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ABSTRACT The goal of this study is to present a universal large-scale machine learning model based
on spectral processing. By machine learning, we mean input-output mapping approximation generated
by training sets. We treat tasks such as pattern recognition and classification as special problems in
mapping approximation. The structures of the approximators are implemented using Hamiltonian neural
network-based biorthogonal and orthogonal transformations. From amathematical point of view, these struc-
tures can be seen as an implementation of non-expansivemappings. An interesting property of approximators
is the reconstruction and recognition of incomplete or distorted patterns. The reconstruction property gives
rise to a proposition of a superposition processor and reversible computations. Finally, the models of machine
learning described here are adequate for processing data with real and complex values by defining Q-inspired
neural networks.

INDEX TERMS Associative memory, data reconstruction, deep learning, Hamiltonian neural networks,
machine learning, Q-inspired.

I. INTRODUCTION
The problem of learning represents a key to understanding
intelligence in both brains and machines [1], [2]. By machine
learning, wemean here input-output mapping approximation,
where nodes of approximation are given by the set of training
pairs

{
xi, yi

}N
i=1, xi ∈ X ⊂ Rn, yi ∈ Y ⊂ Rm. Hence, one

aims to realize the mapping F : X → Y , where the value of
such a mapping (or multivariable function f (·) for yi ∈ Y ⊂
R) is known at the training points, i.e.,

yi = F (xi) , i = 1, . . . ,N (1)

Classification and pattern recognition issues can be seen as
an important problem in mapping approximation. It should
be noted, however, that deep learning is currently driving
a renaissance of interest in neural network research and
applications (e.g., AI, big data, deep convolutional neural
networks) [3], [4]. Such neural networks used for the real-
ization of F(x) (1) take the form of multilayer nonlinear
kernel machines. From a mathematical point of view, they
set up a structure of algebraic mappings. Currently, most
of learning algorithms are based on optimization procedures
(often, however, without any constraints). Different forms
of stochastic gradient descent (SGD) dominate optimization
algorithms used today [5]–[7]. Thus, deep learning, technol-
ogy that is widely used in commercial applications, can be
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seen as a special topic in optimization theory. Moreover, due
to the massive amount of training data, these optimization
methods are adapting to the evolving features of processed
information [8]. It is worth noting that as a potential direction
for future deep learning research, geometric deep learning
methods have been proclaimed [9]. Nevertheless we claim
that artificial neural networks (ANN) should constitute both
universal algorithmic and physical models used in computa-
tional intelligence. However, currently, optimal architecture
and implementation technology have not yet been developed.
The main direction of research seems to be focused on three
subjects:

1) Research on classical (non-quantum) computational
models with real-valued parameters (RVNN);

2) Research on classical computational models with com-
plex parameters (CVNN);

3) Research on quantum neural networks (QNNs), which
are an alternative to quantum computers (QCs).

Note that so-called quantum-inspired (Q-inspired) neural net-
works are a non-quantum version of CVNN [10]–[12]. In a set
of known real-valued neural networks, Hopfield-type neural
networks fulfill an essential role [13], [14]. They are both
physical and algorithmic models of neural computations.
In this study we consider an extended model of Hopfield-type
neural networks defined as follows:

ẋ = (ηW− w01+ εW s) θ (x)+ Id (2)
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where:W—skew-symmetric orthogonal matrix
W s−real symmetric matrix
1−identity matrix
θ (x)−vector of activation functions
Id−input vector
ε,w0, η−parameters

A model defined by (2) gives rise to the following types of
neural networks:
a) Hamiltonian neural networks (HNNs) for ε,w0 =

0, η = 1;
b) Classical Hopfield neural networks for w0, η = 0.
c) Q-inspired Hopfield-type neural networks:

(ηW− w01+εWH ) θ (x)+ Id = 0 (3)

where:WH—Hermitian matrix (WH = W †
H )

If WH is a real symmetric matrix, then (3) is an equi-
librium equation of neural networks (2). The main purpose
of this study is to illustrate that a mapping (1) at points
xi can be implemented in the form of a composition of
extended Hopfield-type neural network-based biorthogonal
and orthogonal spectra transformations. An important fea-
ture of this model is its universality, enabling the realiza-
tion of the basic functions of large-scale learning systems,
such as pattern association, pattern recognition, classifica-
tion, and inverse modeling. The pattern recognition feature
is illustrated in this study by an example that reconstructs a
distorted signal (e.g., using images). Moreover, Q-inspired
neural networks, i.e., complex-valued neural networks as
defined by (3), gain the computational efficiency of machine
learning models. Thus, the input-output mapping approxi-
mations (1) can be augmented to complex vector spaces:
xi ∈ Cn, yi ∈ Cm. Recently formulated models, defined as
quantum machine learning (QML), are quantum algorithms
[15]. Their execution requires universal QCs that are not
yet available. To our knowledge, Q-inspired neural networks
are currently not available as physical objects, either. Hence
they should be seen as algorithmic solutions. To summarize,
we proposed in this paper a machine learning model, that
makes use of biorthogonal and orthogonal transformations
based on spectral processing, as alternative solutions to deep
learning based on optimization procedures.

