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ABSTRACT The signal-to-noise ratio of lidar signals decreases rapidly with an increase in distance, which
seriously affects the application of lidar detection technology. Variational mode decomposition (VMD) has
performed optimality in dealing with noise, but the number of modes, K , and the penalty parameter, α, must
be preset. Therefore, a novel lidar signal denoisingmethod that combines VMDwithmachine learning online
optimization (MLOO) and the interval thresholding (IT) technique, named VMD-MLOO-IT, is proposed
in this article. The proposed method defines new fitness functions to evaluate the result of VMD-based
denoising, and selects the optimal parameters by the model which development by MLOO. In addition, IT is
used to deal with the recovered signal. The experimental results demonstrate the superiority of the presented
method over the other empirical mode decomposition-based and VMD-based denoising methods.

INDEX TERMS LiDAR signal denoising, machine learning online optimization, Gaussian process,
variational mode decomposition, fitness function.

I. INTRODUCTION
Lidar is an active remote sensing instrument that has been
widely used to study the optical and physical characteris-
tics of aerosols in the atmosphere [1]–[5]. The parameter
knowledge of aerosols can be retrieved by using specialized
algorithms and lidar data [6]. However, lidar signals are
strongly affected by background noise, atmospheric turbu-
lence and detector noise, which severely limit the detection
distance and accuracy of lidar as well as subsequent related
applications [7]–[9]. Removing the noise from lidar signals
is very important for the development of lidar remote sensing
detection technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Various methods have been proposed for signal denoising,
the most recent of which are based on empirical mode decom-
position (EMD) and variational mode decomposition (VMD).
EMD is a recursive decompositionmodel that can decompose
a signal into a finite number of intrinsic mode functions
(IMFs) with an iterative process called sifting [10], [11].
The decomposition is related to the characteristics of the
signal itself without the requirement of any prior basis
functions [12]. With these advantages, many EMD-based
denoising methods have been proposed, such as EMD-HT,
EMD-ST [13], and EMD-STRP [14]. In [13], the position of
the noisy parts of the corrupted IMFs is altered in a random
way and EMDmultiple iterative is applied to selected interval
thresholding. In [14], the relevant and irrelevant intrinsic
mode functions are distinguished by correlation coefficient,
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the soft thresholding technique and the roughness penalty
technique are applied to the irrelevant and relevant modes
respectively to extract useful information effectively. Despite
the success of these works, EMD-based methods still have
some inherent limitations; for example: (a) there is a lack
of mathematical theory; (b) the methods may produce mode
mixing; and (c) the methods are sensitive to noise [15], [16].

In contrast to EMD, VMD, which was proposed by
Dragomiretskiy and Zosso in 2014 [17], is a nonrecursive
decomposition model in which the modes are extracted con-
currently. VMD is a very simple and fast method for sig-
nal adaptive decomposition that can decompose a real value
signal into an ensemble of modes with a central frequency,
and it has optimality in dealing with noise because of its
close relations to the Wiener filter [17]. However, penalty
parameter α and mode number K in VMD need to be pre-
defined, and these two values have an important impact on
VMD [18]. Although the parameters can be determined by the
trial-and-error method or through experience, these options
are time-consuming and inefficient because of the wide range
of choices. Thus, the most challenging task is to select the
optimal values of α and K . In [19], detrended fluctuation
analysis (DFA) is used to select K by estimating the scaling
exponent of each mode and comparing it with the threshold.
However, this method will affected by the relational model
between K and the scaling exponent of the input signal.
In [20], parameter K is selected with EMD. There could be
serious distortion in the modes by not considering the dif-
ferent decomposition principles of EMD and VMD. In [16],
the optimized two parameters are obtained by the particle
swarm optimization (PSO). This approach raises the question
of how to find a proper balance between exploration and
exploitation due to the stochastic nature of the optimization
process, and the maximum value of the fitness function does
not indicate the best result of mode decomposition. In [18],
whale optimization algorithm (WOA) is utilized to search
for the optimal parameter combination of K and α. This
method can obtain the appropriate parameter value, but not
always work because of the lowest energy entropy is used
as the fitness function. Besides, we cannot know how the
parameters affect the VMD results.

