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ABSTRACT Consumers lie at the epicenter of smart grids, since their activities account for a large portion
of the total energy demand. Therefore, utility companies, governmental agencies, and various other entities
with environmental concerns aim at lowering and shaping energy consumption patterns to achieve peak
load reduction, load smoothing, and hence carbon emission curtailment. In this survey paper, we present
an overview of approaches for engaging smart grid consumers and for providing them with information,
motivation, and recommendations for energy efficiency through mobile apps. Our focus is to bring machine
learning approaches closer to smart grid mobile apps so as to optimally manage consumer flexibility and
enhance energy savings through detailed consumer profiling and modeling, since an increasing amount
of energy consumer data is becoming available. A novel survey and analysis of prior work in the area is
conducted in order to identify gaps from this perspective. We consider both recent research project outputs
and commercial products and we discuss various aspects of the designs, such as state-of-the-art technologies,
extrinsic and intrinsic motivation techniques, gamification, consumer profiling, and the role of machine
learning and recommender systems in this context. Furthermore, different mobile apps are presented and
compared based on the most important features that affect consumer energy efficiency and sustainability,
such as data visualization, gamification, flexibility, consumer profiling methods, feedback mechanisms,
recommendations, social media, and machine learning integration. The main goal of this work is to identify
how mobile apps incorporate these features to engage energy consumers in energy-efficient behavior, assess
the current state-of-the-art in the area, and highlight future research directions.

INDEX TERMS Mobile apps, smart grid, consumer motivation, energy consumption reduction, smart
homes, smart buildings, demand shaping, machine learning, recommender systems.

I. INTRODUCTION
The smart grid ecosystem is growing rapidly during the last
decades, contributing to the efforts of environmental green
transition, energy efficiency, and reduction of carbon levels.
At the heart of a smart grid lie Internet of Things (IoT)
devices providing real-time monitoring and management of
each network node, through two-way communication chan-
nels between utilities and users. This approach is called
Advanced Metering Infrastructure (AMI) and supports self-
monitoring, self-healing in the case of errors, and automated
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operation, as well as new and innovative services and prod-
ucts for customers [1]. Consumers comprise the main actors
directly involved in the electricity grid [2], while buildings
are responsible for about one third of the global energy con-
sumption [3], with residential buildings accounting for 22%
of the total energy demand worldwide [4]. Hence making
end-users more energy-aware and motivating them to lower
electricity consumption can have an immense impact on
energy efficiency and carbon emissions reduction. In smart
grids, an approach called Demand-Side Management (DSM)
is adopted by utilities to dynamically adjust energy consump-
tion. DSMmodels includeDemand Response (DR) programs
that aim at changing the power consumption profiles, and
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shaping the load curves of occupants with dynamic pricing
schemes and incentives. Thus, it is essential for utilities to
engage and educate consumers on energy efficiency, while
also understanding their behavior [2].

This is where mobile apps, paired with smart home and
IoT infrastructures come into play. Mobile devices have more
computational capabilities than ever, while mobile app design
and development advancements lead to their adoption by
the majority of the population. Hence, the penetration of
smartphones together with the proliferation of mobile apps
create effective means to interface with smart grid con-
sumers. Furthermore, the rapid progress of artificial intelli-
gence and machine learning can significantly help utilities
to better understand the behavioral characteristics of their
consumers, and thus design effective incentive mechanisms
through mobile applications and advanced electricity con-
sumer profiling.

Many survey papers related to smart grids, smart homes,
and the IoT have been published in the past. For example,
in [5] the authors conduct a thorough review of IoT applica-
tions regarding smart homes. That survey covers a large area,
from other review articles and studies examining smart home
applications of IoT, to proposals and attempts of developing
such applications. The study briefly touches on the usage of
some mobile applications in smart homes for energy conser-
vation, primarily through automation and actuation.

Furthermore, some survey papers regarding the utilization
of gamification in smart grids have also been published.
A review of gamification and serious games for residential
energy consumption reduction is carried out in [6]. That
study includes a variety of gamification applications, and
states that most of them incorporate features like social
media integration, point systems, challenges, leaderboards
and rewards. One other review of gamification and seri-
ous game approaches aimed at engaging consumers towards
energy efficient behaviors is undertaken in [7]. The study
shows that such strategies are quite effective and are mostly
utilized for environmental education, consumption awareness
and pro-environmental behaviors. In [8] a survey of Euro-
pean research projects is presented, which delivers gamifica-
tion and visualization solutions to enhance energy-efficient
behavior of energy and water consumers. The authors derive
and propose solutions for frequent challenges related to such
projects, such as data acquisition, applying baselines, ensur-
ing consumer engagement, producing various motivation fac-
tors, user modeling, providing user guidance and education,
privacy issues, model validation, achieving long-term impact,
and averting rebound effects.

Moreover, several papers have surveyed the area of smart
grid consumer engagement and behavioral characteristics.
A literature survey of Information and Communications
Technology (ICT) applications regarding home energy effi-
ciency is conducted in [9]. The authors focus on occupant
behavioral aspects and show that the adoption of such ICT
solutions can reduce household consumption by up to 5%.
A review of the factors that enhance electricity consumer

engagement and acceptance in the smart grid context is car-
ried out in [2]. That work is essentially a guide for researchers
and policy makers to help them understand the behavioral
characteristics of a smart grid customer. The study states that
the reduction of electricity bills and carbon footprint, as well
as the increase of user comfort, are the main factors that
affect consumers’ perspectives towards energy management
programs. Furthermore, user acceptance can be increased by
ease of use, education regarding the benefits of smart grids,
and implementation of pilots.

