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ABSTRACT Increasing the flexibility of robots needs systems more capable in perceiving and interacting
with the environment. A challenge is still to easy design the robotic system around the application, especially
when the objects to be manipulated are bulky, and the relative positions between the robot and the objects to
be manipulated are uncertain and high precision is required to successfully complete a task. In this paper a
possible guideline to design a system capable to localize itself, identify a target, bulky, object and manipulate
it, is presented. A method for tuning the impedance control parameters is shown, to keep interaction forces
below dangerous values. The autonomous localization, grasping and assembly of a sidewall panel of an
airplane is used as test. Experiments show that the success rate of completing a task increases, combining
vision perception and force control, with respect to the single use of visual localization and position control.

INDEX TERMS Computer integrated manufacturing, autonomous systems, intelligent robots, robot control,
robot motion, robot vision systems.

I. INTRODUCTION
The robotic manipulation and assembly tasks are widely
studied and implemented in industry [1]. Typically the goal
in industrial automated assembly applications is to reduce the
cycle time, reducing costs and increasing productivity [2],
[3]. In many applications, it is already possible to achieve
high speed motion with autonomous free-collision trajectory
generation [4], and, in the same time, high positioning perfor-
mance [5], [6]. Many examples can be found in automotive
applications [7]–[9] and electronic manufacturing where high
precision in positioning is required, as well as flexibility to
manipulate different small components [10].

In a wide field of applications, however, the relative posi-
tion of the robot and the objects to be picked and handled is
known with limited accuracy. In such a condition, when the
inaccuracies to be compensated are fewmillimeters, or tens of
degrees, the impedance control is widely used to supervise the
interaction [12]–[14]. These algorithms have been proved in
applications that need high-accurate force tracking [15]–[21],
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but cannot compensate large deviations, since they rely only
on the information given from measurements of forces and
torques.

Large positions deviations represent an issue not onlywhen
the position of the objects to be manipulated is partially
unknown, but also when the manipulated objects are large,
and a small error in the picking orientation introduces large
errors at the object extremities. In such a condition, the use
of visual feedback in robotic control has been widely investi-
gated from the begin of the ’90s [23], realized mounting the
camera on the robot wrist (eye-in-hand) or on a fixed position
on the robot base (hand-to-eye). On the one hand, eye-in-hand
is better in term of achievable accuracy since the calibration
of the position of the camera with respect to the robot hand
is often linearizable, and less sensitive to modelling errors.
However such configuration suffers from occlusions, and
when the handled object is texture-less, as close the camera
is, as less references it can see. Therefore, when large objects
have to be handled, the eye-in-hand configuration cannot
be implemented. On the other hand, the hand-to-eye con-
figuration allows greater flexibility in the positioning of the
camera (or of the cameras), granting the possibility to avoid
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FIGURE 1. Example of manipulation of bulky objects in unstructured
environment from EURECA project [11].

occlusion. However, such configuration is less accurate, since
the calibration model is strongly non-linear [24], and if the
vision system is mounted far from the object, the accuracy of
the estimated position decreases.

The coupling of impedance controllers and visual servo-
ing have been investigated from the very beginning of the
90’s, to overcome these limitations [25], [26]. As mat-
ter of example, in [27] a vision system is used to online
generate the set point for a robotic manipulator controlled
by impedance control during peg-in-hole task. In [28] the
authors use impedance control to improve the performances
in the estimate, coming from a camera, of the position of a
known and planar object. [29] propose an hybrid force and
vision based impedance control in which vision is used to
generate fictitious forces capable to modify the robot motion
according to impedance law. Similarly [30] propose to use
vision system to detect obstacles and to generate fake forces
to perform an insertion. In [31] the authors used a vision
system along with impedance control to implement an hybrid
position/impedance control for the assembly of a small com-
ponent. With the proposed approach it is necessary to teach
the robot and the vision system by a demonstration assembly
to calibrate and close the vision-robot-object chain, moreover
impedance control is active in the direction of assembly to not
exceed assembly forces, while in the other directions, position
control is used, making impossible any error compensation
due to the vision system.