II. HNN-BASED ORTHOGONAL TRANSFORMATIONS
A general description of a Hamiltonian system is given by the
following state space equation [16], [17]:

ẋ = J∇H (x) = v(x) (4)

where: x—state vector, x ∈ R2n
v(x)−nonlinear vector field
J−skew-symmetric, orthogonal matrix e.g., Poisson

matrix
∇H (x)−gradient of energy
The Hamiltonian function H (x) = Ek + Ep is the total

energy (i.e., the sum of kinetic, Ek , and potential, Ep, energy)
absorbed into the system. Because Hamiltonian systems are
lossless (dissipationless), their trajectories in the state space

can be quite complex and oscillatory for t ∈ (-∞,∞).
Equation (4) gives rise to the model of HNNs [18], [19] as
follows:

ẋ = W∇H (x) = Wθ (x)+ d (5)

where:W—skew-symmetric, orthonormal weight matrix
(W2
= −1), dimW = 2n

∇H (x) = θ (x)−vector of activation functions
(output y = θ (x))
d−input vector
and Hamiltonian function:

H (x)=
∑2n

i=1

∫ t

−∞

ẋi2(xi) dτ+
∑2n

i=1
pixi, pi ∈ R (6)

One assumes here that activation functions are passive, i.e.,

µ1 ≤
θ (xi)
xi
≤ µ2 : µ1, µ2 ∈ (0,∞) , i = 1, . . . 2n (7)

One can easily see that the HNN comprises compatible con-
nections of n elementary building elements—lossless neu-
rons. The state space description of a lossless, autonomous
neuron is as follows:[

ẋ1
ẋ2

]
=

[
0 ±w1
∓w1 0

] [
θ (x1)
θ (x2)

]
The HNN described by (5) cannot be realized exactly as
a macroscopic-scale physical, lossless object. Nevertheless,
by introducing negative-feedback loops, equation (5) can be
reformulated as follows:

ẋ = (W−w01) θ (x)+ d (8)

where: w0 > 0
1−identity matrix
Due to the assumed negative-feedback loop in (8), the neu-

ral networks considered here are not oscillatory. The stable
(i.e. |x| ≺ ∞) equilibrium point of network (8) sets up an
orthogonal transformation:

θ (x) = y =
1

1+ w2
0

(W + w01) d (9)

where:W2
= −1 and y is a Haar spectrum of d

y−output vector
Note 1
A Haar spectrum is the result of a Haar transformation,

where the transformation matrix {-1, 0, 1} is orthogonal but
not skew-symmetric. On the other hand, themain challenge in
HNN-based orthogonal transformation is to create the weight
matrices, W , skew-symmetric and orthogonal. The most
adequate mathematical framework for this task seems to be
an algebraic theory of Hurwitz-Radon matrices [20]. Hence,
we show howHurwitz-Radonmatrices can be used in the con-
struction of orthogonal transformations (filters), by defining
matricesW as the superposition of Hurwitz-Radon matrices.
Moreover, only for the matrix W8 does one have available
eight free design parameters, w0,w1, . . . ,w7, to synthesize
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any eight-dimensional orthogonal filter and to solve the fol-
lowing inverse problem. Thus, an eight-dimensional orthog-
onal transformation, referred to as an octonionic module, can
be synthesized by the formula:

y =
1
a2
(W8 + w01) d =

1
a
T8d (10)

where: a =
√∑7

i=0 w
2
i —scaling parameter

T8 =
1
a (W8 + w01)−transformation matrix of octo-

nionic module
Weight matrixW8 of octionic module:

W8 =



0 w1 w2 w3 w4 w5 w6 w7
−w1 0 w3 −w2 w5 −w4 −w7 w6
−w2 −w3 0 w1 w6 w7 −w4 −w5
−w3 w2 −w1 0 w7 −w6 w5 −w4
−w4 −w5 −w6 −w7 0 w1 w2 w3
−w5 w4 −w7 w6 −w1 0 −w3 w2
−w6 w7 w4 −w5 −w2 w3 0 −w1
−w7 −w6 w5 w4 −w3 −w2 w1 0


(11)

and

w0
w1
w2
w3
w4
w5
w6
w7



=
1

8∑
i=1

y2i



y1 y2 y3 y4 y5 y6 y7 y8
−y2 y1 −y4 y3 −y6 y5 y8 −y7
−y3 y4 y1 −y2 −y7 −y8 y5 y6
−y4 −y3 y2 y1 −y8 y7 −y6 y5
−y5 y6 y7 y8 y1 −y2 −y3 −y4
−y6 −y5 y8 −y7 y2 y1 y4 −y3
−y7 −y8 −y5 y6 y3 −y4 y1 y2
−y8 y7 −y6 −y5 y4 y3 −y2 y1





d1
d2
d3
d4
d5
d6
d7
d8


(12)

It can be seen that (12) is a solution for the following inverse
problem: for a given input vector d = [d1, . . . , d8]T and a
given output vector y = [y1, . . . , y8]T, find weight matrix
W8 of an HNN-based orthogonal transformation (octonionic
module). Matrix W8, belonging to the family of matrices,
can be obtained by the superposition of seven Hurwitz-Radon
matrices. Moreover, W8 can be seen as the best-adapted
orthogonal basis. The output y in (10) is a Haar spectrum of
the input vector d. It is worth noting that an octonionicmodule
sets up an elementary memory module as well. Designing,
for example, an orthogonal filter using (11) and (12), which
performs the following transformation:

y[1] =
1
a2
(W + w01)m =

1
a
T8m (13)

FIGURE 1. Implementation of a linear perceptron by an octonionic

module, a =

√√√√ 7∑
i=0

w2
i .

where: y[1] = [1, . . . , 1]T , i.e., synthesizing by (10) a flat
Haar spectrum for the given input vectors, m, so that:

w0 = [1, . . . , 1] ·m > 0 i.e.,
∑8

i=1
mi > 0 (14)

yields an implementation of a linear perceptron, as shown
in Fig. 1.