As far as smart grid mobile apps for residential energy effi-
ciency are concerned, the authors in [10] carry out a review
of how mobile apps and especially social media mobile
apps can further engage smart grid consumers. They discuss
how electricity providers and utilities can take advantage of
mobile applications and social media to achieve customer
loyalty and engagement. The authors recommend that this
can be achieved through personalization, exclusivity, and
gamification.

In this survey, we present a review of existing work on
mobile apps for the smart grid ecosystem and residential
energy efficiency. Particularly, we conduct a novel survey and
analysis of those mobile app features that affect consumer
engagement and energy savings, and then further analyze
the impact that machine learning approaches can have on
such mobile apps through optimal flexibility management,
detailed consumer profiling, and targeted personalized rec-
ommendations. Our survey helps to assess the current state-
of-the-art in smart grid mobile apps, focusing on consumer
motivation, engagement, and the use of machine learning
and recommender systems. This class of mobile apps has
not been explored much, while the repercussions of machine
learning and recommender systems and their impact on smart
grid consumers is a new emerging research direction. Hence,
we focus on electricity consumer engagement and motiva-
tion, both from the research and the industry perspectives,
while also examining how machine learning can be utilized
to improve the impact and the results of such mobile apps,
through techniques such as detailed consumer profiling, clus-
tering, and classification. Literature surveys that discuss var-
ious applications of machine learning in IoT and smart grids,
e.g., [11], [12], and [13], have been conducted in the past.
However, our work differs from existing ones since we focus
on smart grid consumer engagement and motivation through
mobile apps and behavioral traits recognition with machine
learning.

The remainder of this paper is organized as follows.
In section II, we present the typical system architecture
of a smart grid mobile app, with state-of-the-art technolo-
gies and frameworks. In section III, a brief overview of
user engagement and motivation techniques with a focus
on gamification is conducted. In section IV, existing work
on mobile apps for energy efficiency is presented, regard-
ing both research project outputs and commercial products.
In section V, the role and impact of machine learning and
recommender systems in such applications is studied, and
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FIGURE 1. Smart grid system architecture example consisting of IoT devices, an IoT gateway for communication, a back-end
platform for data processing and web services, and a mobile app frontend, all with state-of-the-art technologies.

relevant approaches are presented. In section VI, a thor-
ough comparison of existing mobile apps for electricity con-
sumer motivation is carried out, regarding various features.
In section VII, we discuss a series of open issues and future
directions, and in section VIII we present a summary of the
paper, key points, and our conclusions.

II. SYSTEM ARCHITECTURE AND RELEVANT
TECHNOLOGIES
A feature-rich smart grid mobile app is most often utilized
along with other hardware and software components, like
IoT devices, smart meters, back-end servers, and Cloud
databases. A typical example of the system architecture of
a smart grid mobile app, using state-of-the-art technologies
and frameworks, is presented in Fig. 1, and discussed in this
section.

A. IoT INFRASTRUCTURE
Starting from the users’ premises, IoT sensors and smart
meters are deployed at houses and buildings to collect mea-
surement data. Such measurements include power, energy,
current, and voltage both at whole dwelling and individual
appliance level, as well as climate conditions (e.g. temper-
ature, humidity, pressure, etc.), illuminance, and detected
motion. Furthermore, IoT devices are utilized to measure
the performance and energy generation output of renewable
sources, which most often are solar panels. Solar generation
monitoring is essential for smart homes and smart energy
grids since residential energy production modeling and

forecasting can lead to a substantial reduction of carbon
emissions. For example, excessive generation can be stored
with batteries, while residents can shift scheduled activities
(e.g. a washing machine task) to midday time slots with high
solar generation capabilities.

These sensors and smart meters usually communicate with
an IoT gateway, and transfer the aforementioned measure-
ments through wireless short-range network protocols like
Bluetooth [14], Wi-Fi [15], Zigbee [16], or Z-Wave [17].
Zigbee is a personal area wireless communication proto-
col providing low data rates with low power consumption,
in a simpler and cheaper way, compared to other wireless
protocols like Bluetooth and Wi-Fi. Z-Wave is a wireless
communication protocol specially designed for smart home
automation and low-power communication between appli-
ances. The IoT gateway is typically a hardware component
installed at the user’s premises and is essentially responsible
for the communication between the IoT devices, and the
back-end platform in a secure way. It uses protocols like
MQTT [18] to communicate and exchange data with the
back-end system in a publish-subscribe approach. This means
that the IoT devices and the gateway act as data producers/
publishers, i.e. publishing to different topics, while the
back-end server acts as a data consumer by subscribing to
specific topics. All communication is handled by a broker,
i.e. when a new measurement is available by a publisher,
it sends the appropriate message to inform the broker, which
then distributes the data to the subscribers of the related
topic.
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B. BACK-END SERVER
The back-end system contains multiple software components
responsible for different services related to the mobile appli-
cation, such as database storage, big data processing, data
analytics, machine learning computation, and REST APIs.

1) DATABASE
Smart grid IoT measurements are often stored in NoSQL
databases like MongoDB [19] or InfluxDB [20], since they
are a better fit for time-series data. Such NoSQL databases
are most often utilized for real-time applications with big
data, since they store data in different ways compared to tradi-
tional relational databases, like key-value stores, documents
or objects, which can provide immense speed and memory
benefits depending on the application.MongoDB is a NoSQL
database that uses documents to store data instead of tables,
while InfluxDB is also a NoSQL database specialized in time
series data like IoT measurements.