Machine learning, which can be used to build a model to
learn the accurate correlation between the input parameters
and output target, is a powerful tool for parameter optimiza-
tion [21]–[23]. Furthermore, Gaussian processes (GP) based
onBayesian statistics have characteristics relevant tomachine
learning, and their flexible nonparametric nature and com-
putational simplicity have attracted researchers from many
fields [24]–[27]. Therefore, in this article, a new VMD-based
lidar signal denoising method is proposed. The proposed
method designs the fitness functions to evaluate the result of
VMD-based denoising. In addition, GP is used to construct
the model of the relationship between parameters and the
fitness functions, and the model is refined by machine learn-
ing online optimization (MLOO). Accordingly, the optimal
parameters are identified. Finally, the reconstructed signal is

denoised again using an interval thresholding (IT) technique.
To verify the effectiveness of the proposed VMD-MLOO-
IT, numerical simulation and real data tests are carried out,
and comparisons with EMD-HT, EMD-STRP, VMD-EMD,
VMD-DFA and VMD-WOA are made. The main contribu-
tions of this article are:

• For selecting the parameters, optimization algorithms
has the best performance of global search. However,
the key part of optimization algorithms based on the
variable mode decomposition is the selection of the
fitness function. In this article, we propose new fitness
functions to evaluate the results of VMD-based denois-
ing by analyzing the essence of VMD.

• The common thresholding techniques not take into
account the distribution characteristics of a signal, which
limits the denoising effect. In this article, by employing
the interval thresholding (IT) technique to the recon-
structed signal, the performance improves.

• A novel lidar signal denoising method named VMD-
MLOO-IT is proposed. In contrast to existing VMD
parameter optimization methods, VMD-MLOO-IT built
a statistical model that relates the result of VMD-based
denoising with the parameters. It can be seen from
the model how the parameters affect the result of
VMD-based denoising, which can provide guidance for
our next experiment. The method is also different from
common machine learning whose goal is to construct
an accurate model. VMD-MLOO-IT implemented opti-
mization, and the learning was performed in real time.
Thus, a small sample was sufficient.

The rest of this article is organized as follows. In Section II,
the basic ideas of VMD and the GP are introduced. The
proposedVMDdenoisingmethod combinedwithMLOO and
IT is described in Section III. The results and discussion of the
proposed method applied to the simulation and real signal are
presented in Section IV. The last section is the conclusion.

II. RELATED WORK
A. VARIATIONAL MODE DECOMPOSITION
VMD can decompose a real valued input signal y into
an ensemble of band-limited intrinsic mode functions
(BLIMFS), which are amplitude-modulated-frequency-
modulated (AM-FM) signals, as follows:

uk (t) = Ak (t) cos(8k (t)) (1)

where uk (t) is the kth mode and a pure harmonic signal,
Ak (t) is the nonnegative amplitude, Ak (t) ≥ 0, 8k (t) is the
phase, and the instantaneous frequency is ωk (t) = 8′k (t),
where ωk (t) ≥ 0.

For each mode uk(t), VMD computes the associated ana-
lytic signal by means of the Hilbert transform and obtains the
unilateral frequency spectrum. Then, the mode’s spectrum is
shifted to the baseband by mixing with an exponential of the
respective estimated center frequency. After that, the band-
width of each mode is assessed through the Gaussian smooth
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demodulation signal. Thus, the constrained variational prob-
lem minimizes the sum of the estimated bandwidths for each
mode and is written as

min
{uk },{ωk }

{
K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk = y (2)

where {ωk} is the center frequency ensemble corresponding
to mode ensemble {uk}, K is the number of modes, ∂t ∂t is
the gradient with respect to t , δ is the Dirac distribution, and
y is the input signal that is decomposed by VMD.