An important step ahead in the state of the art is [22],
where a position-based visual impedance control is proposed,
shown in figure 2. Specifically, themethodology encapsulates
a motion planner between the low-level impedance controller
and the pose estimation stage, resulting in a framework that
can be adapted in many industrial applications. The draw-
back of this approach is that the vision-system should have
a continuous, clear, vision of the scene to feed impedance
controller. This assumption is far to be realistic when bulky
objects are manipulated, due to occlusions and to the fact that
even a small error in the position estimate can become huge
proportionally to the distance of the edges (e.g., an error of
1◦ becomes ∼17 mm at the distance of 1 m).

FIGURE 2. Position-based visual servoing, Schema from [22].

With the aim of deploying a methodology that increases
the performance of a robotized system when picks and han-
dles bulky objects, the here proposed approach extends the
approach in [22], and the target position is computed asyn-
chronously, triggering a new behavior for the robot. Making
asynchronous the generation of the set-point, makes chal-
lenging the tuning of the impedance controller, since the
vision system accuracy cannot grant the compensation of
minor errors. Indeed, when large objects are manipulated,
precision of 10 mm ∼0.5◦ in the pose identification can be
considered as a technical challenge. Impedance control is
typically already implemented by the robot producer, and in
any case is of easy implementation for a typical user, hence a
fine tuning of its parameters is introduced to fulfill tolerances
and force constraints, considering large objects. The work,
therefore, will describe the criteria for the selection of the
best methodology for each step, and how to tune the different
modules, in an easy way. Specifically, the aim of this paper
is to show how precision position of a robotic manipulator as
well as low interaction forces can cohabit, exploiting vision
system and impedance control, compensating for each other
errors, involving themanipulation and assembly of a huge and
bulky component, under restrictive tolerances. Such approach
is tested in a real industrial case such as the autonomous
assembly of an airplane sidewall panel, showing the power
of the cooperation.

II. METHOD
In this section, easy and ready-to-use rules for the choice and
tuning of various modules, for the precise robotic manipu-
lation of a bulky object in a cluttered environment, is pre-
sented. The description of a method for choosing the hard-
ware/software components according to the requirements,
is introduced, than the driving choices for vision system
selection are presented, along with a fine tuning of the clas-
sical impedance control parameters.

A. APPROACH
The flowchart in figure 3 presents the driving choices to select
the proposed method, when commonly used approaches are
not feasible.

Considering the pick and place tasks, usually, in industrial
environments, fixed base robots are used to pick an object and
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place, or assemble, it. The positions are predefined, in assem-
bly lines, and precomputed, collision-free, trajectories are
easily executed by the robot. In case the object and assembly
poses are not known a priori, a vision sensor is typically
introduced to localize them.

Many previous studies suggest 2D vision as a reliable
and good approach, nevertheless, in the absence of strong
features as textures, colors or high contrasts, 2D approach
lacks in performance. Moreover, in the considered case,
where distance and orientation of the object is not fixed,
different viewpoints of the same object can create a different
perception of the object, making 2D vision approach not
feasible. When non-structured environments are considered,
light source can not be fully controllable, and the object has
different location and orientation with respect to the camera,
3D vision overcomes many challenges related to low contrast
and poor lighting, as well as distance and orientation uncer-
tainties, typical of 2D systems. Popular techniques for object
recognition and pose estimation, based on 3D data, exploit 3D
CADmodels for object recognition and shape matching [32].
Many of these techniques exploits local descriptors [33], [34].
Local descriptors rely on strong geometrical local features.
They do not have the notion of the whole object, but describe
the local geometry around key points. As alternative, global
descriptors are used. They are calculated for a set of points
(i.e. a cluster) that represents an object. In the presented use
case, an object with poor geometrical features is considered,
hence a pipeline based on object segmentation and principal
component analysis can be used as global descriptor. A seg-
mentation step is required before extracting the cluster that
represents the object.

Given the repeatability and accuracy of the vision sys-
tem/algorithm, if tolerances required by the process are
respected, an easy way to perform themanipulation is to com-
pute online the trajectories according to the visual informa-
tion, and execute them with a pure position trajectory follow-
ing control. On the contrary, if corrections are required, visual
servoing is a widely used approach to online compensate the
motion with respect to errors in poses. Visual servoing might
not be feasible, in particular considering the manipulation of
large objects, that occlude the field of view of the camera.
In such cases providing the robot with additional sensing
can solve the problem. Interaction is involved, hence with a
properly tuned impedance control, the robot can be provided
with the compliance necessary to successfully perform the
manipulation task.