2) BIG DATA PROCESSING AND MACHINE LEARNING
Issues regarding volume, velocity, and variety might arise
when processing smart grid data for analytics purposes. Thus,
technologies like HDFS [21], Kafka [22], and Spark [23] can
be utilized for big data processing and analytics. HDFS is
a distributed file-system capable of running on commodity
machines and is ideal for storing large datasets, such as
smart meter measurement data used for analytics. Kafka is
a publish-subscribe stream-processing framework designed
for real-time big data streaming and messaging that pro-
vides connectors with other interfaces for big data storage
and analytics. Kafka is used in smart grid data pipelines in
order to handle the large volume and frequency in which
smart meters can generate and send measurements in real
time, without having data loss, latency, and scalability issues.
Spark is a big data processing framework optimized to run on
computer clusters and includes a variety of functionalities,
from classic SQL-like data queries to streaming analytics
with Spark Streaming and graph-processing with GraphX.
Furthermore, Spark comes with a machine learning library
for big data called MLlib, which includes popular machine
learning algorithms. Spark can be used to execute heavy
smart grid data analytics jobs with high speed, both for batch
and streaming measurement data from IoT devices and smart
meters. Frameworks like TensorFlow [24], Keras [25], and
PyTorch [26] can also be utilized for deep learning models
and neural networks. Some of the trained models can also
be deployed and run directly on the mobile device using
libraries like TensorFlowLite.Wewill further discuss the role
of machine learning for smart grid mobile apps in section V.

3) WEB SERVER
Finally, a back-end web server is responsible for providing
all the REST API endpoints necessary for the mobile app to
communicate with the aforementioned services and exchange
data. REST, which stands for Representational State

Transfer, defines a set of web service standards and guide-
lines for computer system communication through the inter-
net with high interoperability.

III. CONSUMER MOTIVATION TECHNIQUES
Different consumer interfaces are used by mobile app design-
ers to elicit certain behavior and motivate consumers towards
specific actions. For instance, prior work has been conducted
for the optimization of mobile crowdsensing campaigns,
where service providers have to choose the subset of targeted
users, the assigned tasks and incentives to fulfill them [27].
Such motivation techniques most often include monetary
payments or in-app rewards, and their efficient allocation
requires accurate user profiling in terms of behavioral char-
acteristics and preferences. Furthermore, machine learning
techniques can also be used to capture consumer profile
information from historical data, e.g. past responses to similar
recommendations from the mobile app, in order to make a
more efficient task allocation between users in terms of costs
and impact [28]. In addition, such crowdsensing approaches
can be generalized and applied to mobile applications for
energy efficiency, where energy-related tips and recommen-
dations are presented to the users to reduce their energy
consumption [27].

Two types of motivation can be found in the literature:
extrinsic and intrinsic motivation. The former is based on
external rewards such asmoney and some type of recognition,
while the latter refers to user behavior without clear external
rewards that is triggered due to personal beliefs and needs.

A. MEANS FOR EXTRINSIC MOTIVATION
One of the most commonly used techniques for extrinsic
consumer motivation is gamification, which refers to tech-
niques and systems that focus on motivating and engaging
users by utilizing game design principles [29]. Common gam-
ification features like points, badges, and leaderboards, can
substantially increase user engagement and motivation. Con-
sumer motivation can also be achieved through competition.
Namely, gamification creates competition among consumers,
and they compete to gain badges, points, etc. Points can be
used to determine user achievements and progress, while they
are most often converted to real rewards, like discounts and
gift items. Badges act as virtual status symbols that separate
the users that acquired them from the rest. Leaderboards serve
as a comparison tool for users, engaging them in a competitive
way.

Gamification has been shown to have a positive impact on
residential energy consumption reduction [6]. In [29], a the-
oretical gamification framework for household consumer
energy efficiency engagement is proposed. This framework
can be applied in any setting assuming smart meters are
present. It first establishes a behavioral change model for
energy efficiency, self-consumption, and demand response,
with specific requirements like awareness, knowledge, pri-
vacy, incentives (economic, environmental, and social), ease
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of use, and self-control. The gamification component design
of [29] includes:
• Information provision: Statistics, messages, tips.
• A Reward system: Discounts, virtual currency, prizes,
coupons, etc.

• Social networking: Competitions, user collaboration,
energy communities.

• A friendly user interface: Dashboards, leaderboards,
progress bars, notifications/messages, degree of control
for automation/actuation.

• User performance status: Points, badges, levels.
Other gamification frameworks have also been developed,
e.g. [30] and [31], aimed at aspects related to privacy and
supplier-consumer interaction respectively.

In general, individual user participation and actions cannot
be taken for granted, and motivation models should always
take into account uncertainty regarding user behavior [32].
Nonetheless, unpredictability should also be considered for
the incentives themselves. Extrinsic motivation is a quite
effective way to derive certain behavior and actions from
users. However, such rewards might lose their engagement
impact after some time, due to the fact that users anticipate
them. When such expected rewards incorporate uncertainty,
users are more likely to use the app on a daily basis, due to
their curiosity.

Despite the fact that unpredictable and uncertain rewards
are an effective strategy to motivate users, the overjustifica-
tion effect should be taken into account. This effect arises
when the app offers extrinsic rewards to users for an activity
that they were anyway going to engage in. Consequently, any
prior intrinsic motivation technique that encouraged the user
in the first place, is weakened.