To summarize the basic considerations above, one can state
that the octonionic module is a universal building block to
realize very large-scale orthogonal filters and, in particular,
memory blocks. Multidimensional, octonionic module-based
orthogonal filters can be realized by using the family of
Hurwitz-Radon matrices. Thus, a 16-dimensional orthogo-
nal filter can be, for example, determined by the following
matrix:

W16 =



w8 0

W8
. . .

0 w8
−w8 0

. . . WT
8

0 −w8


=

[
W8 0
0 −W8

]
+ w8

[
0 1
−1 0

]
(15)

where:w8 ∈ R,W8—weight matrix of an octonionic module.
Similarly, for the dimension q = 2k , k = 5, 6, 7, . . . all

Hurwitz-Radon matrices can be found, as:

W2k =

[
W2k-1 0
0 −W2k-1

]
+ wK

[
0 1
−1 0

]
(16)

where: wK ∈ R, 1—identity matrix
To conclude, one can formulate the following statements:
• A q-dimensional HNN or a q-dimensional orthogonal
basis can be created by a compatible connection of
octonionic modules.

• The basic function of orthogonal filters is the Haar spec-
trum analysis of the input data d. Particularly, an orthog-
onal filter performs the function of memory, as given
by (13).

Matrix W2k can be designed as the best-adapted base by
using (11) and (12) (i.e., d—data, y—demanded spectrum).

III. HOPFIELD NEURAL NETWORK-BASED
BIORTHOGONAL TRANSFORMATION
It is well known that in data mining, signal processing, and
machine learning, two transforms known as principal com-
ponent analysis (PCA) [21]–[23] and independent compo-
nent analysis (ICA) [24] are commonly used. PCA can be
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categorized as an orthogonal, and ICA can be categorized as
a biorthogonal transform. Both transformations can be used
as a lossless or lossy technique. Thus, for example, lossless
PCA and ICA are widely used in blind signal separation
(BSS). The Hopfield neural network described by (2) can
perform a biorthogonal transformation and can be used for
the implementation of a mapping given by training points.
Thus, such a biorthogonal transformation can be formulated
by a differential equation as follows:

ẋ =
(
W2k − w01+εW s

)
θ (x)+ Id (17)

where:W s—symmetric matrix
W2k−orthogonal skew-symmetric matrix (16) ε ∈

R,w0 > 0
The equilibrium points of the network (17) set up a

Hopfield neural network-based biorthogonal filter. A special
feature of such a filter is the vector field consisting of anti-
symmetric (W2k ) and symmetric (εW s − w01) components.
This form of vector field can be referred to as a biological-like
mechanism consisting of recombination (antisymmetric) and
selection (symmetric) components. A neural network (17)
can be seen as one possible extension of Hopfield-type neu-
ral networks. Moreover, by using such extended structures,
some optimization problems (e.g., TSP) can be solved more
effectively [25].

IV. BIORTHOGONAL TRANSFORMATION-BASED
APPROXIMATION
Asmentioned above, the equilibrium points of a biorthogonal
filter can set up a nonlinear mapping d = F (x), as follows:
Given a set of training points, S = {xi, d i}Ni=1, concatenat-

ing input vectors xi ∈ Rn and output vectors d i ∈ Rm in the
form:

ui =
[
xi
d i

]
; i = 1, . . . ,N (18)

where: dimui = n+ m, n+ m = 2k , k = 3, 4, . . .
and using the orthogonal transformation (9), one obtains a

Haar spectrum mi of ui, i = 1, . . . ,N as:

mi =
1
2

(
W2k + 1

)
ui = T (ui) (19)

where:W2k—the Hurwitz-Radon matrix (16)
W2

2k = −1.
The stable equilibria of the biorthogonal filter (17) consti-

tute the following transformation Ts (·):(
W2k − w0 · 1+ε·W s

)
θ (x)+ u = 0 (20)

where:u—input vector
For w0 = 2, ε = 1, one obtains: mi = Ts (ui)

mi =
(
2 · 1−W s −W2k

)−1 ui (21)

i.e., Ts (·) =
(
2 · 1−W s −W2k

)−1
where:W s = M

(
MTM

)−1
MT

and

M = {m1,m2, . . . ,mN }

is the spectrum matrix of ui from (19).

FIGURE 2. Block structure of the approximator (a = 0.2 scaling parameter
for W 2 = −1).

It should be noted that
(
MTM

)−1
MT is theMoore-Penrose

pseudoinversematrix ofM, i.e.,M (+)
=
(
MTM + µ1

)−1
MT

always exists. Thus, M
(
MTM + µ1

)−1
MT , µ 6= 0 can

be seen as Tikhonov’s regularization [1]. It is clear that the
transformation Ts (·) projects training points ui into mi as
given by (21). Hence, one obtains an inverse transformation:

ui = T−1 (mi) =
(
−W2k + 1

)
mi (22)

i.e., T−1 (·) =
(
−W2k + 1

)
The transformations Ts (·) and T−1(·), arranged as a real-

ization of a mapping F(x), have the block structure as shown
in Fig. 2.

The block structure with ‘‘distributed memory,’’ presented
in Fig. 2a, can be reconfigured to the form with ‘‘lumped
memory,’’ as shown in Fig. 2b.