To solve the above constrained variational problem,
a quadratic penalty term and Lagrangian multiplier are intro-
duced, which transform the constrained problem with an
unconstrained problem. Then, Equation (2) can be expressed
as

L ({uk}, {ωk}, λ)

:= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥y(t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), y(t)−

∑
k

uk (t)

〉
(3)

where α is the quadratic penalty parameter and λ is the
Lagrangian multiplier.

Now, Equation (2) is solved by finding the saddle point of
Equation (3) by iterative suboptimizations called the alternate
direction method of multipliers (ADMM).
uk is updated as

ûn+1k (ω) =

ŷ(ω)−
∑
i6=k

ûi(ω)+ λ̂(ω)/2

1+ 2α(ω − ωk )2
(4)

ωk is updated as

ωn+1k =

∫
∞

0 ω
∣∣ûk (ω)∣∣2 dω∫

∞

0

∣∣ûk (ω)∣∣2 dω (5)

For denoising, only the quadratic penalty term is retained
and the Lagrangianmultiplier is dropped. The details of VMD
can be found in [17].

B. GAUSSIAN PROCESS FOR MACHINE LEARNING
The Gaussian process is a special example of a stochastic
process in which random variables obey a Gaussian distribu-
tion, and their joint distributions are Gaussian [21], [28]. The
properties of the Gaussian process are completely determined
by mean value functionm(x) and covariance function k(x, x ′)
and can be written as

f (x) ∼ GP(m(x), k(x, x ′)) (6)

where m(x) = E[f (x)] and k(x, x ′) = E[(f (x) − m(x))
(f (x ′)− m(x ′))].

Gaussian process machine learning is a method for solving
machine learning tasks by using Gaussian process models
based on Bayesian statistics. A Gaussian process model used
for regression estimation is

y = f (x)+ ε (7)

where x is the input vector, f (x) is the function value, y is
the observed target value and ε is the additive Gaussian noise
that follows an independent, identically distribution with zero
mean and variance σ 2

n , ε ∼ N (0, σ 2
n ).

Assume there is a training dataset D of n samples,
D ={(xi;yi)ni=1 } ={X, y}, X is an n × d matrix, and y is a
column vector with n rows. d is the dimension of x. Our goal
is to predict a latent function f ∗ on test set X∗.

Starting from a zero mean Gaussian process f , we can
obtain a prior on the noisy observations with

y
∣∣∣X ∼ N (0,K (X,X)+ σ 2

n I ) (8)

The covariance functions that we use have some free
parameters called hyperparameters θ , which have an impor-
tant impact on the GP prediction [29]. In general, the hyper-
parameters are unknown a priori. The hyperparameters are
usually set by optimizing the (log) marginal likelihood. First,
we can obtain the log marginal likelihood by training the
dataset as follows:

log p(y |X, θ ) = −
1
2
yT (Kθ + σ 2

n I )
−1y

−
1
2
log

∣∣∣Kθ + σ 2
n I
∣∣∣− n

2
log 2π (9)

where covariance matrix Kθ = K (X, X; θ).
Then, the negative log marginal likelihood is minimized as

follows:

θ∗ = argmin
θ
− log p(y |X, θ ) (10)

The GP model is specified by θ∗. After they have been
determined, we can use the GP models to perform prediction
distributions at X∗.

f ∗ |X ∗ ,D ∼ N (µ(X∗), cov(X∗)) (11)

µ(X∗) = K (X∗,X)T [K (X,X)+ σ 2
n I ]
−1y (12)

cov(X∗) = K (X∗,X∗)− K (X∗,X)[K (X,X)

+ σ 2
n I ]
−1K (X,X∗) (13)

where µ(X∗) and cov(X∗) are the mean function and covari-
ance function, respectively, of f (X∗).