The remainder of this section addresses the description of
the vision system and algorithm, and a tuning method for
the impedance control parameters, subject to geometrical and
force constraint.

B. VISION SYSTEM AND POSE ESTIMATION
Considering a bulky object, camera specifications and its
position with respect to it are crucial. In order to frame
the entire part, the vision system must be in Eye-to-Hand

FIGURE 3. The flowchart of decision process. The flowchart highlights the
most important decision to take into account in the system design phase.

configuration, meaning that the camera is rigidly placed with
respect to the robot arm base.

The field of view (FOV) of the camera represents a limit
with respect to theminimumdistance between the camera and
the object, that can be easily computed as

dmincamera =
s

2 tan
(FOV

2

) (1)

where s is the maximum size of the object in one direction.
Hence the object must be placed with respect to the camera

at a certain distance greater than dmincamera. Moving the camera
(e.g. with a PTU) can partially relax the constraint on themin-
imum camera distance at the cost of increased computational
time and a more complex hand-eye calibration, introducing
calibration errors. Moreover every 3D sensor has its specific
optimal working range, hence, as additional constraint for
choosing the position of the camera, this must be taken into
account:

dminrange < dmincamera < dmaxrange (2)

Once the position of the camera is defined, pose estimation
algorithms aiming at finding the coordinates of the object
(position P = (x, y, z) and orientation O = (rx, ry, rz))
with respect to the camera frame, can be designed. The
developed algorithm is divided in 3 main steps: Segmenta-
tion, Matching, and Registration. Segmentation exploits the
Region Growing [35] algorithm. This algorithm combines

222478 VOLUME 8, 2020



P. Franceschi et al.: Precise Robotic Manipulation of Bulky Components

the points that are close enough in terms of smoothness
constraint, so that each extracted cluster is a set of points
considered part of the same smooth surface. Region Growing
also eliminates clusters that have a number of points below a
defined threshold. Such threshold can be computed as

#pointsmin =
(sizex ∗ sizey) ∗ #points

4d2 ∗ tan(FOVx/2) ∗ tan(FOVy/2)
(3)

where d is the distance of the object from the camera, sizex
and sizey are the sizes of the object respectively on x and y
axes, and #points is the number of points in the cluster of the
point cloud. In the matching phase, the first step consists in
calculate the Oriented Bounding Box (OBB) for each cluster.
The OBB is the smallest bounding box containing the set
of points that compose the cluster. The OBB dimensions are
compared with the ones of the part. If the dimensions are not
comparable within a tolerance, the corresponding cluster is
rejected. Instead, clusters whose OBB fulfill the geometric
constraints are selected as possiblematch. In the end, Iterative
Closest Point (ICP) [36] is used to refine the alignment and
improve the pose estimation accuracy with each possible
match. The distance between the reference object point cloud
and the cluster of the possible match is also computed. The
cluster with lower distance from the CAD model is selected
and the relative pose is considered as the reference for the
pose estimation.

To evaluate the accuracy of the registration the RMSE
between the reference point cloud and the extracted point
cloud is computed. However, pose estimation accuracy is
also affected by different error sources, such as the camera
calibration and the hand-to-eye calibration.

In the end, the goal of the vision system presented above is
to provide the robot with good pose information, i.e., within
the required tolerances imposed by the external features.

C. CARTESIAN IMPEDANCE CONTROLLER
The Cartesian impedance loop aims at modifying the tool set
point, tomake the robot end effector behavior as an equivalent
mass-spring-damper system, described by the following:

Miẍ+ Ciẋ+Kix = Fext (4)

where matricesMi,Ci,Ki represent impedance control iner-
tia, damping and stiffness, respectively, and can be defined
according to the desired compliance of the robot, and Fext is
the vector of external forces.

From (4) it is possible to obtain the desired set of cartesian
accelerations for the end effector [37]:

ẍd = −M−1i [Ci1ẋ+Ki1x+ Fext ] (5)

Figure 4 shows the block diagram of the control schema. The
behavior of the end-effector of the robot it is now equivalent
to a mass-spring-damper system, reacting and adapting to
external forces, making the contact with the external environ-
ment compliant instead of being rigid.

