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ABSTRACT The Internet of things (IoT) introduces emerging applications (i.e., smart homes, smart cities,
smart health, and smart gird) that assist the traditional infrastructure environments to be connected with smart
objects. Things are connected with the Internet and numerous new IoT devices are developing at a rapid pace.
As these smart objects are connected and able to communicate with each other in unprotected environments;
therefore, the whole communication ecosystem requires security solutions at different levels. IoT technology
possesses unique characteristics with various resource constraints and heterogeneous network protocol
requirements, unlike traditional networks. The attacker exploits numerous security vulnerabilities of an IoT
infrastructure, to generate a DDoS attack. The increase in DDoS attacks has made it important to address
the consequences which imply in the IoT industry. This research proposes an SD-IoT based framework
that provides security services to the IoT network. We developed a C-DAD (Counter-based DDoS Attack
Detection) application that is based on counter values of different network parameters, which helps to detect
DDoS attack successfully. C-DAD is a dynamic and programmable solution, and is deeply tested with
different network parameters. The algorithm demonstrates a good performance with better results through
SDN. Moreover, the proposed framework detects the attack efficiently in a minimum amount of time and

with lesser consumption of CPU and memory resources.

INDEX TERMS SD-IoT, SDN, attack detection, DDoS, counter-based DDoS detection.

I. INTRODUCTION

IoT technology has exponentially increased the number of
heterogeneous devices linked with the Internet. One of the
major challenges is to provide security to these devices,
which operates with low power, limited resources, and diverse
access protocol. According to [1], as of usage, the number
of 10T devices will reach a quantity of 24 billion by the end
of this year, and IoT will exceed to 100 billion connected
devices by the end of 2025 [2]. These devices spread in
an open network environment, which is easy to attract any
attacker. The integration of these devices with programmable
and flexible networks can help detecting any type of intrusion
in the IoT network.
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IoT provide an infrastructure in which physical objects
i.e., RFID, sensors, actuators, and other smart devices can
be connected with the Internet. IoT devices can be utilized
in different areas such as smart home, smart traffic system,
smart healthcare services and smart industrial manufacturing
to name a few. According to a research [3], 200 million IoT
devices connect to the Internet and are associated with the
web, so it offers an opportunity for the attackers to utilize
these devices for DoS, DDoS, Trojan, and e-mail perni-
cious. Another issue with IoT devices is lack of computation
and communication, as compared to traditional computing
devices. Therefore, these devices can be compromised easily
and turned into a botnet to launch a DDoS attack [4]. For
example, in the 2016 attack on DNS service provider com-
pany DYN through Bashlite and Mari malware installed on
different IoT devices, therefore most high profile websites
services became unavailable such as Twitter, Netflix, GitHub,
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and other many more. In the same year, there was also
another attack via [oT devices through Botnet [5], in which
the attacker targeted Krebs and the French WebHost using six
hundred thousand compromised IoT devices with 620 Gbps
and 1.1 Tbps traffic.

With evolution of IoT, millions of devices are connected to
exchange information, required for various applications that
are important for human lives. Meanwhile, the security issues
are as vital as IoT devices exponential growth increase [6].
SD-IoT provides flexible control on network traffic gener-
ated via IoT devices by the attacker. To tackle these chal-
lenges, many researchers started to work on security issues
in SD-IoT network to overcome its drawbacks. For exam-
ple, Silva et al. [7] study carry out in-depth investigation and
provides a comprehensive view of security challenges, and
demonstrates main benefits and drawback of each SDN based
security approaches in IoT scenarios. The study presents the
IoT applications, IoT architecture and highlights the relevant
issues and challenges.

The DDoS attack is very harmful which exploit normal
operations of the network and consumes its bandwidth or
resources. In [8], the authors describe the latest DDoS
attack detection and mitigation techniques for SD-IoT
network. There are many DDoS detection approaches
including entropy-based statistical methods [9], machine
learning-based classification of malicious traffic techniques
[10], and rule-based approach [11] which are implemented
using SDN paradigm.

The SD-IoT based proposed framework is divided into
three-layer same as the SDN-based IoT architecture layer
model, however, our model is further customized with addi-
tional components according to the problem’s requirement.
The first layer consists of security applications that detect the
DDoS attack. It has a C-DAD attack detection application that
is part of the application layer. The second layer is the control
layer, which has two components, SDNWISE controller and
IoT controller, to manage the SD-IoT network. The third layer
is the infrastructure layer, which is also named as a data
plane that contains SOFS (Sensor Open Flow Switch) and IoT
devices.

The application layer’s first module consists of C-DAD
that detects the DDoS attack in the SD-IoT network. The
architecture of the C-DAD depends on different sub-module,
which consist of counters. C-DAD evaluate the counter value
of different sub-modules counters, and decide whether traffic
is malicious or legitimate. Each counter has a threshold value.
If it exceeds that value, it generates a trigger to flow analyzer,
which checks all counters’ status and decides whether the
network is compromised or normal. There is a separate sub-
section for this module in which different experiments with
different variables and associated algorithms are discussed in
detail. Each experiment is further deeply analyzed for every
variable with different parameters meanwhile each experi-
ment with set variable and associated algorithms and results
are further showed in tabular and graph format so it easy to
understand.
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In the conventional systems, the Intrusion Detection Sys-
tem (IDS) security instrument is implemented at the edge
level of the Internet. These solutions are utilized to keep
the system safe from external threats. Such systems are not
sufficient to handle the security of the cutting-edge Internet.
IoT is based on the border-less system architecture, which
raises an extra threat to the system access control. However,
security is a major issue for an ad-hoc system in IoT.

This research work aims to contribute towards a software
defined-IoT security platform that provides security services
to its network. The three main contributions of this work are
as followings,

+ SDNWISE based customized framework for IoTs net-
work to provide the security services. This framework
has a dynamic feature to add security services at the top
of SDNWISE with minimal programming and configu-
ration without changing the network infrastructure. The
framework consists of an IoT controller, which is used as
a gateway between the IoT network and SDNWISE con-
troller to connect different heterogeneous IoT networks
and SOPFS (Sensor Open Flow Switch), which provides
the communication between IoT Nodes and path toward
the SDNWISE controller via IoT controller.

« Counter-based DDoS Attack Detection (C-DAD) appli-
cation, which is running on top of the proposed frame-
work that consists of different counter-based methods
like Packet Counter, Payload Counter, Traffic work-
load counter, and others to determine the malicious
traffic and to detect DDoS attack in SD-IoT Network.
This algorithm is most efficient for zero-day attacks
due to its functionality based on counter’s values and
because it not based on an attack signature or machine
learning-based trained model.

o According to simulation results, the C-DAD algorithm
easily detects the DDoS attack in the SD-IoT network
by analyzing different parameters with three different
types of experiments. The algorithm is deeply tested and
analyzed with each parameter separately to get the best
outcomes. The result shows that it detects DDoS attacks
very efficiently.

The rest of this article is as follows; Section-II discusses
the background for the research work. Section-III investigates
the related work. Section-IV presents the proposed SD-IoT
framework and its components, and Section-V discusses the
experiment evaluation and results along with discussion.
Finally, Section-VI concludes the research work.

Il. BACKGROUND

A. SOFTWARE DEFINED IoT ARCHITECTURE

The IoT networks are facing various challenges due to het-
erogeneous nature from access technology, routing protocols,
geographically distributed and heterogeneous network infras-
tructures. Also, various solutions with different approaches
are found in literature for SDN based IoT architecture, but
no standard is followed [12]-[16]. A programmable network
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FIGURE 1. SDN-based loT architecture.

is initiated by many researchers to develop novel SDN
paradigms [17], [18], that can be useful to develop a layer
based architecture for IoT as shown in Figure. 1.

The architecture consists of three layers i.e., Application
layer, Control layer, and Infrastructure layer. IoT network,
sensors, and user devices are included controlled through the
control plane in the Infrastructure layer. In the SD-IoT net-
work, infrastructure layer’s devices act as a forwarding device
to forward traffic according to network flow. The network is
divided into two parts: control plan and data planes. In the
control plane, it includes IoT devices and openflow switches,
but the control plan consists of an IoT controller and SDN
controller to perform network operations such as routing,
defining network rules, policy etc. The control layer provides
network control services such as access control, authentica-
tion, integrity, network and system security, Big-data security
analysis, and confidentiality. The application layer consists of
IoT security services, which users and administrators use to
control the SD-IoT environment.

SDN-based IoT architecture [19] proposal is interoperable,
scalable and adaptable. It must connect wireless network
IPv6 over Low-Power Wireless Personal Area Networks
(6LowPAN) and Routing Protocol for Low-Power and Lossy
Networks (RPL) and communicate with the gateway for
fetching and sending the data for web services. Security
and QoS parameters are also negotiated during the connec-
tion establishment process based on M2M tweaked archi-
tecture. CoAP protocol is implemented to Fateh and sends
the data to the IoT node using the IEEE 802.15.4 standard
for communication. A secure [oT architecture is presented in
[20], which is based on four architectural blocks, including
trusted SDN controller, black network, unified registry, and
key management for the smart city. These four components
provide the security to the smart city like privacy, identity
management and authentication, secure routing, and secure
key management.