III. PROPOSED VMD DENOISING METHOD COMBINED
WITH MLOO AND IT
A. PRINCIPLE OF VMD-BASED DENOISING
Without loss of generality, a signal can be expressed as

y(n) = f (n)+W (n), n = 1, 2, · · · ,N (14)

where f (n) is the ideal noise-free signal corresponding
to y (n).W(n) is additive white Gaussian noise (AWGN) with
zero mean and variance σ 2

N , N is the length of f(n).
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FIGURE 1. Illustration of interval thresholding.

Denoising is performed to find an estimate ỹ(n) that is
close to f (n). From previous research [16], [18], [19], VMD-
based denoising is a recovered signal with partial BLIMFs,
as follows:

ỹ(n) =
J∑

k=1

uk (n), 1 ≤ J ≤ K (15)

where K and J denote the total number of BLIMFs and the
number of BLIMFs that are relevant to y(n), respectively.
The method that we use to distinguish the relevant and

irrelevant BLIMFs is to measure the Bhattacharyya dis-
tance (BD) of the probability density functions (PDFs) of
each mode and input signal as follows [18]:

C(k) = BD [PDF(uk (n)),PDF(y(n))]

s.t. y(n) =
K∑
k=1

uk (n) (16)

The relevant BLIMFs can be determined by evaluating
the slope of two adjacent BDs. The maximum slope can be
written as

J = argmax
k
|C(k + 1)− C(k)| , 1 ≤ k ≤ K (17)

Therefore, uk (k = 1,. . . , J ) is the relevant BLIMF, and the
others are irrelevant modes.

B. PARAMETER OPTIMIZATION BASED ON MLOO
Research shows that MLOO can use the GP to develop a
relationship model between parameters and the experiment
target value and implement optimization quickly in real time
[30], [31]. Inspired by this, we try to use MLOO to build
the relationship model between parameters α and K and the
fitness function. Thus, the key part of VMD-MLOO is the
selection of the fitness function. However, it is difficult to find
such a fitness function that simultaneously selects the optimal
parameters α and K and finds the best result of VMDwithout
prior information about the signal, which is the case in the real
world.

Here, we perform the analysis for the selection of param-
eters. According to [17], the essence of VMD is to decom-
pose a signal in the frequency domain into band-limited
signals with K center frequencies, which relate to the signal.
Based on this feature, for a certain signal, K is also cer-
tain. The function of α improves convergence and makes
the reconstructed signal have high fidelity simultaneously.
As mentioned in [17], when α is small, too few modes
mean that the lost modes will be shared by their neighboring
modes. In addition, the decomposedmodewill contain a large
amount of noise in too many modes. Therefore, parameter
selection can be divided into two stages. First, to determin-
ing K when α is small, set α = 100 as in [17]. Then, α is

FIGURE 2. Flowchart of VMD-MLOO-IT.
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TABLE 1. The execution time of different denoising methods (s).

determined by K . Equation (18) and Equation (19) are used
as fitness functions in the first and second stages, respectively,
as follows:

F(K ) = argmin
K

{
mean(C)
var(C)

}
(18)

where C is the cross-correlation coefficient between the
decomposed mode component and the input signal as in [16].
In the first stages, the best K is obtained with the smallest fit-
ness functions, which is the opposite of the process described
in [16]. As mentioned above, the smallest fitness function
indicates the best result of VMD, since α is small.

F(α) = argmax
α

N∑
n=1

{
y(n)− ỹ(n)
K − J

}
(19)

where ỹ(n) is the recovered signal in (15), y(n) is the original
signal, and J is the number of relevant BLIMFs. It can be seen
in (19) that the fitness function is the average energy of the
irrelevant modes. Clearly, the useful signal and noise content
of the original signal is certain, which is represented by the
relevantmodes and irrelevantmodes. In addition, the bestK is
selected, which means that it is currently in a good decompo-
sition state. In this case, the larger the energy of the irrelevant
BLIMFs is, the more noise removed, implying a better result
of VMD-based denoising. However, the value range of α is
very wide, so it is difficult to select the optimal parameter.
Consequently, MLOO is used to build the relationship model
between α and the fitness functions. The detailed steps of
parameter optimization based on MLOO are as follows:
Step 1. Building a relationship model. Assume we have