Note 2
It is worth noting that, according to the structure from

Fig. 2, such an approximator performs the function of spec-
trum estimation

{
m̂i
}
:

m̂i = Ts

 xi· · ·
0

 , i = 1, . . . ,N (23)

and d̂ i = F̂ (xi) – estimation of the output d i.
Hence, due to the feedback loop action, one implements a

recurrence:

m̂i → mi, ŷi→ xi
d̂ i → d i = F (xi) , i = 1, . . . ,N , (24)

at the output of this approximator.
It is easy to note that the structure from Fig. 2 implements

an input-output mapping φ (·), as follows:

ui = φ (ui) , i = 1, . . . ,N (25)
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Thus, vectors ui, i = 1, . . . ,N are invariant points of φ (·),
and vectors d i are asymptotic centers of attractors i =
1, . . . ,N . Moreover, mapping φ (·) is given by the following
matrix transformation:

φ (·) = L (ε) =
(
−W2k + 1

) (
2 · 1−W2k − εW s

)−1 (26)

and its Lipschitz constant k fulfills:

k ≤ 1 for ε ≤ 1 (27)

Hence, φ (·) is a non-expansive mapping. Note the block
T c in Fig. 2 implementing this mapping. The recurrence is
convergent under the linear independence of patterns, and the
number of patterns N fulfills:

N < 0.5 (n+ m) (28)

where: n+ m = dimui (18).

V. FEEDFORWARD MODEL OF APPROXIMATOR
One of the general frameworks unifying the different learning
algorithms has been formulated by considering a functional
of the form [1], [2]:

H (f ) =
1
N

∑N

i=1
V (yi, f (xi))+ λ ‖f ‖2k (29)

where: f : X → Y ⊂ R
V (·, ·)−a loss function
3—a regularization parameter
‖f ‖2k −a norm in RKHS (Reproducing Kernel Hilbert

Space )
The approximated function f (·) corresponds to the mini-

mum of a functional H for a different loss function V (f ) i.e.,

H (f ) (30)

Thus, (29) represents the classical optimization problem
solved in Tikhonov’s regularization theory [1]. Based on
the general framework (29), another model of an approxi-
mator has been published [18]. Indeed, given a training set
{xi, di} , i = 1, . . . ,N ; xi ∈ Rn, di ∈ R, the function F(x)
can be implemented as:

F (x) =
∑N

i=1
ciKi (xi, x) (31)

where: Ki (xi, x) are defined by the function:
Ki (xi, x) = 2(〈xi,Wn, x〉) (32)

and: xi ∈ Rn is the i-th training vector
Wn−skew-symmetric matrix
2(·)−an odd function (e.g., sigmoidal)
〈xi,Wnx〉 -a scalar product
Thus, the Gram matrix (N × N ):

K =
{
Kij
}
=
{
K
(
xi, xj

)}
(33)

is skew-symmetric, and the key design equation is as follows:
KRc = d

and

c = K−1R d (34)

where: dT = [d1, . . . , dN ]

FIGURE 3. Block structure of a feedforward approximator.

KR−regularized matrix i.e., KR = K + diagRiRi 6= 0, i =
1, . . . ,N
Hence:

F (x) =
∑N

i=1
ciθRi (xi,Wnx) (35)

where: θRi = θ (·)+ Riδ (·), δ (·)—the Kronecker function.
A block structure of a feedforward approximator is shown

in Fig. 3.
It is worth noting that due to the skew symmetry of the

Gram matrix in (32), regularization parameter Ri can be used
as a smoothness regularizer. Moreover, for Wn = W2n

(16),(32) Ki (xi, x) consists of the scalar product of training
vectors with their Haar spectra.

VI. ON FEATURES OF APPROXIMATORS
The essential function of approximators described in this
study is the implementation of a mapping defined by a train-
ing set. However, some properties of the approximator shown
in Fig. 2 are worth noting. They can be used to solve tasks
typical for big data processing and machine learning.

A. DATA RECONSTRUCTION
Given a training set S = {xi, d i} , i = 1, . . . ,N where xi ∈
Rn, d i ∈ Rm, n + m = 2k , k = 3, 4, . . ., the mapping d i =
F(xi) can be implemented as a biorthogonal filter equipped
with the following data reconstruction property:

Let us assume that input patterns xp are a distorted or
compressed form of xi. Hence, changing the input vectors and
the structure of the feedback loop, as follows: xi· · ·

0

 }n
}m
→

 xp· · ·
0

 }pn
} (1− p) n+ m

(36)

where fraction p > 0.1 (according to numerical tests) and
xp is the preserved part of xi, one achieves the full pattern
reconstruction, i.e.,d i = F(xp). This property is illustrated
by Lena’s photo reconstruction.

B. IMPLEMENTATION OF ASSOCIATIVE MEMORY
Implementation of associative memory by the approximator:

i.e., F(xi) = zi, i = 1, . . .N (37)

where: xi—key vectors
zi−memory vectors
is realizable by defining a training set of the form:

S = {xi, zi} , i = 1, . . . ,N (38)

and ui =
[
xi
zi

]
.
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FIGURE 4. Approximator as an analog processor: addition.

It is easy to see that due to the reconstruction property
mentioned above, the memorized vectors zi can be retrieved
by the distorted or incomplete key vectors xp (36). However,
note that the stored vectors ui are not attractors. Hence, any
input vector vin 6= xi is not associated with zi, i = 1, . . . ,N .

This means that:

φ

[
xi
0

]
=

[
xi
zi

]
, i = 1, . . . ,N

However, for vin 6= xi one obtains:

φ

[
vin
0

]
=

[
vout
mout

]
Thus, such an input vector is a key a vector only if vin = vout ,
and vector mout belongs to the memory.

Moreover, any superposition xs of key vectors retrieves the
associated superposition of the memorized vectors zi:

0 6= xs =
∑N

k=1
αkxk (39)

F (xs) =
∑N

k=1
αkzk

where: αk ∈ R.
This property allows one to use the approximator as a

processor, as pointed out below.