B. SDNWISE IoT NETWORK ARCHITECTURE

SDNWISE provides the software framework based on
Software-defined Wireless Sensor Network (SD-WSN) and
hardware prototype. SDNWISE has two main features; first,
through SD features, it reduces the information exchanged
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FIGURE 2. SDNWISE loT architecture [22].

between node and controller compared to non-SDN; sec-
ond, with the help of SDN, sensor nodes become pro-
grammable [21].

Figure. 2 shows the SDNWISE IoT architecture. It can
be divided into two main parts; the control plane and data
plane. The sensor node and sink node are part of the data
plane, which in most architectures is provided with the same
functionalities, but here few differences are discussed below.
The controller is the part of the control plane [22], and it
has different protocol stack layers which are described in the
subsequent section.

The SDNWISE defines the open-source controller to per-
form the routing decision based on the Dijkstra algorithm
among the IoT nodes. These IoT nodes collaborate with con-
troller via sink node or IoT network gateway/IoT controller.
The WSN is based on the SDNWISE tool, which supports
6LowPAN protocol for low power devices, so sensors can
communicate with IPv6 devices that are used in IoT network
environments such as smart home, smart city, etc. [23].

1) CONTROL PLANE
The control-plane’s sub layers are listed as followings,

« Application. The network applications are running on
the top SDNWISE controller and use its API to provide
the network services.

o Controller. The control layer builds the control logic.
It also defines the network policies that are implemented
by IoT nodes.

o WISE-Visor. It contains the topology management
layer, which is used to provide the abstraction of network
resources.

o Adaptation. The Adaptation layer plays a mediator
between the controller and the IoT network. Its major
functionalities include formatting messages such as
6LowPAN into IEEE 802.15.4 and vise-versa to support
IPv6 communication to understand both the sensor and
controller easily.

2) DATA PLANE
The data-plane’s sub layers are listed as followings,
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« Application. The applications are running on IoT nodes
that provide services to the IoT node in the SD-IoT
network.

o Topology Discovery (TD). TD can gather the local
information of nodes in the network and controls their
behavior.

o In-Network Packet Processing (INPP). INPP is
responsible for data aggregation or in-network process-
ing operations.

o Forwarding (FWD). The forwarding layer includes
an IEEE 802.15.4 transceiver and a micro-control unit
(MCU), which manages all incoming packets.

« Adaptation Layer. An adaptation layer accommodates
IPv6 packets into IEEE 802.15.4 frames. 6LoWPAN
is mostly leveraged in embedded devices which are
used in home and building automation or health-care
automation [23].

o MAC. This Media Access Control layer supports IEEE
802.15.4 [24] standard to enable IPV6 6LowPAN com-
munication with the IEEE help 802.15.4 frame. It is
designed for low power, low-cost implementation, and
low complexity features to support short-range commu-
nication for the application, which requires low power
transmission.

o PHY. This layer supports band 868/915 MHz and
2.4 GHz low power for short-range communication. The
sensor nodes operate with low power. To maximize their
residual power is one of the significant challenges of this
layer.

Ill. RELATED WORK AND EXISTING FRAMEWORKS

SDN based IoT security framework proposes security against
DoS attacks in IoT networks. The IoT network is divided
into three different segments; each segment has sensor nodes,
mobile nodes, and smart objects. Segments fulfill the SDN
requirement with OpenFlow capable and controller. SDN
controller controls all traffic and also authenticates the
devices within the segments. All controllers of a particular
segment exchange their security rules so that only authorized
nodes can communicate within the segment and even with
other segments. Each node sends the request to the local con-
troller, which forwards the destination gateway controller’s
request to check the requested node’s flow. If it knows the
node’s destination address, then two different segments’ end-
point devices communicate with the other [25].

The study [26] has discussed different issues and chal-
lenges in SDN based IoT network. Security is one of the
significant problems in the IoT network, due to its spreading
nature in the open space. Statistics regarding the network
are logged, and then different applications are activated to
detect the suspected malicious flows. SDN provides the
flexibility to develop the application, which has been used
to inspect the traffic, detect anomalies in the IoT network,
and handle the DDoS attack. Software-Defined Internet
of Things based framework can be used for DDoS attack
detection and mitigation in IoT network with heterogeneous
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vulnerable devices [27]. The framework consists of a pool
of controller, SD-IoT switches with integrated IoT gateway,
and IoT devices. The DDoS attack detection and mitigation
algorithm use cosine similarity of the vectors of packet-in rate
and the threshold values to detect and mitigate the attack.
According to their results, the algorithm quickly finds the
attacking device in the IoT network.

Bull et al. [28] propose SDN gateway to monitor the traf-
fic, which originates from and to IoT devices; the gateway
detects anomalous traffic behavior and performs the appropri-
ate response. It provides flow-based security to attack, which
is based on TCP and IMCP flood. The attack detection per-
formance of the gateway depends upon the number of flows
installed per second; it can successfully detect and perform
an action such as blocking, forwarding or apply QoS, which
depends upon the flow. Luo ef al. [29] develop honeypots to
detect the DDoS attack in IoT. These honeypots are based on
MTD (Moving Targeted Defense) architecture using SDN to
mimic [oT devices and luring attackers and malware. In this
approach, network resources or assets hide from a scanner
via MTD and SDN-based honeypot to protect against DDoS
attacks in IoT.

Ravi and Mercy Shalinie [30] presented LEDEM security
solution that detects the DDoS attack in IoT network via
SDN-Cloud architecture. Experiments were conducted on
the testbed and emulated topology, and the result has been
compared with the state-of-art solutions. LEDEM uses a
supervised machine learning algorithm to detect and mitigate
the DDoS attack with an improved accuracy rate of 96.28%
in detecting DDoS attack. Silveira et al. [31] has proposed
the Smart Detection-IoT module that uses Machine Learning
techniques to classify the network traffic concerning SDN to
IoT controller. The experiment was conducted on an emulated
platform with an actual and well-known dataset. Attack (DR)
detection rate and PREC were higher than 96% with False
Alarm Rate less than 6%. Yang et al. [32] propose SDN-based
IoT gateways that detect and mitigate DDoS attacks at the
edge of the network. The gateway consists of three modules:
Learning Module, Detection Module, and Flow Manage-
ment Module. The Learning Module trains the classification
algorithm of the machine learning based on collected flow’s
statistics of the network. The detection module classifies the
malicious flows and notifies its source address for the further
blocking action, which is performed by the Flow Manage-
ment Module through defined filtering rules.

Flow-based SDN gateway detects the DDoS attack, which
is based on a network traffic statistics analysis mechanism.
Different detection methods are based on self-organizing
maps, which are used to detects malicious traffic flows.
Moreover, the quantity of flow can also be used in the
detection method. The authors in [28], proposes an IoT
gateway that acts as both an SDN switch and an inte-
grated controller to analyses the traffic patterns with respect
to its corresponding flows. After detecting the malicious
flows, it executes the mitigation action against the malicious
flow.
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The study [33] conducted a state-of-the-art survey for
techniques and methods used for Intrusion Detection Sys-
tems (IDS) proposed for the IoT. The research by Mustapha
and Alghamdi [34] addresses the security issues in the form of
a DDoS attack in the IoT network. [oT devices are low pow-
ered and low processing, so they are vulnerable to security
issues like authentication and authorization. DDoS attacks are
also classified based on their relevant solution. This article
has highlighted the previous answer to prevent DDoS attacks
in IoT and discusses one of the reliable solutions based on
SDN and Network Functions Virtualization (NFV). The main
benefits of the SDN programmable network are to provide
better traffic analysis to detect a DDoS attack earlier as it
happens.

The DDoS attack detects through a backtracking algorithm
to find the real source, but it increases the response time [35],
[36]. The DDoS attack detection, prevention, and mitigation
approaches are directly deployed on IoT networks, but these
strategies consume many [oT resources and might disable the
IoT network during huge DDoS attacks [35]. The rule-based
approaches extract the features of different DDoS and send
these features at the flow table to avoid DDoS attacks.
Rule-based approaches’ main benefit is a high accuracy, but
the disadvantage is that the features are re-extracted whenever
a new type of attack is found [37].

Cui et al. [38] proposed an attack detection and mitiga-
tion mechanism based on inspired cognitive computing with
source and destination IP address entropy values. It takes
these entropy values as features vectors and uses the SVM
algorithm to obtain DDoS attack detection mode. Mousavi
and Mousavi [39] proposed an entropy-based DDoS attack
detection algorithm, which calculates the entropy of destina-
tion IP address from incoming packets, threshold, and sam-
pling time through SDN controller. The algorithm detects a
DDoS attack if the entropy value is greater than the threshold
value, but it cannot locate the specific IP address. In the
machine learning approach, the machine is trained to learn
malicious traffic flows and get the best learning model.
According to it, the learning model can efficiently detect the
DDoS attack, but it cannot detect the zero-day attack.