FIGURE 4. The control scheme of the impedance controller deployed in
Cartesian space.

1) IMPEDANCE PARAMETER TUNING
To ensure low interaction forces with a desired dynamical
behavior and a good position compensation, amethod for tun-
ingMi,Ci andKi is presented in this section.Without any loss
of generality, for the rest of this section, only the translational
direction along one axis is considered for the impedance
parameters tuning. The system equations, while Cartesian
impedance control is applied, correspond to the motion of a
mass-spring-damper system. The reference set-point is cho-
sen to be zero for the tuning of the parameters, with the envi-
ronment applying a force. Considering the environment as a
pure stiff wall, with stiffness defined asKenv, the force applied
is produced by the relative motion between the environment
and the system, computed as

Fext = Kenv(xenv − x) (6)

where xenv and x are the environment and system positions,
respectively.

Considering a funnel-shaped reference as external environ-
ment, the relative motion is described by a ramp limited in
time

xenv = αt, 0 ≤ t ≤ t̄

where α correspond to the slope, t is the time and t̄ the time
where the slope flattens.

If the environmental stiffness Kenv is not known, an esti-
mate can be provided by an observer as in [38].

The system behavior (i.e. end-effector position) in a single
direction of motion, is described by (7)

Miẍ + Ciẋ + Kix = Fext (7)

Substituting (6) in (7) and rearranging leads to:

Miẍ + Ciẋ + Kaugx = Kenvxenv (8)

where Kaug = Ki + Kenv is the equivalent stiffness of the
augmented system.

Considering an overdamped augmented system, the solu-
tion of the second order differential equation (8) is

x(t) = C1eλ1t + C2eλ2t +
Kenvα
Kaug

t −
CiKenvα
K 2
aug

(9)

For sufficiently large times, the two exponential terms will
go to zero, living with the equation of a straight line with
coefficients m = Kenvα

Kaug
and q = −CiKenvα

K2
aug

.

The relative position between the system and the environ-
ment is xenv − x = αt − mt + q. Considering the maximum
allowed force Fmax = Kenv(xenv − xmax) and evaluating the
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FIGURE 5. Values of Mi varying stiffness ratio. The value klim computed
as in (13), is marked in red.

distance at t = t̄ (where x = xmax), the following inequality
must holds to avoid force overshoot.

Fmax
Kenv

≥ αt̄ − mt̄ + q (10)

The solution (9) is computed for overdamped systems,
hence in the following ζaug is taken to be larger than one, and
the corresponding damping can be computed

Ci = 2ζaug
√
KaugMi (11)

From (10), substituting (11) in q and solving for Mi, the
critical mass for which the maximum force is reached can be
obtained.

Mcr =

{[
Fmax
Kaug

− αt̄
(
1−

Kenv
Kaug

)] K 2
aug

2ζaugα
√
Kaug

}2

(12)

Equation (12) satisfies (10) only for positive values of
the term Fmax

Kaug
− αt̄

(
1− Kenv

Kaug

)
, after that point for the same

value of mass there will be an higher value of stiffness, the
transient will be the same but the system will ‘‘penetrate’’
more the environment, leading to higher forces that exceed
the maximum allowed.

A limit stiffness ratio klim can be computed, where themass
is equal to zero

Ki
Kenv

< klim =
1

1− Fmax
Kenvαt̄

− 1 (13)

Given Fmax , δx, t̄ , α = δx
t̄ , it is possible to tune the

values of Mi,Ci,Ki of the desired impedance behavior that
guarantees no force overshoot.

Ki = ksklimKenv
Mi = msMcr

Ci = 2ζaug
√
KaugMi

(14)

where ks < 1,ms < 1 are safety coefficients used to avoid
(i) too high natural frequency w the first, (ii) force overshoot
due to imperfect modeling the second.

In figure 6 the time response of the system and the
force exchanged are shown for different values of ks =
[1.1, 0.9, 0.5, 0.1], for ms = 1 and ζaug = 1.2, Fmax =
30N , δx = 0.01m, t̄ = 2.2s. It can be seen the wrong
behavior of the system for ks > 1, the value of the
masses is very similar for the first two cases, but the differ-
ence in stiffness produces different behavior hence different
forces.