B. MEANS FOR INTRINSIC MOTIVATION
Intrinsic user motivation can be achieved with methods like
showing progress, simple task assignment, sending success
messages, and presenting environmental impact. These meth-
ods are explained below:
• Progress visualization can increase the probability
of completion for a time-consuming activity. When
realizing how far they have come, users feel a
sense of accomplishment that reduces the drop out
rates.

• Task simplification is important to achieve app sus-
tainability and continuous engagement. A task that is
too difficult to complete might force even a highly
motivated user to abandon it. To avoid this, multiple
methods of completing a task could be provided to the
users.

• Success messages give users a sense of achievement,
while task completion can also be confirmed.

• Environmental impact presentation informs users with
statistics and reports on how their activities affected the
environment and other impact that their saved energy
had, motivating them to engage with the app even more
in order to increase their contribution.

IV. MOBILE APPS FOR ENERGY EFFICIENCY
In this section, we present existing smart grid mobile appli-
cations that provide users with motivation and incentives for
energy efficiency and consumption reduction. Both research
project outputs and commercial products are discussed, while
most of them use motivation mechanisms like visualization,
gamification, and simple notification tips. Some of the apps,
utilize user profiling techniques to better understand con-
sumer behavior and provide customized services. Machine
learning models and recommender system approaches are
also integrated in some of them. Some apps use feedback
mechanisms like questionnaires, while most of the research
apps integrate social media. A thorough comparison of vari-
ous app features is conducted in section VI and is presented
in Table 1.

A. RESEARCH PROJECTS
In this subsection, we present prior work on the development
of mobile apps for residential energy efficiency and smart
grid consumer engagement, regarding academic and collab-
orative research project results. In recent years, researchers
have developed numerous mobile apps targeted at different
aspects of residential energy efficiency. These apps share
many common features, such as consumption visualization
and forecast, and despite their differences, they all have the
same goal of reducing energy waste.

1) ACADEMIC RESEARCH PROJECTS
One of the first attempts to develop a mobile application to
encourage consumer energy-efficient behavior was thePower
Explorer game [34]. It was also one of the first mobile games
that incorporated real household consumption data through a
game server connection. The researchers validated the energy
efficiency impact of the app through interviews with users.

The EnergyLife [35] mobile game was developed to
enhance the energy awareness of consumers and to reduce
household energy consumption. The app included a feed-
back system presenting historical and real-time smart meter
consumption to the users up to appliance level. The gam-
ification component of the EnergyLife app incorporated
points, quizzes, levels, contextualized personal tips, and
recommendations.

In [36], researchers examined consumer incentive mech-
anisms in the smart grid, through a system called Ener-
gyCoupon. This included a mobile application that issues
coupons to consumers in return for demand response actions.
The users could then take part in lotteries and win prizes
with these coupons. The EnergyCoupon mobile app was
also responsible for providing personalized tips, historic
and real-time consumption visualization to users, as well as
consumption goals/targets for the current day. The system
also utilized machine learning algorithms to conduct elec-
tricity price and baseline consumption (i.e. without demand
response) forecasting, in order to help the user motivation
process.
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TABLE 1. Smart grid mobile app features comparison.

A mobile application called EnergyWiz was developed by
researchers to study the effects of comparative and commu-
nity based feedback on household energy efficiency [37],
[38]. The app included the following features:
• Live data visualization.
• Temporal self-comparison, i.e. through historical data.
• Comparison with neighbors, i.e. the user is com-
pared with the average performance of two groups of
neighbors: efficient and inefficient. Depending on user

performance, the app shows a message of social
approval or disapproval.

• One-on-one consumption challenges through Facebook.
• Energy efficiency rankings of similar users, in terms of
characteristics like house size and type.

The MyEarth [39] app developed at the University of
Wisconsin-Madison, allows users to track their environmen-
tal impact using five categories: electricity, energy usage,
recycling, travel, and food. MyEarth manages to boost user
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FIGURE 2. PEAKapp dashboard screens [33].

engagement utilizing animations like a polar bear on a shrink-
ing iceberg. When users take more energy-saving decisions,
the iceberg gets bigger and the polar bear becomes happier.

2) COLLABORATIVE EUROPEAN RESEARCH PROJECTS
The ecoGator project [40], funded by the European Union’s
IEE (Intelligent Energy Europe) Programme, developed a
smartphone application aimed at energy efficiency through
gamification. The ecoGator app helped users to select the
most energy-efficient products in the market, and to embrace
an energy-efficient lifestyle through energy-saving tips, chal-
lenges, quizzes, points, competition with other users, leader-
boards, social media integration, and real-world rewards.

The PEAKapp project [41] (Horizon 2020, 2016-2019)
focused on developing a fun app that encourages users to
behave more energy efficiently and to make use of the most
appropriate load shifts. The core of the PEAKapp project
was a dynamic pricing system responsible for reducing con-
sumption during peak demand hours. The effects of various
electricity tariff schemes on different household types based
on load profiles and socio-economic characteristics were also
investigated [42]. One of its primary goals was to connect
users with each other and facilitate their interaction with
the energy provider while providing consumer access to the
electricity spot market. The key features of the PEAKapp
mobile application included:
• Presentation of the main consumption indicators, meter
readings, and monthly balance sheet (Fig. 2).

• Environmental analysis, saving tips, and discount offers.
• Comparison between renewable production and
consumption.

• Forecast of household consumption, costs, and carbon
emissions.

• Comparison of each user’s consumption to the average
baseline.

• Ability to share progress and achievements through
social media.