Yin et al. [27] proposed the SD-IoT framework, which
detects DDoS attack based on cosine similarity of the
vectors of the packet-in message rate at the boundary of
SD-IoT switches. The algorithm uses threshold values of
cosine similarity to decide about DDoS attack and find
the DDoS attacker. But this algorithm only works on
packet-in messages, and our proposed C-DAD framework
used different network parameters to decide about DDoS
attack.

Dehkordi et al. [40] proposed a DDoS attack detection
mechanism based on machine learning and the statistical
method. The detection method consists of the collector,
entropy, and classification. The dynamic threshold with a
statistical entropy-based method produces the best result
with high FPR (False Positive Rate). To overcome this
issue, the classification-based algorithms are run to get more
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accurate results. The accuracy of this method is higher than
other similar methods, but the attacks are detected only by
one controller, whereas, our work support to add multiple IoT
controllers to connect different IoT networks.

Galeano-Brajones et al. [41] proposes an entropy-based
DDoS detection and mitigation method using a stateful SDN
data plan. The mechanism is based on Open State, in which
Openflow switch is extended with monitoring capability to
monitor and analyze the network information independently
from the controller. The monitoring information gathered
from flows and state tables at the data plan. The entropy
algorithm runs on monitoring information to detect malicious
flow. The result demonstrates that the main advantage of
using the correlation of entropy values of different features
quickly detects the DDoS attack and mitigates with the help
of SDN to remove the flow entry from the switch. There is
an issue in this work. Whenever the switch windows size
increases and becomes large, it does not respond to the con-
troller about the states.

Ujjan et al. [42] uses sFlow and adaptive polling sam-
ple approaches with the help of deep learning to detect the
DDoS attack in SDN. This proposed system is based on
Stacked Auto Encoders (SAE), deep neural network model
using packet-based and time-based sampling. sFlow tech-
niques overcome the network flow’s windows size issue
and reduce processing and network overhead of switches.
The sFlow collector gathers the sampled packets and then
rebuilds the new flow pattern and updates the packet
counter for each flow entry. The main aim of sFlow is to
reduce the flow table entry and forward the flow statis-
tics to the detection model. The adaptive polling sam-
ple approach uses proportional linear prediction (PLP) and
weighted linear prediction (WLP) to estimate the next
flow. Initially, they implement the low pass filter to pre-
dict the next flow rate. This work demonstrates higher
detection accuracy with 95% TPF and less than 4% FPR
within sFlow based implementation as compared to adaptive
polling.

Shohani and Mostafavi [43] proposed the DDoS attack
detection method which overcomes the drawback of entropy
and PCA method. The method detects the DDoS attack in
three phases; fetching, estimation and detection. In the first
phase, network statistical information fetched of receiving
packets and table misses for each switch, and secondly,
the dynamic threshold line equation is estimated through
EWMA method, and lastly, the table misses are compared to
the estimated value of the threshold to detect the DDoS attack.
The model detects the DDoS attacks which are not detectable
through entropy method, but this model is not suitable for
SD-IoT traffic, it only detects the attack for traditional SDN
based network.

Wani and Revathi [44] proposes SD-IoT- based secu-
rity mechanism for DDoS detection in SD-IoT network.
This research uses MCOD and MLP approaches to iden-
tify the abnormal behavior of IoT networks. It depends on
SDNWISE that best to provide a stateful solution for IoT.
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TABLE 1. Literature review summary with identified research gaps.

S. No é:;l:or Detection method Platform Deployment Description of gaps
Entrony Machine The attacks are detected only by one controller. Whereas, our work
1 Dehkordi et al. 2020 [40] Py M SDN Controller supports the addition of multiple IoT controllers to connect different
~Learning
ToT networks.
. Whenever the switch windows size increases and become large,
2 Brajones et.al 2020 [41] Entropy SD-IoT Both it does not respond to the controller about the states.
This work demonstrates higher detection accuracy with 95% TPF
3 Ujjan et. al 2020 [42] Deep Learning SDN Controller and less than 4% FPR within sFlow based implementation as
compared to adaptive polling.
. EWMA This model is not suitable for SD-IoT traffic, it only detects the
4 Mostafavi et.al 2020 [43] Linear Regression SDN Controller attack for traditional SDN based network
This research uses machine learning techniques to train the known
5 Wani et. al 2020 [44] MCOD SD-IoT Controller features regarding malicious flow but fails to detect thee zero-day
attack.
. Inspired Cognitive It takes the entropy values as features vectors and uses the
6 Cui etal. 2019 [38] Computing(SVM) SDN Controller SVM algorithm to obtain DDoS attack detection mode.
. The algorithm detects a DDoS attack if the entropy~value is greater
7 Mousavi et. al. 2015 [39] Entropy SDN Controller than the threshold value, but it cannot locate the specific IP address.
This algorithm only works on packet-in messages, but our proposed
8 Yin et al. 2018 [27] Cosine Similarity SD-IoT Controller C-DAD framework used different network parameters to decide
about the DDoS attack.
. Traffic Pattern SDN-IoT Limited resources at data plan is also a major challenge to handle
0 Bull et. al. 2016 [28] Analysis Gateway Both heavy DDoS traffic.
SDN-Based This research only focused on scanning based attack. The attacker
10 Luo et. al. 2019 [29] H SDN Controller may infect the IoT network to generates huge DDoS traffic to jam
oneypots . . .
the IoT network without using a scanning approach.
Machine Learnin LEDEM uses supervised learning to detect the DDoS, the model
11 Ravi et. al. 2020 [30] ELM & SDN Controller detects the attack according to training. It also fails to detect the
zero-day attacks.
12 Augusto et. al. 2020 [31] Machine Learning SD-IoT Controller This model works only for know attack’s features.
Machine Learning . The detection module classifies the malicious flows with the
13 Yang et. al. 2019 [32] Edge Computing SDN OF Switches trained algorithm, while it was unable to detect the untrained attack.

It uses MLP and MCOD for DDoS detection. This research
uses machine learning techniques to train the known features
regarding malicious flow, but fails to detect the zero-day
attack.

The stateful SD-IoT network has issues, whenever Open-
Flow switch window size increases and becomes full, it was
not able to inform the controller about the states [41]. In some
approaches, only a single controller is detecting the DDoS
attack, that may fail to receive a large number of unknown
flow entries [40]. Our proposed system resolves these issues
with the support of the multiple IoT controller. The rule-based
approaches have high accuracy, but its features re-extracted,
whenever they find a new attack [37].

In some approaches, detection strategies fail the IoT net-
work due to the huge amount of DDoS traffic, hence it
consumes the IoT network resources and disables the net-
work [35]. Statistical methods based on entropy techniques
that use the threshold values of the network informa-
tion with uncertainty, do not have detailed information
about the malicious flow. For example, with dynamic
threshold value has high FPR (False Positive Rate) [40],
this issue is further resolved through classification, and
as another example in which entropy of destination IP
address based on threshold values [39] also does not locate
specific nodes.

In the last of this section, we are going to summarize
different DDoS attack detection approaches with their fea-
tures, gaps and also summarize where these approaches fail
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as shown in Table 1. Our framework is efficiently overcom-
ing the gaps identified during this research. The proposed
framework is an optimal solution because it uses different
features of SD-IoT network traffic as counter values and
deeply analyzes these features for DDoS attack detection.

IV. PROPOSED SD-loT BASED FRAMEWORK

This research’s main objective is to propose a framework
that detects different threats, attacks, and anomalies, which
are critical problems for IoT. The framework is based on
SD-IoT to propose novel security solutions. The framework
consists of SDN based security controller and IoT controller,
which are located in an IoT gateway that communicates
with IoT nodes. IoT network uses cluster-based topology,
where each head node in a cluster manages a cluster of IoT
devices. Figure 3 shows the proposed SD-IoT-based attack
detection framework. The proposed framework is divided
into layers, which is described in detail in the following
subsections.

A. APPLICATION LAYER

In the SDN paradigm, this top layer uses the northbound
APIs. Different applications are developed to run at the top
of the controller, such as network management applications,
security applications, and other network services provided to
the client/organization. This research proposes two applica-
tions to detect and mitigate the DDoS attack in the SD-IoT
network.
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1) COUNTER-BASED DDoS ATTACK DETECTION
APPLICATION

Counter-based detection application depends on the counter
values to measure the DDoS attack. This module is further
divided into two sub-modules to monitor and analyze the
DDoS attack in the SD-IoT network. C-DAD consists of dif-
ferent algorithms that are based on counter variables to help in
detection. C-DAD is further elaborated in the counter-based
attack detection module.

2) ATTACK MITIGATION MODULE/APPLICATION

The attack mitigation module gets the reported malicious
flow from the counter-based detection module and performs
the countermeasure actions.

B. CONTROL LAYER

In the SDN paradigm, control layer enables router functional-
ities at the central point, and it is dynamically programmable.
This layer’s main function is to control and manage the IoT
network through dynamic, programmable, and customized
fashion. This layer consists of two components, i.e., the
SDNWISE controller and IoT controller.

