertainty of relief work.

The proposed model can not only be used to solve the
problem of HEL in the earthquake areas, but also has great
expansibility. It can also be applied to other problems, such
as supply chain management with secondary replenishment,
vehicle routing planningwith secondary transshipment, home
medical service with personnel transfer, etc. These problems
have similar characteristics, that is, in addition to the main
demand or supply, there is also a demand for secondary.
On the technical level, the programming algorithm used in
this paper still has plenty of room for improvement. Through
the application of new technology, the proposedmodel will be
more accurate and more efficient. In the future, our research
will explore the application mode of science and technology.
It can be predicted that the informatization and intelligence
of emergency rescue management is the future direction.
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