The steady state position error, when the ramp flattens can
be computed imposing to the system a constant force Fext =
Kenvδx, solving equation (8) leads to the final

xss =
Kenv
Kaug

δx (15)

The steady state error will be

ess = δx − xss = δx
(
1−

Kenv
Kaug

)
(16)

D. CONSIDERATIONS
The 3D vision system is able to estimate the poses within a
certain tolerance, hence some considerations regarding the
maximum produced errors must be taken. Errors can be
introduced by (i) a wrong estimate of the pose and (ii) a
wrong impedance compensation both for grasping and place
position. The errors in pose estimation by the camera are due
to its resolution, hence the maximum δx to be compensated
by the impedance control depends on it. During the grasping
phase, in the worst case scenario of maximum error in posi-
tion estimate, the error after impedance compensation will be
egss as in (16), the same applies to place position and we will
have epss, where superscripts g and p stands for grasping and
place respectively. Knowing the repeatability range rr of the
camera for both the poses and assuming normal distribution,
the maximum displacements to be compensated, due to linear

position estimate, can be computed as δxglin =
rrglin
2 and δxplin =

rrplin
2 , moreover δxp has to compensate for egss too, hence δxp =
δxplin + e

g
ss. Considering large objects, the references may be

positioned at the edges, far from the nominal pose estimate,
hence a wrong estimate in the orientation of the pose can pro-
duce a large error in the relative position between references
on the environment and references on the object/robot. Taking
this into account, having the reference feature at a length l
from the nominal estimated pose, having an orientation error
δθ = rrθ

2 , the position error of the feature due to δθ will
be δxrot = l sin (δθ). In this case δxg = δxglin + δx

g
rot and

δxp = δxplin + δx
p
rot + e

g
ss.

III. CASE STUDY
The proposed methodology is implemented in a real indus-
trial scenario, presented in this section. The results here
shown are intended to be an anecdotal description of a use
casewhere the suggested approach generates a great improve-
ment with respect to other two typical approaches in robotic
manipulation.
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FIGURE 6. Position and force response of the system with different values of ks.

A. SYSTEM DESCRIPTION
The chosen robot manipulator is a KUKA iiwa 14 R820,
which is suitable, thanks to its redundancy, to perform
motions in a small and cluttered environment as the interior
of an airplane fuselage. Moreover it has high payload (14
kg), required for heavy objects manipulation. The robot is
equipped with a tool provided with suction cups and a vac-
uum system to grasp, manipulate, and assemble the panel.
Two independent circuits can be activated, via electrovalve,
tomanipulate curve objects (sidewall panels) as well as planar
objects (cargo panels). The vision system is composed by a
pan-tilt unit (PTU) in order to cover all the working area and a
depth camera to acquire 3D data. The selected pan-tilt unit is
a FLIR PTU-46 that guarantee a pan range of±159◦ and a tilt
range from −47◦ to 31◦ with a resolution of 0.003◦. 3D data
are acquired with a ODOS StarForm Swift Time-of-Flight
(ToF) depth camera. The camera has a resolution of 640×480
px at 40 fps and works in the range of 0.5-6 meters and a pre-
cision around 1 cm. The robot and the camera, as well as the
sidewall panel, are mounted on passive wheeled mobile carts,
necessary to move them inside the aircraft fuselage easily.
This element introduces uncertainties in the relative positions
between robot and panel and robot and assembly point.

B. TASK DESCRIPTION
The task the robot has to perform is the autonomous assembly
of an aircraft sidewall panel, depicted in fig 7.
Manipulating bulky components inside narrow spaces such

as the interior of aircraft fuselage, limits the robot’s move-
ments which must be precise to avoid collisions. The correct
localization of the robot and the object is fundamental to
online create a correct environment for trajectory planning.
The vision system initially identifies the fuselage windows to
provide the proper position of the robot in the environment,
than it scans the panel and localize it with respect to the
robot pose. A 3D map of the environment is than created
according to the information coming from the camera, and
the trajectories are planned online.