1) SDNWISE CONTROLLER

SDN controller is the brain of SDN network. It defines poli-
cies and manages flow control of SDN based IoT network.
In this research, we use the SDNWISE controller for the
Internet of Things devices, which needs low power for their
functionality. Moreover, the controller is the central point
where the whole network is managed and controlled, such
as network policy, flow table control. It exposes the API
that enables the developer to write an application for the IoT
network.

2) loT CONTROLLER

IoT controller is the mediator between the SD-IoT network
and the SDNWISE controller. It receives the SDNWISE
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controller’s traffic and converts it into an appropriate format,
which is understandable to the SD-IoT network. It also per-
forms the same action vice-versa. In this research, we use only
one type of network, but the IoT controller plays a significant
role in extending work on the heterogeneous network. In a
heterogeneous network, and IoT controller has added, which
will operate according to that particular type of network.
Multiple IoT networks can be connected with SDNWISE
by just adding an IoT controller. This research focuses on
one type of network just because we wanted to narrow down
our problem with defined scope. In this article C-DAD only
works on IEEE 802.11.4 protocol, but for future research
direction, we will be working with multiple IoT networks in
heterogeneous environments.

C. INFRASTRUCTURE LAYER

This layer is used only to forward the packets and is also
called a data forwarding plane. According to SDN paradigms,
this layer includes forwarding devices such as OpenFlow
switches, which are not intelligent and hence forward the
traffic according to the flow table entry. Sensor OpenFlow
Switch (SOFS) acts as an OpenFlow switch to forward the
traffic between IoT nodes in this research. There two types of
devices are used in this layer, like SOFS and IoT nodes.

1) SENSOR OPENFLOW SWITCH

Sensor OpenFlow Switch is customized as an OpenFlow-
based switch, which forwards the IoT traffic. Mostly SOFS
acts as a forwarding device and less intelligent. In this
research, we programmed it to report traffic load to the con-
troller. It also triggered an alert message to the attack receiver
component in the SDNWISE controller via IoT gateway,
when traffic load reaches the threshold value. It also reset
the threshold counter upon receiving the message from attack
receiver components through the SDN controller, since the
reported traffic load was not malicious.

2) IoT NODES

These are tiny Low powered-devices, which are based on the
6LowPAN protocol to communicate with each other. These
devices spread in open space. Therefore, they can be easily
compromised by an attacker. In this research, the attacker
compromises IoT devices and generates the flooded traffic
to perform the DDoS attack in the IoT network.

D. COUNTER BASED ATTACK DETECTION APPLICATION

The Counter based Attack Detection (C-DAD) uses the
Counter values based on the IoT network’s current status
and its appropriate flows to detect malicious activity in the
SD-IoT network. C-DAD detects the DDoS or any anoma-
lies in the SD-IoT network, which depends on the counter
algorithm with different parameters to measure IoT traffic
statistics. Furthermore, it is divided into four sub-modules,
which interact with others to perform the attack detection
operation. The malicious flow will report to the mitigation
module. The Counter-based Attack Detection Module is
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further divided into two sub-modules; Flow Monitor and
Flow Analyzer, as shown in Figure. 4. The overall steps
performed in C-DAD are shown in Algorithm 1.

1) FLOW MONITOR

The Flow Monitor consists of different counter-based
algorithms; which are running to monitor the network sta-
tus. These algorithms collect the information from the net-
work log buffer for monitoring the network. It will monitor
real-time data flows. Whenever any malicious activity occurs,
it will collect the counter information of different algorithms
and forward it to the flow analyzer component. It will detect
malicious activity using the current status of network devices
and their flows. Various algorithms are running in the module,
getting different IoT network statistics like node traffic, SOFS
Traffic, and IoT network bandwidth to monitor anomalies in
the SD IoT network.

This sub-module based on a counter-based algorithm is
used to monitor the IoT network status. If it finds any mali-
cious behavior in the network, it runs the C-DAD algorithm
to detect suspicious activity.

o Flow Counter. It counts the number of flow entries
to monitor the Newflow attack, which occurs due to
spoofed addresses of flows. This algorithm detects the
Newflow attack, in which the attacker tries to spoof the
source IP address of the IoT network and dynamically
change that address so that it will cause the overflow in
the flow table.

« Packet Payload Counter. It detects the attacks in which
an attacker injects the malicious scripts in the packet’s
payload. These scripts perform the illegal activities at
the receiving end. Also, this algorithm counts packets
with the same size of payloads. It monitors counter
value to reach the threshold. Whenever it’s value gets
the threshold value, it will generate an alert to the flow
Analyzer. The flow Analyzer will further analyze the
SD-IoT network with respect to other algorithms. If it
found anomalies in the result, it will notify to Attack
Mitigation module.

o Node-Based Packet Counter. In the IoT network,
each node receives the packet in the normal fashion.
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Algorithm 1 C-DAD Counter-Based DDoS Attack Detection

Step 1: Test the Network status call AttackTest
Step 2: set packets =pkl=1000
set payload =pl=1000*Nodes
set SDFS1=3
set FlowlFl = SDNwISERLSyAX
set DDOS limit DDOSI=([fl and pl]
Step 3: Run Detection Module
Step 3.1: Compute pk=computepk() GOTO Step 5§
Step 3.2: Compute p=computep() GOTO Step 6
Step 3.3: Compute flow=computeflow() GOTO Step 7
Step 3.4: Compute SDFS=computeSDFS() GOTO
Step 8
Step 3.5: Compute DDOS=computeDDOS() GOTO
Step 9
Step 4: Check The DDoS Attack
Step 4.1: If (pk>pkl) OR (p>pl) OR
(SDFS > SDFSI) OR (F>FI) OR (DDOS>DDOSI)
Step 4.2: Print Message Network is compromised
Step 4.3: Else-If set (attack==false)?true
Step 5: computepk():for p in DataPackets:
Packets[p.source]++
Packets[p.destination]++
return max(Packets)
Step 6: computep():for p in NetworkPackets:
(p-.type = SDNwISEpATA)counter + +
return counter
Step 7: computeflow():
Step 8: computeSDFS():
Step 9: computeDDOS():for s in NetworkPackets.title:
(s.contains(‘DDoS’)) ddos++

It monitors the packet status of each node to detect
any anomaly in the network. This algorithm counts the
sending and receiving packets status of each node to
determine any network threat. If found, it will report to
Flow Analyzer. The first research experiment is based
on the number of packets and used as counter values for
the Packet-based threshold value, which is considered a
threshold value and will be considered in Example 1’s
experiments.

« Node Transmission/Receiving Power. It monitors the
power ratio of each node in the IoT network. Power
is one of the main essential features of any IoT device
because sometimes these devices are deployed in the war
zone or earthquake or any other surveillance application.
The attacker tries to attack these nodes to consume the
powers and target bursty traffic to consume power. The
algorithm also detects any anomaly in the power of
nodes that is an alarming condition for the network so
that it will inform to Flow Analyzer for further action.

o SOFS Traffic Load Counter. This algorithm deter-
mines the traffic load on the IoT network. It also mon-
itors in/out traffic load on sensor OpenFlow switch
per second, which is beneficial for the network’s
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real-time workload. It also provides traffic data that
will help calculate the throughput, through which it
becomes easy to determine the status of the IoT network.
It will report to Flow Analyzer if it finds any anomaly
in the SD-IoT network’s traffic flows. This algorithm
also calculates the volume of traffic transmit received in
IoT Network, through which it is easy to detect DDoS
attacks. The second and third examples are conducted
with bandwidth parameters used as threshold values
such as 0.5K bytes per second and 1K bytes per second.

2) FLOW ANALYZER

Flow Analyzer will run the algorithm on that flow to fur-
ther analyze the data flow. Whenever it receives an alert
from the flow monitoring module, it will gather the counter
values from other algorithms to analyze their values and
decides whether the network is under attack or not. After
combining all results, it will decide to identify the malicious
traffic. If malicious traffic is found, then it will notify to
Mitigation module, which will perform appropriate action
to countermeasure the attack. Whenever any alert regarding
suspicious flow is received, it will run the C-DAD and get
the result, which shows that the IoT network is running
safely without any malicious activity. It will then inform
back to IoT Network via Attack Alert Receiver to reset
the Threshold Counter. Flow Analyzer runs the (C-DAD)
Counter-based DDoS Attack Detection Module, which con-
sists of different sub-modules in the algorithm as can be seen
in Algorithm 1 that works together to detect the attack.

3) ATTACK ALERT RECEIVER

It receives the alert message regarding suspicious traffic from
the SD-IoT network via the IoT controller to inform the Flow
Monitor. Flow Analyzer also sends the message to it. If no
attack is found in the reported flows, it notifies the Flow
monitor and threshold counter of the reported algorithm will
be reset.

4) NETWORK LOG

SD-IoT network counter information is stored in the net-
work log buffer. Each node of the SD-IoT network and
sensor OpenFlow switch forward the network counter infor-
mation in the network stream to write network log buffer
at SDNWISE controller via IoT controller. Flow Monitor’s
components are fetching the network counter information
to monitor any malicious flow in the SD-IoT network. The
flow monitor receives an attack alert from sensor OpenFlow
switch via Attack Alert Receiver. The Flow Analyzer also
gets counter values of algorithms from the network log buffer
via Flow Monitor to detect the malicious traffic in the SD-IoT
Network.