Furthermore, the mobile app included a serious game where
players were invited to estimate their future consumption as
precisely as possible, by placing a bet. They gained more
points as their bets got lower and/or closer to the actual con-
sumption, and lost all of their points if the actual consumption
exceeded their bets. If their bets were higher than the actual
household consumption, the app prompted them to turn on
specific appliances and thus adding the exact missing amount
of kilowatt-hours.

The ChArGED project [44], [45] (Horizon 2020,
2016-2019) included a gamification based mobile applica-
tion, targeted at stimulating consumer energy savings and
ensuring balanced load. The ChArGED app engaged users
towards education of efficient use of resources, by utiliz-
ing challenges based on NFC swipes, e.g. a ‘‘Windows’’
challenge, where users were prompted to close the windows
when the A/C is on, and then swipe the relevant NFC tag
to complete the challenge. The app was also supported
by social networking technologies, that allowed people to
team up and participate in competitions through the integra-
tion of leaderboards and badges (Fig. 3). The system was
designed to provide personalized motivation for participating
players based on their progression in consuming resources
efficiently, e.g. energy saving tips. An hourly solar energy
generation forecasting module was included, and the users
were prompted to utilize appliances during peaks of solar
production. The end-users were able to access their energy
profiles and hence monitor aspects like their consumption,
energy-saving devices and achievements.
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FIGURE 3. ChArGED mobile app screenshots [43].

The GAIA project [46] (Horizon 2020, 2016-2019)
produced a gamified online learning platform on energy
efficiency where students play, explore and spread their
learnings, and thus impact on energy usage at school. The
GAIA ecosystem included features like a building man-
ager application that provides access to all IoT data pro-
duced by theGAIA infrastructure (consumption, temperature,
humidity, luminosity, noise levels and presence/movement)
and a recommendations module. Furthermore, data analyt-
ics modules were included to provide end-users with use-
ful insights like consumption anomaly detection, building
clustering and statistics. The gamification aspect of the
GAIA project incorporated:
• Team missions and competitions.
• Knowledge missions, i.e. knowledge quizzes related to
energy efficiency.

• Action missions, i.e. playful sparking of student action
in the school building aiming to increase energy
efficiency.

• Raising awareness and playfully sustaining students’ as
well as the wider community’s interest, and engagement
with project activities, through weekly GAIA Scavenger
Hunt hashtag games implemented in popular social
media.

Moreover,GAIA aimed at achieving sustainability in terms of
user energy-efficient behavior, through short and long term
sustainability plans, and development of more gamification
content, educational material, and new features.

The GreenSoul project [47] (Horizon 2020, 2016-2019)
provided behavioral adjustment recommendations to office
building occupants, using smart meter data. The Green-
Soul system included mobile and web applications that
incorporate:
• Device smart monitoring and control.
• Manual control affected by user behavior change.

• Occupant awareness through tips for more efficient use
of systems like HVAC, lights, and elevators.

The GreenSoul mobile app prompted users to fill an anony-
mous socio-economic questionnaire when they interacted for
the first time. The mobile app had two versions, a social
recognition version and a collective treatment version. The
former rewarded users with points for reducing the consump-
tion of their personal computer, while the latter determined
the cumulative points of the whole office, visualized the total
office consumption, points and carbon emissions saved, and
rewarded the office with collective points. Also, the collective
treatment version compared their rank in terms of points with
other office colleagues.

The enCOMPASS project [48]–[50] (Horizon 2020,
2016-2019) integrated visualization of energy data col-
lected from smart sensors, user-generated information,
context-aware collaborative recommendations for energy
saving, intelligent control, and adaptive incentives. It included
a mobile and web application for:

• Visualizing consumption impact (i.e. monetary, environ-
mental, hedonic) and setting personal goals.

• Playing social games and pursuing rewards, badges,
achievements, etc.

• Receiving consumption tips and customized recommen-
dations, based on user clustering (Fig 4).

• Predicting the presence of users in indoor environments
using machine learning, based on environmental fea-
tures and energy consumption variables [51].

• Enabling energy disaggregation regarding specific
appliances [52].

• Detecting the operation state of each appliance using
machine learning, in order to achieve user-activity
recognition [53].

• Optimizing user comfort.
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FIGURE 4. enCOMPASS mobile app tips and recommendations [56].

The enCOMPASS ecosystem incentivized users towards
energy efficiency through gamification, by developing a
hybrid game called FUNERGY consisting of a physical card
game and a mobile game [54]. The players could scan QR
codes located on the cards and expand the game rules or just
use the mobile app to recognize objects around them using
computer vision and answer energy-related questions about
them [55].

The EnerGAware project [57] (Horizon 2020, 2015-2018)
focused on developing a serious mobile game that enhances
the energy efficiency of household occupants. The game was
directly linked to occupant energy behavior through smart
meter data. The users could create their own virtual smart
household and learn how to reduce their energy consumption
through in-game interaction with the virtual household. The
achieved savings, of both their real home and their app sim-
ulated household, contributed to completing missions and
goals.

The ENTROPY project [58] (Horizon 2020, 2015-2018)
included a mobile application that provided personalized ser-
vices to building occupants, regarding energy efficiency. This
app allowed users to view real-time data from IoT sensors and
get real-time recommendations to reduce their energy con-
sumption. Furthermore, the ENTROPY app provided tips and
quizzes aimed at energy awareness, both through the person-
alized app and a treasure hunt mobile game. The ENTROPY
system utilized machine learning algorithms for user classi-
fication, clustering, and consumption forecasting, in order to
gain valuable behavioral insights, which were crucial for the
rule-based personalized recommendation system [59]. It rec-
ommended energy-efficient actions based on rules/conditions
in a personalized manner, meaning that the recommendation
message was stated in a different way depending on the type
of the user (e.g. philanthropist, socializer, or free spirit). The
clustering inputs included energy consumption and demo-
graphic data.