Impedance control, conveniently tuned, is adopted for the
tasks that requires contacts and interaction between the robot
gripper and the panel or the environment, in this application
for grasping and assembly. The grasping task begins with
the robot positioned in front of the panel, according to the
position received from the camera system. A forward motion
is performed along the outgoing direction of the tool, while
impedance control is active. Since it is required that all the
four suction cups are properly aligned and fully in contact
with the surface to guarantee a successful grasping, small
reorientations are allowed by the compliant controller. Indeed
even a small error in the position and/or orientation estimate
of the panel, even due to the camera resolution, may lead to
a misalignment of the tool with respect to the curved surface
of the panel. The assembly procedure of the sidewall panel
is the most complex of the whole process, indeed, since the
tolerances of the assembly features are very tight (1÷ 10 mm
depending on the directions), the allowed error is very small.
Relying on pose estimation only, it is very difficult, usually
impossible, to properly fit the features. As for the grasping
task, the success of the assembly strongly relies on interaction
control to ensure the correct position.

C. EXPERIMENTAL RESULTS
The experimental results are shown in this section. First of all
a measurement of the accuracy and repeatability of the cam-
era in estimating the poses is presented. Than a comparison
between three different approaches (vision system without
impedance control, impedance control only, vision system
and interaction control working together) is done keeping the
poses fixed. Finally the robustness of the combined approach
is shown in terms of success rate, randomly changing the
poses.

1) VISION SYSTEM
The most important values that the vision system has to
estimate, for both the assembly and the panel positions, are
x and y distances and rotation θ around z axis, with respect
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FIGURE 7. The autonomous assembly task of the sidewall panel inside the aircraft cabin.

TABLE 1. x, y and θ estimated for assembly and panel poses.

to the origin of the robot, since the other values (height and
other rotations) are fixed and known. In figure 8 the estimates
of x and y from the vision system are shown, with respect to
the robot base. The estimate of the x, y, and θ values for both
the windows and panel positions, as well as the mean and
maximum deviations, are presented in table 1.

2) EXPERIMENTAL TESTS WITH QUASI-FIXED POSITIONS
In this section three different approaches are presented and
compared in order to show the robustness of our approach,
considering quasi-fixed positions (small errors in positioning
can be introduced since the panel position was manually
restored after each trial). Table 2 summarizes the success for
each approach in localizing the robot and the panel trough
vision system (when used), as well as the success in perform-
ing the grasping and assembly tasks.
a. Vision/position control The first 10 trials were made

relying on vision information only: the robot target posi-
tions were exactly the positions given by the camera.
Despite the success rate of identifying the panel and the
windows is very high, the success of the complete task
is null. This because, even if the grasping of the panel
sometimes is successful, it is not done in the correct
position: because of the complex shape of the sidewall
panel, even a small error in the position estimate makes
the grasping not feasible, or the coupling between the
tool and the panel is not done according to the nominal

one. It has to be underlined that the 0/10 successes of
the assembly is with respect to the 10 trial, but, since
it directly depends on the 4/10 grasping successes, it is
actually measured on 4 trial only.

b. Impedance control If only impedance control is used,
without any precise information coming from the vision
system, the success rate still remains very low. In this
case, the grasping is made more robust due to the capa-
bility to adapt to small errors trough impedance control,
but the assembly is very complex since the tolerances
don’t allow any big error. Moreover if the position
between the panel and the robot, or the robot and the
fuselage change, even a little, there is no possibility
to compensate for any error, making this approach not
flexible at all.

c. Vision/impedance control Combining the capabilities
of both the approaches, the vision system is able to
compensate for huge error and estimate a good initial
position, on the other hand, impedance control is very
good in compensating for small errors in the estimate
of the camera. In this case, for the grasping task there
is no problem. In the assembly task, the success rate is
very high with respect to the two other cases. Despite
this some failure may still happen because of the very
restrictive tolerances on the assembly features. The time
responses of the position and force of the robot end-
effector, in the direction of the environmental correction,
are shown in figure 9.

3) ERRORS ANALYSIS
In this section the errors causing failure to the process are
discussed with respect to the three different approaches illus-
trated above.

a. Error in poses estimation: Considering the vision/
position and vision/impedance control it is not correct to
talk about errors in pose estimate, rather it is a resolution
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FIGURE 8. x, y and θ values estimated by the vision system with respect to the robot base, relative to 10 experiments repetitions.