E. SENSOR OPENFLOW SWITCH AND IoT NODE
IoT nodes are scattered in clusters, and each cluster has a
head node with sufficient resources to communicate with IoT
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FIGURE 5. SD-loT-based nodes and sensor Openflow switch.

controller. IoT node, with sufficient resources, will imple-
ment SDN techniques and play the role of OpenFlow switch.

1) SENSOR OPENFLOW SWITCH (SOFS)

SD-IoT network support customized sensor OpenFlow
switch and forwards the IoT traffic based on rule and
policy-related towards appropriate flow, which is received
from the SDNWISE controller.

SOFS collects the statistics about IoT network traffic and
forwards it to the SDNWISE controller, who writes the
counter information regarding the SD-IoT network in the
network log buffer. Two algorithms are running on the SOFS
to help regarding malicious flow in the SD-IoT network,
as depicted in Figure. 5.

o Traffic Load Forwarder. The volume of traffic load
on the sensor OpenFlow switch describes the traffic In
and Out to SOFS, and it displays the average traffic
throughput. These values are forwarded to the C-DAD
algorithm for further traffic analysis.

o Threshold Counter. This algorithm monitors the IoT
network traffic with respect to threshold values. If the
threshold counter reaches the threshold value, it gen-
erates an alert to the SDNWISE controller via the IoT
controller for further action.

2) loT NODES

IoT nodes will generate a different type of traffic in the
SD-IoT network. In this simulation, we generate two types of
traffic with the appropriate type of algorithm, such as normal
traffic, generated by IoT nodes relevant to the particular
application deployed. A different kind of traffic is generated
through malicious IoT nodes to simulate the DDoS attack
detection module with the help of SDN.

F. ATTACK MITIGATION MODULE

C-DAD analyzes the IoT traffic and detects DDoS attacks,
anomalies, and threats. This module performs the counter-
measure action on malicious flow, which is reported by C-
DAD. This module has sub-modules, which will coordinate
with each other to mitigate attacks. IoT Attacks Mitigation
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Module will exploit SDN security features to mitigate DDOS
and intrusion in [oT. The below-given sub-modules are used
during the attack mitigation process.

1) MALICIOUS FLOW ENTRY
In this sub-module, the malicious flow will be added to the
SD-IoT network.

2) MALICIOUS NODE REMOVE

SDNWISE controller will remove the malicious node from
the SD-IoT network, which generates malicious traffic using
network graphic APL

V. EXPERIMENT EVALUATION AND RESULTS

This section will briefly describe the experiments performed
to detect DDoS attacks in the SD-IoT network and ana-
lyze the different parameters’ results. This research ana-
lyzes the DDoS detection method based on Counter-based
attack detection application by using the SDN paradigm. The
simulation-based experiments are conducted on SDNWISE
controller [21], [45] and Cooja simulator [46], [47], with the
help of the Contiki operating system. The hardware config-
urations of the experimental environment for evaluating the
C-DAD performance are as follows: Ubuntu 16.04 LTS Core
i7 6850K @ 3.60 Ghz processor, 16 GB RAM with GPU
supported machine. The experiments are simulated by using
a Cooja simulator with the help of the Contiki OS. Cooja
simulator helps to create a realistic virtual SD-IoT network,
which consists SDNWISE controller, SOFS and IoT nodes.

A. SDNWISE-BASED IoT NETWORK SETUP

The experiments are conducted with different attacking nodes
concerning parameters such as burst, packet payload, and oth-
ers to launch the DDoS attack in the SD-IoT network. Firstly,
we generate malicious traffic with different frequencies and
with varying sizes of the packet’s payload, along with the
normal traffic. A basic SD-IoT network topology is shown
in Figure. 6. The traffic status is being monitored; whenever
it exceeds the threshold value, the attack alert triggers the
alert to the controller. The C-DAD will run the Flow Monitor
and Flow Analyzer sub-modules based on the counter-based
detection algorithm to detect a DDoS attack.

We conducted three experiments with varying parameter
such as IoT nodes, attack nodes, packet payload, packet burst,
and others as shown in Table 2. In each experiment, these
same parameters are used with different topology.

B. EXPERIMENTAL SETUP

Each experiment has different parameters, so we use one
parameter as a variable and others as constant to find out
the other parameters. In this case, we experimented with two
different case studies. Each case study has evaluated three
parameters, one by one, with various experiments to find
other attributes. Our experiments are based on variations of
the following attributes.
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FIGURE 6. SD-loT network affected with DDoS.

o Number of IoT Nodes or Normal Nodes.

o Number of Attack Nodes

« Packet Payload.

o Packet Frequency (Normal and Burst Mode).

All the SD-IoT network parameters will vary for a particu-

lar network environment, just like a smart home network has
different values than a smart city network. It also depends
on the network size, traffic type, and nature of the system’s
applications.

« Total Data Packet. Total number of data packets cap-
tured in IoT network.

« Malicious Packet. Malicious packet detected by con-
troller.

o Normal Packet. Normal IoT network traffic.

o SDNWISE Controller Workload (KB/Sec). Number
of traffic processed by controller during attack detection.

o SD-IoT Network Throughput (%). The amount of nor-
mal traffic processed by SOFS represents the usage of
network traffic of an IoT network in percentage. When-
ever an loT network is under attack and without attack,
throughput measured is a hundred percent.

« CPU Utilization (%). Attack detection application uses
CPU during attack detection.

o Allocated Memory(MBytes). Total Memory allocated
to attack detection application.

« Memory Utilization (MB).The memory used by appli-
cation.

o Attack Detection Time (Seconds). Time to detect
the DDoS attack in IoT network with the help of
counter-based detection module which is running at the
top of SDNWISE controller.

1) EXPERIMENTS THRESHOLD VALUE

In this research, C-DAD algorithms decides to run
the attack detection algorithm in a specific condition.
These conditions are based on the number of suspected
packet received and the workload of the SD-IoT network
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TABLE 2. Experiment No.1.1 Variation in the number of 10T nodes.

EXP IoT Packet Burst Mode | Attack Payload Flow SDNWISE CPU Utiliza- | Allocated Memory Attack Total Time
NO Nodes Payload | Frequency Nodes Counter Table Controller tion (%) Memory Utilization Detection (Seconds)
(bytes) (Packet/Sec) Overflow ‘Workload (MB) Time
KB/Sec (Seconds)

1 5 30 0 0 0 0 1.4609 3 139 29 0 2

2 10 30 0 0 0 0 2.0224 4 170 38 0 2

3 15 30 0 0 0 0 2.373 5 120 70 0 2

4 20 30 0 0 0 0 24218 7 218 162 0 2

5 30 30 0 0 0 0 2.623 9 304 218 0 2

exceeds normal behavior. After the SD-IoT network
reached a selected particular threshold value, the SOFS
generates the alert and runs the C-DAD algorithm to
detect DDoS attacks. For this study, there are three
experiments conducted in this regard. Experiment 1 is
based on the packet-based threshold value, and Experi-
ment 2 and 3 are based on bandwidth values.

o Packet-based. This threshold value is calculated with
different experiments to find an appropriate threshold
value. This threshold value is used in a bursty SD-IoT
network. The network received one thousand suspected
packets that might have a similar payload size. One node
received many packets; whenever these conditions meet
in the SD-IoT network, the SDNWISE controller runs
the C-DAD algorithm.

« Bandwidth-based. The experiments are conducted with
a bandwidth-based threshold, in which the SDNWISE
controller runs the C-DAD algorithm when the SD-IoT
network bandwidth reached at 0.5 KBytes (Experiment
2) or 1 Kbytes/sec (Experiment 3).

These threshold values are decided very carefully. We run
the SD-IoT network with maximum nodes and investigates
the minimum and maximum bounds of both packet-based
and bandwidth-based threshold values. The minimum value
threshold might overhead on the controller every time we run
the algorithm for legitimate traffic. If we set the threshold
with maximum value, we may run the C-DAD algorithm
lately, and the attack might be earlier before the counter
reaches the threshold value.

C. EXPERIMENT NO. 1

In this scenario, the experiment is conducted on the SD-IoT
network infrastructure with bursty traffic behavior. In this
network, the IoT node transmits one message per second.
The worst-case message received at a single node in the
network with thirty nodes is 29 messages. This experiment is
conducted based on a smart system-based scenario in which
network traffic is generated in bursty mode from the smart
objects. Meanwhile, the SD-IoT network mostly has tiny
devices with very low traffic, but these devices are very
large in numbers, so attackers can easily target such net-
works. In this bursty behavior-based network, we assume the
threshold value of SD-Network. If it receives one thousand
suspected packets, it generates an alert to check network
status and run the C-DAD algorithm. In this scenario, five
different experiments are conducted for each parameter like
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attack nodes, burst mode, packet payload size, normal net-
work traffic, or without attack. Each parameter is separately
discussed in the following subsections.