C. MODEL OF ANALOG PROCESSOR
The model from Fig. 2 can be referred to as a superposition
processor, performing the addition and multiplication of real
numbers. Indeed, for the simplicity of presentation, let us
consider the component-wise addition of two vectors d1 and
d2. Defining two system vectors x1 and x2 with an a priori
known sum:

∑
= x1 + x2 (x1 6= x2) , one implements (d1+

d2), as presented in Fig. 4.
Note that:

φ

 x1· · ·
0

 =
 x1· · ·
d1

 , φ
 x2· · ·
0

 =
 x2· · ·
d2


and

φ

∑· · ·
0

 = φ
 x1 + x2· · ·

0

 =
 x1 + x2· · ·

d1 + d2

 (40)

It is clear that the functioning of the processor is based on the
data reconstruction property. This schema can be extended

FIGURE 5. Approximator as an analog processor: multiplication.

FIGURE 6. Structure of a pattern recognizer.

to the addition of N vectors. Multiplication by such a super-
position processor can be realized as the inverse operation
d = F−1(x) using the structure from Fig. 2 with a modified
feedback loop as presented in Fig. 5.

Thus, a component-wise multiplication of a given vector x
by a number A ∈ R i.e., A · x, can be realized as follows:

φ

([
x
0

])
=

[
x
1v

]
i.e., F (x) = 1v (41)

where: dim x = dim 1v = 1
22

n, n = 3, 4, . . .

1v = [1, . . . , 1]T

Hence, the inverse operation (Fig. 5) is realized by the same
Tc, changing only the feedback loop:

φ

([
d
0

])
= φ

([
1v
0

])
=

[
1v
x

]
,

φ

([
A · 1v
0

])
=

[
A · 1v
A · x

]
, (42)

i.e., F−1 (1v) = x and F−1 (A · 1v) = A · x

D. PATTERN RECOGNITION
Pattern recognition can be implemented by the approximator
defining a training set S = {xi, d i} as a set of patterns/vectors
assigned to one of a prescribed number of classes. For sim-
plicity of presentation, let us consider two classes of recogni-
tion, i.e.

S = {xi, d i}Ni=1 =
{
{xi, c1}

N1
i=1 , {xi, c2}

N
i=N1+1

}
(43)

where: c1, c2—a signature of prescribed classes (c1 6= c2)
xi−input patterns.
The structure of such a pattern recognizer is shown

in Fig. 6.
Note that the structure of the approximator can be aug-

mented as in Fig. 6. by the above-described feedforward
model [18]. Thus, vectors c can be interpreted as features of
input patterns. Moreover, this pattern recognizer can classify
incomplete vectors deploying the reconstruction property.
It is worth noting that the dimension of the Gram matrix (33)
is defined by the number of prescribed classes.
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FIGURE 7. Machine learning model featuring ‘‘parallelism.’’

E. SUPERPOSITION-BASED PARALLELISM
It is well known that quantum computations, and hence QNN,
are based on quantum parallelism, which is the result of
quantum state superposition. The structure of the machine
learning presented in Fig. 2 can be categorized as a com-
putation model featuring ‘‘parallelism’’ as well, because it
features superpositions of the processed vectors. Indeed, let
us assume that a given set of training vectors S = {xi, d i}Ni=1
is generated by a linear mapping F(·):

F (xi) = d i, i = 1, . . . ,N (44)

where: dim (xi) = m.
Under the assumption that in the set S there are m linearly

independent vectors: xi, . . . , xm, one obtains the following
superposition:

xk =∝1 x1 + . . .+ ∝m xm, xk ∈ S (45)

and: α = [α1, . . . , αm]T = X−1xk
where: X = [x1, . . . , xm]—computational basis matrix.
Hence, the structure of a mapping F(·) is supported by m

vectors:

ui =
[
xi
d i

]
, i = 1, . . . ,m

and

φ

[
xk
0

]
=

[
xk
dk

]
, xk ∈ S (46)

where: xk =
∑m

i=1 αixi and dk =
∑m

i=1 αid i.
Thus, the look-up table S = {xi, d i}Ni=1 can be, according

to (44), implemented by the structure shown in Fig. 7.
It is worth noting that a structure similar to the mapping

F(·) is used for solutions to different linear equations (see
further examples below) and linear transformations.

VII. COMPUTATIONAL VERIFICATIONS
Example 1:

The model of machine learning described above was used
for image reconstruction of incomplete and distorted patterns.
As a test image, a grey photo of Lena was used, having
resolution of 512 × 512 pixels, which is commonly used
to investigate algorithms for image compression and pro-
cessing (Fig. 8). This photo was written in the MATLAB
program in the form of matrix Xlena with a size of 512
× 512. The Xlena was a source of a different number of
patterns (columns or rows). The following sets of columns
were analyzed: N = 4, 16, 32, 64. The analysis of the full
image was therefore a sequence of 128, 32, 16, and 8 partial
analyses, respectively.

FIGURE 8. Test image.

FIGURE 9. Image reconstruction with a level of distortion of 90%,
4-column set of patterns: a) distorted image, b) reconstruction result after
5 iterations, c) reconstruction result after 20 iterations, d) reconstruction
after 100 iterations.

Using the approximator from Fig. 2, the input patterns
were (36):  xp· · ·

0

 }52
}460

where: xp—the preserved part of the photo columns.
This means that the input patterns were distorted by ran-

domly removing about 90% of the pixels. The convergence
of the iteration process is illustrated in Figs. 9, 10, and 11.
The images show the result of photo reconstruction after 5,
20, and 100 iterations, respectively. The best reconstruction
results were achieved for N = 4.
In the next experiment, some information was removed

from the analyzed image, leaving only a narrow band of
row patterns. From a formal point of view, in matrix Xlena,
the rows from 200 to 280 were left. The original image and
the reconstruction results after 5, 20, and 100 iterations are
presented in Fig. 12. It is worth noting that in the case of
a simultaneous analysis of the whole image, the dimension
of the approximator should be appropriately increased to
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FIGURE 10. Image reconstruction with a level of distortion of 90%,
16-column set of patterns: a) distorted image, b) reconstruction result
after 5 iterations, c) reconstruction result after 20 iterations, d)
reconstruction after 100 iterations.