The Social Power Project [60]–[62] supported by the
BREF-Social Innovation programme, aims at engaging con-
sumers towards energy-efficient behavior through a mobile
application. The Social Power App includes challenges,
tips and quizzes to incentivize users, who earn points for

achieving certain goals. The app provides energy consump-
tion reports, game statistics like progress and points, and
energy efficiency tips for different home appliances. Con-
sumers can be either collaborative, where users living in the
same city try to collectively reduce the city’s total consump-
tion and reach a specific goal, or competitive, where users try
to reduce the city’s total consumption compared to another
team. User surveys were conducted before and after adopting
the app and the results showed a significant improvement in
sustainable consumption behavior.

The Tribe project [63] (Horizon 2020, 2015-2018), focused
on developing a mobile game to enhance the energy effi-
ciency of public buildings. Building occupants and visitors
could play a campaign game where they try to balance money
and comfort by interacting with a virtual home, and thus learn
how to be more energy aware.

The GreenPlay project [64] (Horizon 2020, 2015-2018)
included a serious game accessible from multiple platforms
that allowed users to interact with their own virtual island
ecosystem. When users reduced their real house energy
consumption, they gained in-game rewards. The GreenPlay
system also included a platform that monitored household
consumption and provided visualization, tips, challenges,
and team consumption reduction contests to the users. All
the features of the GreenPlay system aimed at sustainable
energy-efficient behavior.

The InterConnect project [65] (Horizon 2020, 2019-2023)
is an ongoing project that aims at developing and demonstrat-
ing an interoperable ecosystem of demand-side flexibility ser-
vices targeted at energy consumers, through seven large-scale
pilots. As part of the Greek pilot, a smart grid mobile
app to increase consumer engagement will be developed.
The app will include data visualization, gamification, social
media integration, machine learning models for advanced
consumer profiling and behavior prediction, energy-saving
tips, load shift recommendations, appliance flexibility actu-
ation, and user feedback mechanisms.

B. INDUSTRY EFFORTS
Numerous mobile applications for energy efficiency in smart
grids have also been developed by the industry sector. The
main focus of industry efforts in developing smart gridmobile
apps is on consumption data visualization and appliance
level monitoring, as opposed to academic and collaborative
research project mobile apps, which additionally focus on
consumer behavior aspects and gamification.
Smappee [66] is an energy management system that

includes a mobile app for residential consumers. The system
collects data on solar generation, as well as electricity, gas,
and water consumption. Smappee’s goal is to provide users
with all the information needed to monitor home energy
consumption and costs. A clip-on sensor is provided to the
users, which can be quickly attached to a fuse or breaker
box. Smappee provides three ways to monitor appliance level
consumption:
• It can be used for submetering, by attaching current
clamps to the distribution panel.
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• It can collect measurements from the power outlet with
an intelligent smart plug and a single-phase submeter.

• It provides submetering from the power cable using
Non-Intrusive Load Monitoring (NILM) energy disag-
gregation.

Furthermore, Smappee visualizes electricity, gas, and water
consumption and costs per day, week, month, or year, as well
as solar generation. The app can also compare the household’s
electricity usage with other locations. Moreover, users can
control their devices (actuation) and automate energy flows
from the app, even when they are not at home.

The TED (The Energy Detective) [67] ecosystem includes
a real-time energy monitor mobile application called TED
Advisor. Hardware is installed at the building breaker panel
and measures energy demand, calculates costs, and sends
email or notification alerts to the user. These alerts can
include tariff changes, reaching limits and thresholds, exces-
sive load events, high average demand for the location, and
solar generation reports. App users can also study their
historic energy consumption, and understand how they can
improve their performance in terms of energy efficiency.

The Neurio Home Energy Monitor app [68] (by Generac)
coupled with the Neurio Sensor, which is installed in the
home’s breaker box, monitors household appliance consump-
tion and generation in real-time. The app also notifies users
when they surpass their budget, while also comparing them
to their neighbors in terms of energy consumption.
JouleBug [69] gives its users the ability to monitor their

everyday habits and earn pins, badges, and points by carrying
out energy-efficient actions. Moreover, users can sign up for
local and national challenges to compete with other users
from their community.
Constellation Connect [70] (by Constellation, an Exelon

company) is a home energy management system that allows
users to interact with their devices, like smart appliances,
security cameras, lights, smart locks, and motion detec-
tors. Consequently, this app engages and motivates users to
become more energy-efficient, while also protecting their
houses.

The majority of mobile apps focus on energy consumption
recording, by informing users on how much energy their
devices are consuming. Some apps educate users on the
amount of money they could save if they reduced their energy
consumption, like Energy Cost Calculator [71], Energy
Tracker [72] and Kill-Ur-Watts [73], which do not come with
hardware sensors that need to be installed, and users have to
insert their data manually.