a dataset of input/output pairs D ={p;F(p)}, p={αi}
i = 1,. . . , N . GP can be used to develop a statistical model
for the relationship between p and F(p), as in (10).
Step 2. Predict the distribution of F(p∗), p∗ = α∗. For any

p∗ in �, which is the space of all possible parameter values,
we can predict the distribution of F(p∗) with (12) and (13)
based on the model built in step 1.
Step 3. Select the optimal parameter. We can select param-

eter p∗opt(α
∗) corresponding to the largest µF(p∗), using an

FIGURE 3. The MLOO convergence curve for VMD parameter optimization.

‘optimizer’ as follows:

p∗opt = arg max
p∗∈�

µF (p∗) (20)

Step 4. Refine the model. The model based on current
dataset D may not be sufficient to accurately describe the
relationship between parameter p and fitness function F(p)
because the dataset is too small, and this ‘optimizer’ could
become trapped in local minima. However, we can select
parameter p∗L(α

∗) corresponding to the largest covF(p∗), using
a ‘learner’ as follows:

p∗L = arg max
p∗∈�

covF (p∗) (21)

A larger covF(p∗) indicates a greater difference between
the true value and the predicted value of F(p∗). To improve the
performance of the model, we can calculate the real value of
F(p∗L) in the experiment and merge (p∗L; F(p

∗

L)) into datasetD.
Next, return to step 1.

In the above steps, the ‘learner’ best refines our model, but
it learns in the whole parameter space and has a large cost,
which is unnecessary. Therefore, the ‘optimizer’ works at the
same time and is used to monitor the learning process and
obtain a global minimum. The optimal parameter p∗opt(α

∗) is
selected when the optimization process converges.

C. INTERVAL THRESHOLDING TECHNIQUE
Conventional thresholding techniques, such as hard
thresholding and soft thresholding, do not take into account
the distribution characteristics of a signal, which limits the
denoising effect. Interval thresholding, which considers the
same direction interval as the whole to implement threshold
operations, has better performance [32]. In contrast to the
conventional methods, we perform interval thresholding on
the reconstructed signal after VMD denoising as follows:

ỹ(i)(n) =

{
ỹ(i)(n),

∣∣ỹ(i)(n)∣∣ ≥ T
0,

∣∣ỹ(i)(n)∣∣ ≤ T

T = σ
√
2ln(N), σ = median(|ỹ(n)|)/0.6745 (22)
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TABLE 2. The denoising results compared with the different fitness
functions for α = 50, α = 75, α = 100 and α = 200.

TABLE 2. The denoising results compared with the different fitness
functions for α = 50, α = 75, α = 100 and α = 200.

FIGURE 4. The predicted distribution diagram where the optimal
parameters occur.

where ỹ(n) is the reconstructed signal, ỹ(i)(n) indicates the ith
interval that has the same positive or negative value,

∣∣∣ỹ(i)(n)∣∣∣
is the peak of the ith interval, as shown in Fig. 1, and T is the
threshold of ỹ(n). Equation (22) denotes the component of the
ith interval set to zero when the peak

∣∣∣ỹ(i)(n)∣∣∣ is less than T.
Otherwise, it remains constant.
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FIGURE 5. Decomposition result for the noisy Bumps signal.

D. PRINCIPLE OF VMD-MLOO-IT
As shown in Fig.2, the ‘learner’ produces a parameter set p,
for the VMD-based denoising to test, the denoised signal
is used to calculate the fitness function based on its qual-
ity as a resource F(p). F(p) is back to the ‘learner’. Then,
the model of the relationship between parameters p and F(p)
is developed, the ‘optimizer’ select the optimal parameter p∗

base on this model, and the next parameters p is picked
for the VMD-based denoising. The loop is iterated until the
predicted value µF(p∗) tends to converge, and the signal is
reconstructedwith relevantmodeswhich is obtained byVMD
with optimal parameters. Finally, the same direction interval
of the reconstruct signal is identified, and the denoised signal

is picked up by removing noise using the interval thresholding
technique (ITT).