FIGURE 11. Image reconstruction with a level of distortion of 90%, and
after 100 iterations: a) 64-column sets, b) 32-column sets, c) 16-column
sets, d) 4-column sets.

allow the processing of an image as a single column vector.
Moreover, in these numerical experiments, matrix W2k =

{1,−1, 0} was deployed.
Example 2:
Many machine learning algorithms and applications are

based on solutions of linear equations [15]. One considers
here the following problem:

F (x) : Ax = b (47)

where: A—(m× n) real matrix, m 6= n.
b−(m ×1) real vector, x- (n×1) real vector
m+ n = 2k , k = 3, 4, . . . ,
m < 1

2 (m+ n)
One considers two cases.
Case 1: m < n.
To solve this equation using the structure from Fig. 2, one

first generates a training set: {xi, bi}Ni=1,
i.e.,

Axi = bi, i = 1, . . . ,N = m (48)

FIGURE 12. Image reconstruction—rows 200–280 were left in the original
image: a) distorted image, b) reconstruction after 5 iterations, c)
reconstruction after 20 iterations, d) reconstruction after 100 iterations.

FIGURE 13. Block presentation of equation (49).

Under the assumption bi 6= bk , for i 6= k , the synthesis of a
mapping F (x) gives:

φ

[
bi
0

]
=

[
bi
xi

]
, i.e., F−1 (bi) = xi, i = 1, . . . ,m

(49)

where:
[
bi
xi

]
= ui, i = 1, . . . ,m,

as shown in Fig. 13.
Formulating b as a superposition of pattern bi; i.e.,

b =
∑m

i=1
αibi (50)

where: [α1, . . . , αm]T = [b1, . . . , bm]−1 b = B−1b
B = [b1, . . . , bm]−non-singular quadratic matrix (m×m)

( m-linearly independent vectors),
one obtains a solution to (47) as follows:

φ

[∑m
i=1 αibi
0

]
= φ

[
b
0

]
=

[
b∑m

i=1 αixi

]
=

[
b
x

]
(51)

Hence, the structure shown in Fig. 13 is the model of a
mapping φ and it sets up the solutions to (47).
It is worth noting that:
1. xi can be chosen as orthogonal vectors, i = 1, . . . ,m.
2. The structure shown in Fig. 14 gives solutions x to the

linear equation (47) for any b ≺ ∞. It is clear that values
of the vector [α1, . . . , αm]T are not necessary to solve
this linear equation by using the structure from Fig. 14.
However, they must exist, i.e., |αi| <∞, i = 1, . . . ,m.
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FIGURE 14. Structure of an inverse mapping model F−1 (b) = x .

3. Once designed, a structure of the mapping model pre-
sented in Fig. 14 can deliver any number of exact solu-
tions for the equation Ax = b by generating different
training sets: Sk = {xi, bi}Ni=1 , k = 1, 2, . . .

4. It is well known [26] that the least-squares (LS) solution
to (47) is:

x∗ = AT (AAT )
−1
b

Case 2: m > n.
Linear equations with dimensions fulfilling m > n can be

solved only approximately. The training set {xi, bi}mi=1 consti-
tutes matrix B (50), which is singular. This means that due to
the singularity of matrixB (m× m), a mapping F−1 (bi) = xi
cannot be determined.

However, the solutions to (47) for m > n can be obtained
by using an LS estimator of the superposition parameters αi
(50). Thus, for any given vector b (m× 1), n superposition
parameters αi can be set up by the least-squares approxima-
tion formula:

α = [α1, . . . , αn]T =
[
BTB+ λ1

]−1
BT b (52)

where: 1—identity matrix
λ ≥ 0
Hence:

b ≈ bs =
∑n

i=1
αibi (λ = 0)

and

bs (λ) =
∑n

i=1
αi (λ) bi, (λ > 0). (53)

It is worth noting that a positive parameter λ(i.e., λ > 0) can
be for bi � 0 set up to obtain αi > 0, i = 1, . . . , n, and hence
x � 0. The machine learning model for a solution of linear
equations Ax = b is presented in Fig. 15. It is well known
[26] that the LS solution of equation (47) is given by:

x∗ =
(
AAT

)−1
Ab

Thus one obtains: ∥∥x− x∗∥∥ = 0.

Note that for the ‘‘regularized’’ least squares in (53), i.e.,

bs(λ) =
∑n

i=1
αi(λ)bi, λ > 0

the exact solution x is also set up by the structure from
Fig. 15. It is well known that nonnegative matrix factorization
(NMF) has recently been used for modeling many real-life

FIGURE 15. Machine learning model for a solution to linear equation
Ax = b,m > n.

applications from the field of signal and data processing [22].
NMF is formally defined as

Bd ≈ AX,A ∈ Rm×r , X ∈ Rr×n (54)

or as

min ‖Bd − AX‖2F (55)

where: Bd—data matrix
A− basis matrix, r ≤ min {m, n}.