TABLE 2. Comparison between success of the three approaches: vision based, impedance control based and combination between vision and
impedance. Results are acquired in 10 repetitions.

limit that arises. The repeatability is presented above,
in table 1. From the experiments, it was observed that
errors may occur only in cases in which the field of
view of the camera is partially occluded and the object
can be only partially seen. In the cases in which vision
system is not present the poses are not estimated, but
taken for grant even if small errors may occur, due to
manual/autonomous (with an AGV) positioning.

b. Error in panel grasping: Errors in panel grasping occur
when the coupling between the tool and the panel is
not properly done, and the panel is not grasped. They
can be the result of an improper estimate/knowledge of
the pose: it occurs mainly in the case of vision/position
control since there is no possibility to compensate for a
small error in the pose estimate. The panel surface has
a complex, non-planar shape: since all the four suction
cups must be in contact with the surface to grasp the
panel, a small error in the estimate can produce a mis-
alignment, preventing the possibility to properly touch
the surface. Impedance control performs better in reject-
ing this error, since the compliance of the robot allows
small reorientation, having the correct alignment and
contact between the tool and the panel surface. Errors
can still occur if the pose of the panel is not the nominal
one. Vision/impedance control allows to have a good
estimate of the pose and a compensation for small errors
(in particular in orientation), increasing the success rate.

c. Error in assembly: Errors in the assembly phase occur
when the panel is not properly inserted in the features

nor properly fixed. They can be caused either by an
improper estimate of the assembly position and/or a
grasping not in the nominal position, that is an incorrect
coupling between the manipulator tool and the panel.
In these cases even if the assembly pose is properly
estimated, during the insertion phase the panel is not
properly positioned. In the case of vision/position con-
trol a compensation can not be done, while considering
a compliant behavior of the robot (impedance control,
vision/impedance control), if the error is into the allowed
tolerances, the insertion can be properly done, adjusting
small errors thanks to the robot behavior.

In conclusion vision/impedance control combines the
potentiality of the vision system to estimate a correct enough
initial position, compensating for small errors with the robot
compliant behavior, allowing to have a very high success rate.

4) ROBUSTNESS WITH DIFFERENT POSES
Proven the reliability of the combined approach composed by
vision information and impedance control, the robustness of
this solution is tested, changing for 10 repetitions the position
of the robot with respect to the panel and the assembly
position. The positions are randomly selected, with respect to
the nominal, in the range ±100 mm both in x and y direction
and ±5◦ for the orientation along z axis, for both panel
and assembly positions. The success rate in this test is the
same as in the previous case, with 9/10 successfully assembly
performed. The only condition that must be satisfied is the
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FIGURE 9. Position and force response of the system. The dotted lines are the reference displacement over the time, the blue lines are the
measured displacement and force, the red lines are the simulated displacement and force.

reachability of the robot of both the panel and the assembly
pose. A second important condition is to keep the robot far
enough from singularity positions while force control is used,
this because forces are estimated trough the Jacobian matrix,
which becomes singular. With the usage of a force/torque
sensor at the end-effector this constraint can be relaxed.

IV. CONCLUSIONS
Combining the potentiality of vision and force control it is
shown that a complex task can be successfully completed, due
to their ability to compensate for each other errors.

This paper aims to show how precision position of a robotic
manipulator as well as low interaction forces can cohabit,
exploiting vision system and impedance control, compen-
sating for each other errors, involving the manipulation and
assembly of a huge and bulky component under restrictive
tolerances. Such approach is tested in a real industrial case
such as the autonomous assembly of an airplane sidewall
panel, showing the powerful of the cooperation.

In conclusion in this paper is shown how vision assisted
impedance control can be useful to solve a real industrial
application. For the selected application the object to be
manipulated is huge an bulky and the environment is very
reduced, having very low allowed errors. The possibility
to perform visual servoing was precluded due to the huge
dimensions of the panel, which occluded the possibility to
have reference. In the end it is demonstrated the robustness
with respect to error in positioning of this approach: a priori
knowledge of the positions of the robot and the panel is not
required.

This work considers the manipulation of a huge and bulky,
rigid object and its precise assembly under strict tolerances.
Future research work will address different objects manipu-
lation, involving non-rigid objects manipulation, where some
degree of deflection must be taken into account. Moreover
a more complex model for the environment with a damping
component will be investigated, for a better comprehension

of the interaction forces that may lead to an unsuccessful
assembly or damage to the object.
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