E. COMPUTATIONAL COMPLEXITY OF VMD-MLOO-IT
The computational complexity of an algorithm itself should
be concerned except for its performance. Yang et al. [33] ana-
lyzed the computational complexity of EMD-based denois-
ing. Liu et al. [19] analyzed the computational complexity of
VMD-based denoising. On the basis of these works, we ana-
lyze the computational complexity of VMD-MLOO-IT.

Here, an input with a length of N through VMD is decom-
posed into a given number K mode, α is assigned in the inter-
val (800–10,000), the number of search agents inVMD-WOA

223488 VOLUME 8, 2020
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TABLE 3. Denoising performance with different SNRin for the Bumps signal.

is 30, the number of input/output pairs used in MLOO is m,
m= 19. The time complexity of VMD isO(2N log2(2N )), and
the time complexity of MLOO is O(m2) [34]. The arithmetic
operations involved include addition (ADD), subtraction
(SUB), multiplication (MUL), division (DIV) and compar-
ison (COMP), assuming they take the same amount of time.
Then, the time complexity of IT is N ·(1COMP). From Fig.2,
it can be found that the time complexity of VMD-MLOO-IT
ism·O(2N log2(2N ))+O(m2), which is bigger than the VMD
and EMD.

In order to verify the correctness of proposed algorithm
complexity, a series of experiments are carried out. The test
signal is Bumps with 5 dB of Gaussian white noise, where the
length N ranges from 28 to 212. The configuration of the com-
puter is as follows: Intel (R) Pentium (R) G3260 @3.30GHz
CPU and 4.00 GB RAM memory running windows 7. The
execution time is shown in Table 1. As analyzed the time
complexity of VMD-based denoisingmethods are bigger than
the EMD-based denoising methods. The smallest time is the
EMD-HT. The bigger time is the VMD-WOA, VMD-MLOO
and VMD-MLOO-IT because of these methods search the
wide range of parameter α. The others select parameters α
by empirical, which is sometimes invalid, and the cost time
will be even bigger if they use trial and error. The future work
will be reducing the complexity of the proposed algorithms,
especially for MLOO.

IV. RESULTS AND DISCUSSION
To assess the validity of the proposed VMD-MLOO-IT
method, this section includes experiments with simulated
and real noisy signals. The results are compared with dif-
ferent denoising methods, such as EMD-HT, EMD-STRP,
VMD-DFA, VMD-EMD, and VMD-WOA.

FIGURE 6. Bhattacharyya distance between the modes and the Bumps
signal.

A. SIMULATION EXPERIMENT ON TYPICAL SIGNAL
In this experiment, we generate a typical signal, ‘‘bumps’’,
using the ‘‘wnoise’’ function in MATLAB and a lidar simula-
tion signal generated by the lidar equation [35]. These signals
are corrupted by additive Gaussian noise. The output signal-
to-noise ratio (SNRout), root mean square error (RMSE), and
mean absolute error (MAE) are used as performance indices.

SNRout = 10 log

N∑
n=1

f 2(n)

N∑
n=1

[
ỹ(n)− f (n)

]2 (23)

RMSE =

√√√√ 1
N

N∑
n=1

[
ỹ(n)− f (n)

]2 (24)

MAE =
1
N

N∑
n=1

|ỹ(n)− f (n)| (25)
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FIGURE 7. Comparisons of different denoising techniques for the noisy Bumps signal.

where f (n) is the ideal noise-free signal, ỹ(n) is the denoised
signal, and N is the length of the signal. The comparison
experiment of the denoising method in this article has gone
through 30 experiments and the experimental data results are
averaged.