A nice review paper onNMF can be found in [27]. It should
be clear that (47) for case 2 (i.e.,m > n) can be interpreted as
an NMF subproblem under the assumptions: x � 0 (column
of X), A � 0,A ∈ Rm×r , and b—column of Bd . Thus,
one generates the training set {xi, bi}mi=1, where xi � 0,
bi � 0. Due to the above-described regularization,
the machine learning model for NMF is shown as in Fig. 15.
The model is adequate for all columns of the data matrix Bd .
Example 3:
The structure of machine learning presented in Fig. 2.

can be categorized as a computation model featuring ‘‘par-
allelism.’’ Hence, by using this model, ‘‘oracle’’ or ‘‘black
box’’ problems [28] can be solved by performing only one
query to the oracle. Indeed, a black box computes a function

f : {xi}2Ni=1→ {0, c} (56)

where: xi ∈ Rn, n+ 1 = 2k , k = 4, 5, . . ..
2N < 1

2 (n+ 1).
Moreover, one assumes that f is either constant (f (x) = c

for all x) or balanced (f (x) = 0 for 1/2 of the possible input
vectors). It is clear that the decision problem of whether f is
constant or balanced can be solved by accessing the black
box from Fig. 2 only once, using input s in the form of
superposition:

s =
∑2N

i=1
xi (57)

Hence:

φ

[∑2N
i=1 xi
0

]
=

[∑2N
i=1 xi

2N · c

]
for f constant

=

[∑2N
i=1 xi
N · c

]
for f balanced. (58)

This means that one query suffices to recognize a constant
and balanced function.
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FIGURE 16. Time series generated by the Mackey–Glass system.

FIGURE 17. Time series generated by the Lorenz system.

FIGURE 18. Time series generated by the Chua circuits.

FIGURE 19. Time series generated by the Rössler equation.

Example 4
The model from Fig. 2 was used for the recognition

of patterns generated by four deterministic chaos systems,
i.e., Mackey–Glass’s [29], Lorenz’s [30], Chua’s [31], and
Rössler’s [32] structures. Thus, sixteen 512-dimensional pat-
terns/vectors were used as learning vectors to determine
four classes: class (1) (Mackey–Glass), class (2) (Lorenz),
class (3) (Chua), class (4) (Rössler). Hence, four learning
vectors for every class were determined as:
ui= [xi; di]T = [x (ni−511) , x (ni−510) , . . . , x (ni) ; di]T

where: i = 1, 2, 3, 4
ni−the number of a time sample, ni = 505+ 7i
(time shift equals 7)
di− class signature
1. di = 5 for vectors of class (1), and x (n) are the time sam-

ples from the solution to the Mackey–Glass equation.

FIGURE 20. Implementation of the approximator constituting the analog
processor.

2. di = −5 for vectors of class (2), and x (n) are the
time samples from the solution to the Lorenz equations.

3. di = −2 for vectors of class (3), and x (n) are the time
samples from the solution to the Chua equations.

4. di = 2, for vectors of class (4), and x (n) are the time
samples from the solution to the Rössler equations.

As mentioned above, the main feature of the model from
Fig. 2 is that it can classify incomplete patterns. Indeed, with
only about 150 components of the 512-dimensional vectors,
recognition and classification were correct. Moreover, using
the data in this example, the oracle-like problem was solved
as an illustration of parallelism. Indeed, the membership of a
group of vectors in a given class can be set up by performing
only one query.

VIII. IMPLEMENTATION OF AN APPROXIMATOR BY A
DYNAMIC NEURAL NETWORK MODEL
As mentioned above, the basic structure of the approximator
shown in Fig. 2 resolves the equilibria of Hopfield neural
network-based biorthogonal filters. Hence, the structure of
the approximator from Fig. 2 and the analog processor can
be implemented as a ring of neural networks, as shown
in Fig. 20.

It is easy to see that the structure from Fig. 20 is described
by the following differential equations:

DE (ζ ) :
dζ
dt
= (W − 2 · 1+W s) θ (ζ )+

6· · ·
0+ θd (ξ)


DE (ξ) :

dξ
dt
=

1
2
(−W − 1)

[
θu (ξ)

θd (ξ)

]
+ θ (ζ ) (59)

where: θ (ζ ) =
[
θu (ζ )

θd (ζ )

]
.

Hence, the steady-state solutions of these equations are:

θd (ξ) → d1 + d2
θu (ξ) →

∑
(60)

In order to realize the unlimited number range of the pro-
cessor, one can assume the linearity of activation functions:
θ (ζ ) = ζ , θ (ξ) = ξ . It is worth noting again that in
the examples of computational verifications, the orthogonal
matrixW has the formW = {−1, 0, 1}.

IX. Q-INSPIRED MODEL OF MACHINE LEARNING
Asmentioned in the Introduction, Q-inspired neural networks
are a non-quantum version of CVNN. In this study, we show
that the extended model of Hopfield-type neural networks
can be a source of different types of computational models.
Thus, the Q-inspired Hopfield-type neural network is given
by (3). The machine learning model, implemented by such
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FIGURE 21. Structure of the complex-valued approximator.

FIGURE 22. Block structure of the complex-valued approximator (a =
0.2—scaling parameter for W 2 = −1).

a Q-inspired neural network, is determined by the following
statements:

Statement 1
The real-valued octonionic module defined by (10),(11),

(12) is for complex input vectors d ∈ C8 transformed to a
complex-valued module, because its transformation matrix
T8 is unitary, i.e., T8·T

†
8 = 1. Hence, the orthogonal matrix

W2k (15),(16) consisting of the octonionic modules can be
transformed to a unitary matrix by using unitary octonionic
modules.

Statement 2
Given a set of complex-valued training points {xi, d i}Ni=1,

where x ∈ Cn, d i ∈ Cm, n+m = 2k , k = 3, 4, . . ., using the
above considered biorthogonal transformation, one obtains
an implementation of a mapping given by complex training
points, i.e., Cn

→ Cm. The complex-valued structure of an
approximator is shown in Fig. 21.