V. THE ROLE OF MACHINE LEARNING IN SMART GRID
MOBILE APPS
During the last decade, researchers have managed to address
various problems using machine learning algorithms, e.g.
computer vision and speech recognition, while also beat-
ing humans in games like Go and Atari. Similar techniques
have also been applied to smart grids at the grid system
level, for tasks like building automation, grid load prediction,

renewable generation forecasting, and malicious activity
detection, with great success [74]. In this section, we focus
on how machine learning can be utilized to make smart grid
mobile apps more effective in terms of user engagement
and motivation, and thus achieve higher levels of energy
efficiency. Machine learning and recommender systems can
be used for more targeted and personalized user experience
with the mobile app, while aiming at energy efficiency. Con-
sequently, this can be mainly achieved through more accurate
user profiling, clustering, classification, and recommenda-
tions, while always depending on data collected from house-
hold smart meters.

Hence, the goal of such approaches is to extract high-level
features and patterns related to occupant behavior from
low-level device readings, which can prove to be quite helpful
for providing users with personalized services and incentives.
These features and characteristics are utilized to construct an
energy profile for each consumer/household, and understand
their behavior and habits so as to target them for energy
efficiency and demand response actions.

An electricity consumer profile is essentially a vector of
attributes related to the household’s energy consumption,
generation, socio-demographic characteristics, and other
available features that can provide insights regarding energy
behavior. An electricity consumer profile example is depicted
in Fig. 5, and consists of attributes like household typical
load profile (i.e. average power consumption of each time
window during the day), consumption aggregates (i.e mean,
maximum, minimum consumption during different periods),
consumption ratios (i.e. features calculated as the ratio of two
consumption aggregates, e.g. the average consumption during
the afternoon and during the evening can indicate when cook-
ing takes place), temporal features (i.e. the first time an event
happens, e.g. daily consumption going over a threshold), flex-
ibility factor,1 number of occupants, socio-demographic char-
acteristics, and heating/cooking type (i.e. electrical or not).

Clustering and classification are two of the most
well-known and studiedmachine learning techniques.Mobile
applications for residential energy efficiency can benefit
immensely by integrating consumer clustering and classifica-
tion, based on smart meter consumption data and other input
features, to derive detailed energy behavior profiles for their
users.

Other machine learning models can also be applied in
smart grid mobile apps for consumer profiling. In [75] for
example, a linear regression-based algorithm that detects the
base load of households is proposed, i.e. constant consump-
tion from always-on appliances like refrigerators/freezers.
The authors suggest and validate, through experiments with
real household data from smart meters (including temperature
readings), that consumers with high base loads and/or high
temperature sensitivity of base load (which indicates ineffi-
cient refrigerators-freezers) are good candidates for energy
efficiency programs and should be targeted first.

1Smaller flexibility factor means the user can undertake relatively less
portion of DR responsibilities and vice versa.
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FIGURE 5. Smart grid consumer profile example.

In the sequel, we focus on prior work regarding smart grid
consumer recommender systems, clustering, and classifica-
tion, as well as hybrid models of these approaches, in order
to construct better user profiles and design energy efficiency
strategies of higher impact.

A. CLUSTERING
1) CLUSTERING BASICS
The goal of clustering is to group certain objects, so that
those belonging to the same group/cluster are similar to each
other and dissimilar to those of other clusters, based on a
set of predefined features using some similarity measure.
In the machine learning component of a smart grid mobile
app system architecture, clustering algorithms can be trained
and deployed to cluster consumers, households, or build-
ings. One advantage of unsupervised learning models, like
clustering algorithms, is that the training data are unlabeled,
meaning that smart grid measurements can be directly used
for clustering, without the need for time-consuming labeling
procedures. Energy consumption measurements are used to
derive various input features, like statistical properties, for
the clustering models. The resulted clusters can be used to
discover household consumption profiles, which are them-
selves utilized to determine similar users for recommendation
systems, and to derive high-level consumer behavior patterns
and characteristics for personalized services and incentives.
For example, if a household belongs to a cluster that has
a consumption profile with high consumption only from
19:00 to 23:00, we can assume that, most probably, it has
all its occupants working outside the household during reg-
ular business hours. One of the most studied and effective
clustering algorithms is k-means (Algorithm 1 below), where
starting with k vectors in the feature space, it iteratively
assigns each training observation to the cluster having the
closest mean/centroid in terms of Euclidean distance (1),
where x, y ∈ Rn are feature vectors (e.g. of a consumer), and
computes again each cluster’s centroid vector including the

new samples of that cluster. Convergence is achieved when
the clusters remain unchanged.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (1)

Algorithm 1 k-Means
Input: number of clusters: k , set of data points: D
Output: k clusters

1: set k random data points as the initial cluster centroids
2: while clusters do not remain unchanged do
3: assign each vector to the closest cluster
4: recompute each cluster’s centroid
5: end while

2) SMART GRID CONSUMER CLUSTERING APPLICATIONS
As part of our ongoing work on energy consumer profiling
and clustering, we have utilized the k-means algorithm to
cluster 653 households from the Pecan Street dataset [76].
We constructed a profile similar to the one depicted in Fig. 5
for each house, consisting of typical normalized load profiles
(daily, weekday, and weekend), consumption aggregates,
consumption ratios, and statistics for different time periods,
resulting in a total of 85 features. The optimal number of
clusters was found to be 5 using the elbow method, and
the resulted average normalized daily load profile for each
cluster (i.e. hourly average normalized consumption for each
cluster) is presented in Fig. 6. Normalization was applied to
the energy consumption data, by dividing the consumption
measurements with the household’s average consumption,
so that the clustering is not dependent solely on themagnitude
of each household’s consumption (i.e. bigger households with
more occupants would be assigned to the same cluster), but
mainly on the behavior of the occupants throughout the day.
All 5 clusters had a population between 102 and 165 house-
holds, while it is evident from Fig. 6 that different consump-
tion behavior patterns are observed for each cluster, meaning
that diverse engagement strategies for energy savings should
be adopted for each cluster of users. For instance, consumers
having low consumption during the day while consuming
excessive energy during afternoons, are ideal candidates for
DR engagement actions.