1) NORMAL NODES

These experiments are conducted with different IoT nodes in
numbers without malicious traffic; so, IoT network is having
full respective throughput with IoT nodes. CPU Utilization
increases by 1% with an increment of IoT node parameters
and increases memory utilization with respect to IoT nodes,
as shown in Table 2.

2) ATTACK NODES

In this scenario, the experiment is conducted with the dif-
ferent variable number of attack nodes with other fixed
parameters such as burst frequency, packet payload, and IoT
nodes. This experiment has used the number of packets as
a threshold value instead of bandwidth or SDNWISE con-
troller workload. The packet-based threshold experiment with
a minimum burst of 510 packets/sec results in a high amount
of traffic in the SD-IoT network compared to the other two
experiments based on the bandwidth-based threshold. The
attack nodes parameter plays a significant impact on IoT
Network throughput compared to the other two experiments,
i.e., 2 and 3. The experiment is conducted with the four attack
nodes. The SD-IoT network throughput decreases approxi-
mately to 75%, and a 92% decrease is observed with eight
attack nodes, as shown in Table 3 and Figure. 7(c). We know
that this experiment is conducted with a four-time large
(510 packet per second) value of Burst Frequency towards
the other two experiments, 120 Packet per second. That’s
why CPU utilization has been increased than Experiment
2 and 3. But, in the throughput-based threshold value, CPU
utilization decreased from 10 to 8, and in the Packet-based
threshold value, the CPU Utilization has increased on a few
points. It has been decreased later, but it is still larger than the
highest value of CPU Utilization in experiments 2 and 3. The
attack detection time decreased from the high value to low
with respective attack nodes. These values increase slightly
because the burst frequency values are greater than with one
shown in experiment 3. But there is no significant impact on
packet threshold value using attack nodes.

3) BURST MODE (PACKET/SEC)
The experiments are conducted with the burst frequency
parameter as a variable and other constant parameters such
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TABLE 3. Experiment No.1.2 Variation in the number of the attack nodes.

EXP ToT Packet Brust Attack Total Data | Malicious Normal Traf- | SD-IoT SDNWISE CPU Utiliza- | Allocated Memory Attack
NO Nodes Payload | Packet/Sec) Nodes Packet Traffic fic Network Controller tion (%) Memory Utilization Detection
(bytes) Throughput Workload (MB) Time (Second)
KB/Sec

1 30 30 510 4 454 334 120 26.43 10.172852 15 379 230 140.826

2 30 30 510 8 364 334 30 8.24 11.103516 18 419 332 51.969

3 30 30 510 12 349 334 15 4.30 6.4746094 21 461 347 36.662

4 30 30 510 15 343 334 9 2.62 5.7421875 14 505 468 30.648

5 30 30 510 20 339 334 5 1.47 8.62793 16 501 330 26.441

TABLE 4. Experiment No.1.3 Variation in the burst frequency of the attack nodes.

EXP ToT Packet Burst Attack Total Malicious Normal SD-IoT SDNWISE CPU Allocated Memory Attack

NO Nodes Payload | Frequency Nodes Packet Packet PKT Network Controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time

put(%) KB/Sec (Seconds)

1 30 30 510 10 352 334 18 5.11 6.430664 14 377 237 41.723

2 30 30 1050 10 344 334 10 291 7.3095703 15 305 229 23.118

3 30 30 1500 10 340 334 6 1.76 5.2001953 18 504 289 14.133

4 30 30 2100 10 340 334 6 1.76 5.5078125 14 378 217 12.466

5 30 30 3000 10 338 334 4 1.18 7.7490234 16 318 260 6.641

6 30 30 4050 10 337 334 3 0.89 9.008789 14 378 139 6.739

TABLE 5. Experiment No.1.4 Variation in the packet payload.

EXP ToT Packet Burst Attack Total Malicious Normal SD-IoT SDNWISE CPU Allocated Memory Attack

NO Nodes Payload | Frequency Nodes Packet Packet PKT Network Controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time

put(%) KB/Sec (Seconds)

1 30 30 510 15 343 334 9 2.62 7.5214844 20 380 253 30.424

2 30 37 510 15 343 333 10 2.92 9.789551 22 502 352 30.27

3 30 47 510 15 343 333 10 2.92 10.997559 21 507 457 30.363

4 30 67 510 15 343 333 10 2.92 19.85254 38 507 481 28.94

5 30 87 510 15 343 333 10 2.92 31.21289 40 502 492 28.659

as; attack nodes, packet payload, and IoT nodes. There is a
very high impact of burst Frequency parameter on SD-IoT
network throughput, which is considered higher than the
attack node parameter. The experiment with minimum burst
size decreases 95% of SD-IoT network throughput, and when
burst frequency is doubled than the previous value of the
SD-IoT network, the throughput decreases approximately
to 98%. Additional results are shown in Table 4 and the
SD-IoT network throughput Figure. 7(c). Moreover, the CPU
utilization has been increased mostly with the same ratio
in previous parameters’ attack nodes, a 1% increment each
time by changing burst size. But with the largest burst size,
the CPU utilization fluctuates high and low depending on the
flooding burst of packets received, so, it becomes high other-
wise low as shown in Table 4 as well as in the CPU Utilization
Figure. 7(a). Attack detection time increases compared to the
previous parameter attack node from 140 seconds, with four
attack nodes to 42 seconds with ten attack nodes. But when
we compare the same burst configuration with the same attack
node, no big difference is found. Meanwhile, the attack detec-
tion time decreases as Burst Frequency increases compared
to the increased ratio of attack nodes; Burst Frequency has
a high impact on attack detection time. Memory utilization
fluctuates high and low with respect to Burst Frequency.
If the flooding ratio of malicious traffic is high with normal
traffic, the algorithm might take high memory and on the
other hand, take low if the flooding ratio of malicious traffic
is low.

4) PACKET PAYLOAD
These experiments were conducted with the packet payload
variable as a parameter with other fixed parameters as defined
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above. We conducted experiments with five different packet
payloads, but there is no significant impact on the SD-IoT
network throughput and attack detection time. However,
the Packet Payload parameter has a significant impact on
CPU utilization and also on memory utilization. The CPU
utilization increased from 20 to 40 with different packet
payloads, which are very high compared to all experiments
conducted with a packet-based threshold and the two other
experiments based on traffic-based threshold values such as
throughput 0.5 and 1 KBytes per second. Another significant
impact of packet payload on the SDNWISE controller work-
load is that it increases the value as compared to previous
experiments with the respective example. Therefore, three
parameters were affected with Packet Payload, such as CPU,
Memory, and SDNWISE controller workload, as shown in
respective Figure. 7(a), (b), and (d) of each parameter along
with the results given in Table 5.

D. EXPERIMENT NO. 2

In this scenario, we conducted experiments that are based
on the smart home system. This experiment’s network traffic
model assumes that each node transmits one message per sec-
ond; in worse-case, each node receives (n-1) messages. In this
experiment, C-DAD behavior is based on bandwidth to detect
the DDoS attack; the threshold value is calculated according
to smart home network traffic with 30 nodes at the maximum
threshold value. The SOPFS generates the SDNWISE con-
troller’s alert if SD-IoT network traffic bandwidth is reached
at 0.5 KBytes/second. The controller runs the C-DAD algo-
rithms to check the network status and generates a message
about any anomalies in the SD-IoT network. This section
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FIGURE 7. Experiment 1 with packet-based threshold.

evaluates the results based on the experiment conducted with
0.5 Kbytes/sec threshold value and other parameters, as men-
tioned in the above experiment.

1) NORMAL NODES

The experiments were conducted in an SD-IoT network with
different numbers of IoT nodes having distinct topology.
In this scenario, only one IoT node or IoT node parameter
has been changed each time without attack traffic. CPU
and memory utilization has been increased with respect to
IoT nodes, and SDNWISE controller workload increased,
as shown in Table 6. There was no attack traffic; therefore,
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(d) EXP:1 SDNWISE controller workload

EXPERIMENT | Normal |Attack| Brust Mode Packet
(Modes) |Nodes|(Packet/Second) | Payload(Bytes)
1 5 4 1050 30
2 10 8 1500 37
3 15 12 2100 a7
4 20 15 3000 67
5 30 20 4050 87

(f) EXP:1 Experiment’s parameters values

the attack detection time was zero, and the network was with
100 percent throughput of IoT network traffic.

2) ATTACK NODES

The first experiment was performed with four attack nodes
and other constant parameters such as burst mode/frequency,
packet payload, and IoT nodes. We observed around 60%
SD-IoT network throughput, and out of that, 40 % through-
put was consumed by malicious traffic, whereas, the attack
was detected in 45 seconds, as shown in Figure. 8(c) and (e).
The other experiments are conducted by changing the attack
nodes, and in that scenario, we noticed that the SD-IoT
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TABLE 6. Experiment No.2.1 Variation in the number of 10T nodes.