It is clear that the complex-valued approximator can be
implemented as a complex-valued neural network or as
an algebraic mapping: Cn

→ Cm. Similar to the block
structure in Fig. 2b, the complex-valued approximator can
be represented as in Fig. 22, where ‘‘lumped memory’’ is
implemented by the Hermitian matrix.

The computational efficiency of the complex-valued
approximator is greater than that of the real-valued approx-
imator. To illustrate such a feature, we construct in
Example 5 a discrete Fourier transform using a prop-
erty called superposition-based parallelism, described above
(Section 6, E).

Example 5
Given a set of training vectors S = {xi, d i}Li=1, one aims to

compute:

DFT {xi} = d i, i = 1, . . . ,L (61)

where: dimxi = dimd i = m,m = 2k , k = 3, 4, . . .
d i ∈ Cm,m−point spectrum of xi(m > 8)
by using a Q-inspired model.

FIGURE 23. Block structure of DFT processor.

Taking m linearly independent vectors, z1, . . . , zm,
dimzi = m, one obtains the following superposition:

xi = α1z1 + . . .+ αmzm, xi ∈ S (62)

and α = [α1, . . . , αm]T = Z−1xi
where nonsingular matrix Z = [z1, . . . , zm].
Hence, the structure of the approximator should be sup-

ported by m vectors:

ui =
[
zi
DFT (zi)

]
; i = 1, . . . ,m, dim ui = 2m (63)

and

φ

[
zi
0

]
=

[
zi
DFT (zi)

]
, i = 1, . . . ,m. (64)

However, due to the conditions of (28), the number of patterns
that must be fulfilled is:

N < 0.5 (2m) = m

i.e., in the case considered here, one obtains:

m < 0.5 (2m) = m (contradiction).

Hence to compute DFT {xi} , i = 1, . . . ,L, one needs at
least two approximators. Indeed, any vector xi ∈ S can be
expressed as:

xi = x1i + x2i, i = 1, . . . ,L (65)

where:

x1i = α1z1 + . . .+ αlzl, l = m
/
2

x2i = αl+1zl+1 + . . .+ αmzm

and

DFT {xi} = DFT {x1i} + DFT {x2i} .

Therefore, one obtains the structure of two approximators
supported by m/2 vectors, respectively:

ui =
[
zi
DFT (zi)

]
; i = 1, . . . , l (66)

ui =
[
zi
DFT (zi)

]
; i = l + 1, . . . ,m, l = m/2. (67)
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Algorithm 1
1. Declaration:

Input the set of training points:
S = {xi, d i} , i = 1, 2, . . . ,N ,
xi ∈ Cn, d i ∈ Cm, n+ m = 2k , k = 3, 4, . . .

2. System design:
Create system vectors ui :

ui =
[
xi
d i

]
, dimui = n+ m

Calculate the spectrum mi of system vectors ui :
mi =

1
2

(
W2k + 1

)
ui

Create the spectrum matrixM :
M = [m1,m2, . . . ,mN ]
Calculate the Hermitian matrixWH :
WH = M

(
MTM

)−1
MT

Calculate the orthogonal transformation T (·):
T (·) ≡ T = 1

2

(
W2k + 1

)
Calculate the biorthogonal transformation Ts(·):
Ts (·) ≡ T s =

(
2 · 1−WH −W2k

)−1
3. Recursive procedure:

for i = 1:N
d̂
(0)
i = 0
while

∥∥∥d̂ (l)i − d̂ (l−1)i

∥∥∥ ≥ eps[
x̂i
d̂ i

](l)
= T−1T s

([
xi
0

]
+

[
0
d̂ i

](l−1))
end

end
(l = 1, 2, . . . steps of recurrence)
Final results of recurrence: d̂ i = d i; x̂i = xi

Thus, the approximator shown in Fig. 23 computes the DFT
spectrum d i for any vector xi ∈ S and, moreover, it com-
putes the spectrum d for any vector x ≺ ∞(dim x = m). It is
clear that through inverse modeling, the same approximator
computes IDFT. Finally, it is worth noting that the Q-inspired
model of machine learning described in Statement 2, which
was designed as complex-value approximator, can be used as
a model of an analog processor (Section 6, C) for the addition
and multiplication of complex numbers.

X. CONCLUSION
This study proposed a general model of a machine learning
system. This model has the following universal features: it
makes it possible to realize the typical, basic functions of
learning systems, such as association, pattern recognition
and classification, as well as inverse modeling. This study
also focused on one aspect of the application of the pre-
sented model: its usefulness for the signal reconstruction
of incomplete patterns. This aspect of the application was
illustrated with the results of the analyses, which showed
that image reconstruction is possible even in a case where
90% of information was randomly removed from the sig-
nal. This means that the model can be used as a device
for data compression as well. Moreover, as a side result of

the research, the structure of a superposition processor was
proposed. However, research on VLSI realizability, and the
practical meaning of such a processor is beyond the scope
of this study. Nevertheless, the structures proposed in this
study can be seen either as mathematical algorithms, or as
models of physically realizable VLSI networks. Thus, unlike
deep learning algorithms, which are basically multilayer non-
linear kernel machines designed by very-large-scale opti-
mization tools (e.g., SGD), the approximators proposed in
this study, as physical objects, could implement reversible
computations and ‘‘parallelism.’’ Finally, it should be noted
that the Q-inspired networks considered in this study and
implemented as complex-valued structures aremore powerful
than the real-valued realizations. However, the technological
realizability of CVNN is currently unknown, and thus, they
can be viewed only as mathematical algorithms.

APPENDIX
SUMMARY OF ALGORITHM
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