Here, we illustrate the proposed algorithmwith an example
of the Bumps signal with 5 dB of Gaussian white noise and
signal length N = 2048. Table 2 shows the denoising results
when α is set to a small value (α = 50, α = 75, α = 100, and
α = 200) and is compared with the different fitness functions
mentioned in [16], [18], which are expressed as F_ cross and
F_ entropy. F_ cross is the ratio of the mean value of the
cross-correlation coefficient and the variance, and F_ entropy

is the lowest energy entropy. However, it can be seen that the
SNRout and RMSE change with K , and the largest F_ cross
(red bold) and lowest F_ entropy (red bold) never obtain the
largest SNRout and smallest RMSE. In contrast, when the
F_ entropy is minimized (black bold), the largest SNRout and
smallest RMSE are found, which is in accordance with the
analysis in Section III.B. Consequently, it is appropriate to
use the minimum F_ entropy as the fitness function for (18)
to obtain the optimal parameter K = 7.

Fig. 3 shows the search process for (α∗, µF(α∗)). In the
initial stage, point (3500, 76.1887) is selected. However, due
to the small number of samples, the model cannot accu-
rately describe the relationship between parameters α and
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FIGURE 8. Results of denoising for lidar simulation signals.

fitness function F(α), and the prediction may be inaccurate.
Therefore, the model continues to learn and is modified.
The learning continues until µF(α∗) is found and converges,
at which point the largest µF(α∗) is 76.6556, and optimal
parameter α∗ is 4300. In particular, it should be noted that

parameter α is the same from iterations 7 to 9, but the pre-
dicted values are different, which indicates the adjustment
ability of MLOO, and this is also the difference from the
general optimization algorithm. Fig. 4 is the predicted distri-
bution diagramwhere the largestµF(α∗) is obtained. It can be
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FIGURE 9. Comparison of the denoising results from the proposed
VMD-MLOO method, VMD-MLOO -IT method and other methods for the
range squared corrected signal.

seen from the figure how parameter α affects fitness function
F(α), which can provide guidance for our next experiment,
and the accuracy of the prediction increased with the number
of training points (red cross).

Fig. 5 is the decomposition result for the noisy Bumps
signal by VMD with the optimal parameter (7, 4300). The
seven BLIMFs are distributed from low frequency to high
frequency. Fig. 6 shows the Bhattacharyya distance (BD)
between the BLIMFs and the Bumps signal calculated
by (16). We can see that the slope between BD2 and BD3 is
the greatest, as shown by the red line. In other words,
BLIMF1 and BLIMF2 are chosen as the relevant BLIMFs.

Fig. 7 shows the denoised results for the seven denoising
methods on a noisy Bump signal with an input signal-to-noise
ratio SNRin = 5 dB. The blue lines are the true signals,
and the green lines represent the denoised signals. Notably,
the best results are provided by the VMD-MLOO-IT, which
has the highest SNRout = 18.6349 dB, the lowest RMSE =
0.2106, and the lowest MAE = 0.1214, and VMD-MLOO

is the second best. As seen from the noisy Bumps signal
in Fig. 5(a), both EMD-based denoising methods and
VMD-based denoising methods can remove noise effectively,
but the latter is superior to the former because of its close
relations to the Wiener filter. However, the denoised sig-
nal obtained by VMD-DFA, VMD-EMD, VMD-WOA, and
VMD-MLOO still has some amplitude distortion at both ends
and in the middle, whereas the proposed VMD-MLOO-IT
overcomes these amplitude distortions. The main reason is
that the IT technique eliminates the faint jitter in the signal
and improves performance.

Table 3 lists the denoising results of EMD-HT,
EMD-STRP, VMD-DFA, VMD-EMD, VMD-WOA, VMD-
MLOO, and VMD-MLOO-IT with input signal-to-noise
ratio (SNRin) varying from−1 to 10dB. The highest SNRout,
lowest RMSE, and lowest MAE are shown in bold. The
denoising results of VMD-based methods are better than
those of EMD-based methods, and VMD-MLOO-IT obtains
the best result.