EXP ToT Packet Burst Mode | Attack Total Malicious Normal IoT SDNWISE CPU Allocated Memory Attack
NO Nodes Payload | Frequency Nodes Packet Packet PKT Network controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time
put(%) KB/Sec (Seconds)
1 5 30 0 0 140 0 140 100.00 0.068359375 3 139 29 0
2 10 30 0 0 289 0 289 100.00 0.07128906 4 170 38 0
3 15 30 0 0 433 0 433 100.00 0.059570312 5 120 70 0
4 20 30 0 0 510 0 510 100.00 0.11230469 7 218 162 0
5 30 30 0 0 833 0 833 100.00 0.22753906 9 304 218 0
TABLE 7. Experiment No.2.2 Variation in the number of the attack nodes.
EXP TIoT Packet Burst Mode | Attack Total Malicious Normal IoT SDNWISE CPU Allocated Memory Attack
NO Nodes Payload | Frequency Nodes Packet Packet PKT Network controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time
put(%) KB/Sec (Seconds)
1 30 30 120 4 70 28 42 60 0.5546875 10 207 65 45
2 30 30 120 8 20 16 4 20 0.5126953 11 208 95 5
3 30 30 120 12 23 20 3 13.04347826 0.52734375 11 148 118 5
4 30 30 120 15 36 32 4 1111111111 0.57128906 11 209 145 9
5 30 30 120 20 30 28 2 6.666666667 | 0.5566406 11 206 133 8
TABLE 8. Experiment No.2.3 Burst frequency of the attack nodes.
EXP IoT Packet Burst Mode | Attack Total Malicious Normal SD-IoT SDNWISE CPU Allocated Memory Attack
NO Nodes Payload | Frequency Nodes Packet Packet PKT Network controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time
put(%) KB/Sec (Seconds)
1 30 30 120 10 89 60 29 32.58 0.5839844 10 204 59 40.925
2 30 30 240 10 11 8 3 27.27 0.5126953 12 148 75 0.98
3 30 30 480 10 19 16 3 15.79 0.6591797 13 149 84 0.89
4 30 30 960 10 35 32 3 8.57 1.2890625 14 206 79 0.85
5 30 30 1920 10 67 64 3 4.48 2.5488281 17 214 119 0.416
6 30 30 3840 10 131 128 3 2.29 5.1123047 18 205 108 0.089

network throughput decreased from 60% to 20% and sim-
ilarly attack detection time from 45 seconds to 5 seconds.
After eight attack nodes, we have further increased the attack
node parameter; there is no such high impact on CPU uti-
lization and attack detection time, but the memory utiliza-
tion has been increased, and SD-IoT network throughput
decreases with respect to increase of the attack nodes as
shown in Table 7 and respective Figure. 8(a), (b), (c), and (e).

3) BURST MODE (PACKET/SEC)

The burst frequency parameter has a high impact on the attack
detection time as well as network throughput. At an initial
experiment with burst frequency 120, which is the minimum
level set to other experiments, such as attack nodes, the attack
detection time is almost the same as the initial experiment
of attack node with 4. But the SD-IoT network throughput
decreased to 32% with a fixed value of other parameters, such
as packet payload and attack nodes. However, when we dou-
ble the burst frequency of the previous experiment, the attack
detection time shoots down from 40 seconds to approxi-
mately 1 second, as shown in Figure. 8(e). The CPU Utiliza-
tion increased 1% with an increase in the Burst frequency,
and memory utilization increases with the same ratio as we
increase the burst frequency. The SD-IoT network through-
put decreased approximately half of its previous from the
first experiment in which it was 32 percent. Another impor-
tant aspect of this parameter as compared to other param-
eters is that the SDNWISE controller workload increased
twice from its previous experiments because these values
increased rapidly from its 0.5 Kbytes/sec value of the thresh-
old value, as shown in Table 8 and Figure. 8(d). It means
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after 0.5 Kbytes/sec threshold, the attack detection algorithms
run and detect the attack. During that period, the SDNWISE
controller workload has increased very fast as compared to
other parameters. However, initially, the SDNWISE con-
troller workload increased at very low rate from the threshold
values.

4) PACKET PAYLOAD

These experiments were conducted with different packet pay-
loads and other fixed parameters such as burst frequency,
attack nodes, and the number of IoT nodes. In this scenario,
the results of experiments affect two different points. First,
if the packet payload is small between 20 bytes to 40 bytes,
the SD-IoT network throughput is approximately 30% to
35%, and memory utilization stands at 90 to 100 Mbytes.
Secondly, if the packet payload is from 50 bytes to 90 bytes,
the SD-IoT network throughput mostly becomes constant at
57%, and the attack detection time is approximately 1 second.
There is no such effect on CPU utilization, which was only
9% to 10% with all experiments deploying different packet
payloads, as shown in Table 9 and Figure. 8(a), (b), (c),and
(e). These are two different types of results due to a threshold
value, which is taken as a parameter that is based on SD-IoT
network traffic bandwidth.

E. EXPERIMENT NO. 3

In this scenario, we increase the threshold value to double
from 0.5 KBytes/sec to 1 KBytes/sec, and all other parame-
ters are the same which were used in experiment 2. The SOFS
triggers the alert to run the Attack Flow Analyzer sub-module
and determines whether the SD-IoT network is compromised
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(e) EXP:2 Attack detection time (f) EXP:2 Experiment’s parameters values
FIGURE 8. Experiment 2 with bandwidth-based threshold (0.5KBytes/Sec).
TABLE 9. Experiment No.2.4 Variation in the packet payload.
EXP ToT Packet Burst Attack Total Malicious | Normal SD-IoT SDNWISE CPU Allocated Memory Attack
NO Nodes Payload | Frequency Nodes Packet Packet PKT Network controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time
put(%) KB/Sec (Seconds)
1 30 20 120 10 59 39 20 33.90 0.5361328 9 243 90 26
2 30 30 120 10 29 20 9 31.03 0.5126953 9.5 210 87 11
3 30 40 120 10 14 7 7 50.00 0.5078125 10 152 103 5
4 30 50 120 10 7 3 4 57.14 0.5078125 10.75 123 94 1
5 30 70 120 10 7 3 4 57.14 0.52246094 10.5 203 65 0.99
6 30 90 120 10 7 3 4 57.14 0.5419922 10 143 81 0.996

with a DDoS attack or not. The controller will achieve this
by running the C-DAD algorithm. In this experiment, we also
considered the same parameter, i.e., attack nodes, burst mode
(packet frequency), and packet payload. All of these different
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experiments were conducted to get the different outcomes
used to analyze the results. The SD-IoT network behavior is
also the same for normal mode or network without attack,
so we never include the same results and parameter values
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TABLE 10. Experiment No.3.1 Variation in the number of the attack nodes.

EXP ToT Packet Burst Mode | Attack Total Malicious Normal SD-IoT SDNWISE CPU Allocated Memory Attack

NO Nodes Payload | Frequency Nodes Packet Packet PKT Network Controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time

put(%) KB/Sec (Seconds)

1 30 30 120 4 179 72 107 59.77653631 1.109375 10 197 138 122.007

2 30 30 120 8 152 112 40 26.31578947 | 1.0185547 10 213 102 65

3 30 30 120 12 95 80 15 1578947368 | 1.0126953 9 295 70 32.223

4 30 30 120 15 56 48 8 14.28571429 1.0605469 9 213 67 17

5 30 30 120 20 50 48 2 4 1.3691406 8 295 102 12.994

TABLE 11. Experiment No.3.2 Variation in the burst frequency of the attack nodes.

EXP ToT Packet Burst Mode | Attack Total Malicious Normal SD-IoT SDNWISE CPU Allocated Memory Attack

NO Nodes Payload | Frequency Nodes Packet Packet PKT Network Controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- Workload (%) (MB) Time

put(%) KB/Sec (Seconds)

1 30 30 120 10 187 124 63 33.69 1.0664062 9 215 136 91.011

2 30 30 240 10 22 16 6 27.27 1.0546875 11 166 65 5

3 30 30 480 10 19 16 3 15.79 1.4355469 15 168 59 0.99

4 30 30 960 10 35 32 3 8.57 3.9697266 16 102 95 0.98

5 30 30 1920 10 67 64 3 4.48 4.92187 17 278 59 0.995

6 30 30 3840 10 131 128 3 2.29 35.390625 18 207 73 0.97

with the new table; refer to the previous Table 6 for the
variations in IoT nodes or normal nodes.

1) ATTACK NODES

In this scenario, all experiments were conducted with dif-
ferent attack nodes, and other parameters are fixed, such as
IoT nodes, burst sequence, and packet payload with their
respective values as shown in the Table 10. In the experiment
with the attack node parameter, the attack detection time is
increased. It is decreased from high value towards low com-
pared to the previous example with 0.5 Kbytes/sec threshold
values, where it has been decreased from 45 to 5, but there
is no such major difference in SD-IoT network throughput.
The CPU utilization is decreased by 1% in each experiment
by increasing the attack nodes. The memory utilization is
initially high with the minimum attack nodes, and it has been
decreased as attack nodes increased, however, in last with
maximum attack nodes, it also increases. There is no effect
on SDNWISE controller workload, but the SD-IoT network
throughput decrease as we increase the attack nodes; the
results are shown in Figure. 9(a),(b),(c),and (d).

2) BURST MODE (PACKET/SEC)

In the burst frequency parameter, the CPU utilization
increased from 9% to 18%, by changing the burst value
from 120 to 3840. Still, its behavior is opposite to the attack
node parameter, where it has been decreased from 10% to
8%. Another difference is memory utilization, which has
been increased initially. However, if burst frequency is dou-
bled from an initial value, then memory utilization has been
decreased, as shown in Table 11 and Figure. 9(a) and (b). But
it sometimes fluctuates low to high due to burst frequency
and the threshold value. If the condition where SDNWISE
controller workload value is near to threshold value and at the
same time, attack nodes generate the burst, it reaches quickly
to threshold values, and the attack will be detected early.
Therefore, it takes low memory if the SDNWISE controller
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workload is away from the threshold value, and there is no
attack burst at that time. It takes high memory even with
high burst value, because the threshold values are double than
1 Kbytes/sec compared to the previous experiment 2 in which
threshold values were 0.5 bytes/sec. The attack detection time
is high in the first experiment where burst frequency is 120,
and in the second experiment, it becomes 5 seconds, with
doubled burst frequency from the initial experiment. After
the experiment was conducted with a burst frequency higher
than 240, its behavior in attack detection time is the same as
experiment 2, i.e., approximately 1 second.

3) PACKET PAYLOAD

These experiments are conducted with the packet payload
parameter as a variable with fixed parameters, such as attack
node, burst frequency, and IoT node. With all these parame-
ters, the SD-IoT network throughput is decreased from 100%
to 34%, but after that, packet payload increased to 30, 40,
and 50 bytes, and the SD-IoT network throughput increased
a little bit with no big difference. In the last two experiments
with packet payload 70 and 90 bytes, the SD-IoT network
throughput increased from 34% to 50% and 57%, which
shows that whenever the packet payload is 70 and above,
the SD-IoT network throughput increases as compared to
the previous experiments. The memory utilization has been
increased from the initial one, but at some points where
packet payload becomes 70 bytes, it decreased to 63 Mbytes
and then increased to 94 Mbytes, as shown in Table 12 and
Figure. 9(b), (¢), and (e). The SDNWISE controller workload
did not shoot up as it did with burst frequency from initial
threshold values, after which alert of attack was generated.
The attack detection time was initially high due to experi-
ments conducted with a high threshold value compared to
previous experiment 2. After that, as we increased packet
payload by 10 bytes, the attack detection time decreased to
half of its last values. It becomes 1 second with a packet
payload size of 90 bytes, equal to the attack detection time
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(f) EXP:3 Experiment’s parameters values

FIGURE 9. Experiment 3 with bandwidth-based threshold (1KBytes/Sec).

TABLE 12. Experiment No.3.3 Variation in the packet payload.

EXP ToT Packet Burst Mode | Attack Total Malicious | Normal SD-IoT SDNWISE CPU Allocated Memory Attack
NO Nodes Payload | Frequency Nodes Packet Packet PKT Network Controller Utilization | Memory Utilization | Detection
(bytes) (Packet/Sec) Through- ‘Workload (%) (MB) Time

put(%) KB/Sec (Seconds)

1 30 20 120 10 307 203 104 33.88 1.0410156 8 294 68 151.011

2 30 30 120 10 181 120 61 33.70 1.0087891 12 295 95 88

3 30 40 120 10 74 47 27 36.49 1.0537109 10 214 107 35

4 30 50 120 10 29 19 10 34.48 1.09375 11 213 138 10.997

5 30 70 120 10 14 7 7 50.00 1.171875 11.5 207 63 5

6 30 90 120 10 7 3 4 57.14 1.0253906 12 159 94 1

of the previous parameter for burst frequency’s experiment
with 240 burst frequency.

F. DISCUSSION

Each experiment was conducted to analyze SD-IoT network
parameters and get a result to check the application’s perfor-
mance. The experiment consists of network parameters such
as attack node, packet payload size, burst frequency, and the
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outcome parameters such as CPU and memory utilization,
SD-IoT network throughput, SDNWISE controller workload,
and attack detection time. In this subsection, we will discuss
all the experiments conducted during this research to analyze
the impact of each parameter with variable and constant
values.

In the experiments concerning attack node, SD-IoT net-
work throughput initially decreases 75% with four and 92%
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with eight attack nodes, to the condition if the threshold
values are based on packets. But, if we conduct the same
experiment with the bandwidth threshold value, the SD-IoT
network throughput decreases 40% with four and 80%
with eight attack nodes. The CPU utilization increased
on experiments conducted with the packet threshold value
and remained approximately constant with experiments with
0.5 Kbytes/sec threshold value and also near to constant or
fluctuated a little bit with 1 Kbytes/sec threshold values. The
attack detection time is high if the experiments are conducted
with the packet-based threshold, but with the 0.5 Kbytes/sec
bandwidth threshold value, the attack detection time shoots
down from 45 to 5 seconds compared to packet-based 140 to
50 second. The experiments conducted with 1 Kbytes/sec
threshold value attack detection time were 122 to 65 seconds;
all these values were 4 to 8 attack nodes.

The burst mode or packet frequency has much more effect
on SD-IoT network throughput with the packet-based thresh-
old experiments. It decreased from 95% to 99%, and in
the experiments conducted with the bandwidth, it decreased
up to 67%, 73%, 85%, and so we noted that SD-IoT net-
work throughput decreases slowly with increased burst node.
Instead, in a packet-based threshold, it shoots down as
we double the initial burst frequency. The attack detection
time decreases rapidly with the experiments conducted with
0.5 KBytes/sec threshold value up to 40 seconds to 1 second.
If we double the initial burst frequency, there is a little bit
change in attack detection time, but there is no big differ-
ence. The attack detection time decreased with the same ratio
of 91 to 5 seconds, with the experiments conducted with
1 Kbytes/sec threshold. Suppose burst frequency is doubled
than the initial value, in that case, the attack detection time
does not decrease much rapidly with the packet-based thresh-
old value. It decreases to 41, 23, 14, 12, 6 seconds to different
experiments with different Burst size.

The experiments are conducted with a packet-based thresh-
old value in the packet payload size parameter; the SD-IoT
network throughput values remain constant with different
packet payload sizes. But in the experiments conducted with
the bandwidth threshold value, it was not stable, and in
consecutive two to three experiments, it did not change very
much. There is no significant difference in attack detection
time with the packet-based threshold value experiment as
with all size detection, and time was 28 to 30 seconds. But
the experiments with the bandwidth-based threshold value,
the attack detection time is decreased as per increment in
packet payload. It is also noted that with the high band-
width threshold value, attack detection time decreased such
as 150 to 5 seconds, through different packet payload exper-
iments. With the low bandwidth threshold value, the attack
detection time is decreased with low value such as 26 to
1 seconds with varying sizes of packet payload. Meanwhile,
we can say that the attack detection time does not change
much and remains approximately equal to constant with
packet-based threshold value experiments and varies with
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respective packet payload experiments with the bandwidth
threshold value.

We have observed that C-DAD detects DDoS attack with
time-varying according to the concerned experiments. In the
burstly scenario, the maximum attack detection time is
40 seconds while the minimum time is 6.7 seconds with the
Burst mode parameter, whereas, with packet payload param-
eter, it takes approximately 30 seconds. With attack nodes
parameter, it takes the maximum time as 140 seconds and
the minimum time is 26 seconds. In experiment 2, it detects
in 1 second with burst mode, with attack nodes, the maxi-
mum time is 45 seconds and minimum time 5 seconds, and
maximum time with packet payload is 26, and minimum time
is 1 second. In the third experiment, attack detection time
is approximately 1 second with burst mode and maximum
122 seconds and minimum 13 seconds with attack nodes.
With packet payload the maximum time is 150 seconds and
minimum 1 second. According to the results and discussion,
we conclude that the proposed framework with the C-DAD
application efficiently detects the DDoS attack.

VI. CONCLUSION

In this article, we presented a novel C-DAD (Counter-based
DDoS Attack Detection) framework built on top of the
SDNWISE framework, to analyze and detect the DDoS attack
with an affordable time. The framework consists of the
SDNWISE controller, IoT controller SOPS and IoT devices.
The basis of the proposed framework consists of different
counter-based functions in its sub-modules, such as Flow
Monitor and Flow Analyzer, to dynamically detect DDoS
attack in the SD-IoT network.

This article aims to provide the dynamic and pro-
grammable DDoS attack detection solution for the SD-IoT
network. This article initially discusses the general architec-
ture of IoT, and also describes the SDNWISE framework
in detail with its components. Then, we explain the pro-
posed framework and C-DAD algorithms for DDoS attack
detection. The algorithm and framework were tested through
different experiments. We have extensively analyzed the pro-
posed framework’s performance for attack detection time and
other parameters such as SD-IoT network throughput, CPU
and memory utilization, etc. The proposed framework detects
the attack efficiently, hence minimizing the time of attack
detection with a tolerable impact on CPU and memory.
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