Fig. 8 shows the denoising results of these seven meth-
ods for lidar simulation signals. The blue line and red line
represent a noise-free signal and a noise signal, respectively,
with SNRin = 6dB. The green line denotes the denoised
signal. In addition, the ordinate represents the intensity of the
signal, and the abscissa represents the distance. It can be seen
from Fig. 8 that the denoised signal obtained by EMD-HT
and EMD-STRP has obvious amplitude distortion, which is
much better in other VMD-based methods. However, there
is a noticeable jitter in the x-coordinate range of 9 to 10 for
all methods except VMD-MLOO-IT. Table 4 compares the
denoising performance of these seven methods, among which
the best performance is shown in bold. The denoised result
in Fig. 8 and Table 4 indicates that the VMD-MLOO-IT
obtains the best results and is much more robust to noise.

TABLE 4. Performance of the seven denoising methods.

B. REAL EXPERIMENT ON A LIDAR ECHO SIGNAL
To further show the capacity of the proposed VMD-MLOO-
IT method, we test it on a real lidar signal. The lidar station is
at Nanjing University of Information Science & Technology
(118.7◦ N, 32.2◦ E). Data were collected using a Rayleigh-
Raman-Mie lidar based on a diode-pumped Nd: YAG laser
emitting at 532 nm with a total pulse energy of 200mJ. The
lidar echo signal is received by the photomultiplier tube and
sampled at a range resolution of 30 m. More details related to
the instrument are given in [35].

223492 VOLUME 8, 2020



Z. Liu et al.: Signal Denoising Method Combined With VMD, MLOO and the Interval IT

To eliminate the influence of distance, the measured lidar
backscattering signal will be corrected with range squared
by multiplying the square of the distance. It can be seen
from Fig. 9 that the intensity of the range squared corrected
signal decreases with the height, and at heights above 8 km,
the signal without denoising is almost masked by noise.
Consequently, the detection range of the lidar instrument
is severely limited, which affects its application in related
fields. However, the noise can be removed by EMD-based and
VMD-based denoising, as shown in Fig. 9. We propose that
VMD-MLOO and VMD-MLOO-IT achieve the best result.
The signal is smoother and the detection range is increased
to nearly 12 km after denoising, while the range squared
corrected signal denoised by EMD-HT and EMD-STRP has
serious distortion at heights of 2-4 km and the signal denoised
by VMD-DFA and VMD-EMD has a large jitter at heights
of 2 km.

V. CONCLUSION
In this article, we proposed a novel method for lidar sig-
nal denoising, which we called VMD-MLOO-IT. The pro-
posed method designed a new fitness function to evaluate
the results of VMD-based denoising and utilized the GP to
develop a relational model between the parameters and the
fitness function. Next, the model was optimized online with
machine learning so that the optimal parameters could be
predicted accurately. Finally, the signal was reconstructed
with the relevant BLIMFs and denoised by IT. In contrast
to existing VMD parameter optimization methods, VMD-
MLOO-IT built a statistical model that relates the result of
VMD with the parameters and predicted the outcome given
any parameters. The method is also different from common
machine learning, whose goal is to construct an accurate
model. VMD-MLOO-IT implemented optimization, and the
learning was performed in real time. Thus, a small sample
was sufficient.

We tested VMD-MLOO-IT and VMD-MLOO on a typical
signal, called ‘‘bumps’’, with different input signal-to-noise
ratios and found that they were superior to other denoising
methods (EMD-HT, EMD-STRP, VMD-DFA, VMD-EMD,
and VMD-WOA). We also experimented on a lidar simu-
lation signal, which was corrupted with 6 dB of additive
Gaussian noise. The results show that VMD-MLOO-IT
achieves the best performance. Finally, we tested VMD-
MLOO-IT and VMD-MLOO on a real lidar backscattering
signal corrected with range squared. The experimental results
demonstrated that the proposed method not only produced
favorable signal denoising performance but also extended the
detection range from 8 km to 12 km.
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