In [77], typical load profiles are derived by cluster-
ing of consumer load data. An algorithm called Affinity
Propagation is utilized that, contrary to k-means, does not
need to take the number of clusters as an input. A simi-
lar model is proposed in [78], where a DR scheme using
clustering of residential consumers is designed. Specifically,
10 features regarding each household, including square
footage, last month’s consumption and solar generation, num-
ber of appliances, and flexibility factor, are utilized as inputs
for the k-means algorithm.

A more sophisticated approach is taken in [79], where
the authors use hourly energy consumption data from
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FIGURE 6. Clustering use case example: Average normalized daily load
profile for each cluster.

220,000 households to derive consumer segments/clusters,
and thus target users for demand response and energy effi-
ciency programs in a more effective way. They use an encod-
ing system with a pre-processed load shape dictionary. Each
household is then classified based on features derived from
the base load like entropy.2 Segmentation strategies for spe-
cific targeting schemes like household targeting for energy
efficiency programs and recommendations for time-of-use
shifts are also proposed. The representative load shapes of
each cluster are derived using an adaptive k-means algorithm
and then summarized with a hierarchical clustering algo-
rithm. Five different segmentation strategies are derived, and
it is explained how these strategies can be implemented for
different programs.

In [80], the authors use a clustering algorithm called Finite
Mixture Modeling to cluster residential customers based on
behavioral characteristics extracted only from their energy
consumption patterns. Four key time periods during the day
are defined, i.e. overnight period, breakfast period, daytime
period, and evening period. Seven statistical attributes are
derived only from the consumption data and are used as inputs
for the clustering algorithm.

In [81] the authors use the k-means algorithm to cluster
energy consumers based on one-minute resolution power
consumption data averaged hourly. Average seasonal curves
are calculated for each household, which are then used as
inputs for the clustering model. Two clusters were derived
for each season leading to a total of 8 load profile clus-
ters. A regression analysis was also conducted with explana-
tory features from survey data, to examine the correlations
between a user’s survey answers and the corresponding clus-
ter. The study showed that features like remote working,
television watch time per week, and education level had
meaningful correlations with the derived cluster. Such
insights can be very useful for utilities to design personal-
ized energy efficiency strategies. A similar approach is taken
in [82], where k-means, Expectation Maximization (EM),
and Self-OrganizingMaps are applied to household consumer
data to derive behavioral patterns. The representative load
curves are calculated for each home, as a dimensionality

2Amount of consumption variability.

reduction technique of the original consumption data, before
applying the clustering algorithms. The results show that k-
means outperforms the other two models.

B. CLASSIFICATION
1) CLASSIFICATION BASICS
The goal of classification is to correctly determine the cat-
egories in which data points belong. Classification models
belong to the supervised learning paradigm, meaning that
such algorithms learn a function that maps input features to
output labels. A supervised learning algorithm uses train-
ing data containing output values for each input feature
vector x and tries to learn the correlation between them, thus
being able to make predictions for a given problem based
on unseen features. In order to accomplish this, supervised
learning algorithms need labeled training data, e.g. spam/ham
emails, from which they learn a function that maps an input
to an output feature vector. Some of the most popular clas-
sification algorithms are Support Vector Machines (SVM),
Logistic Regression, k-Nearest Neighbors (kNN), Decision
Trees, Random Forests, and Neural Networks.

a: LOGISTIC REGRESSION
The logistic regression classifier takes its name from the
logistic/sigmoid function (2).

σ (x) =
1

1+ e−x
(2)

For a binary classification problem, the probability of fea-
ture vector x belonging to class C is:

P(C|x) =
1

1+ e−w·x
, (3)

wherew is the weight vector learned during the training phase
by minimizing the cross-entropy of the examples using an
algorithm like Stochastic Gradient Descent (SGD). As far as
multinomial logistic regression is concerned, also known as
softmax regression, for the multi-class classification problem
with n separate classes, the probability of x belonging to
class Ci is:

P(Ci|x) =
ewi·x∑n
j=1 e

wj ·x
, (4)

where wi is the weight vector for class Ci.

b: K-NEAREST NEIGHBORS
Another widely applied classifier is the k-Nearest Neigh-
bors (kNN) algorithm. During the training phase of the
kNN algorithm, the feature vectors of the training examples
are simply stored in memory. Afterwards, when an unseen
instance needs to be classified, the closest k training examples
are observed and their majority class is returned. In order to
achieve better results, distance weighting can be added to the
model by giving a weight to each neighbor, which decreases
when the distance from the point being classified increases.
As a distance measure, Euclidean distance or cosine similar-
ity are most often utilized.

VOLUME 8, 2020 219643



S. Chadoulos et al.: Mobile Apps Meet the Smart Energy Grid: A Survey on Consumer Engagement and Machine Learning Applications

c: SUPPORT VECTOR MACHINES
The Support Vector Machine (SVM) algorithm tries to find a
separating hyperplane between instances of different classes
in a high-dimensional space (Fig. 7). Specifically, it tries to
obtain the best possible separating hyperplane, which is the
one with the highest distance (functional margin) from the
nearest training instance of any class (support vectors). When
the training data points are not linearly separable in a low
dimensional space, the SVM algorithm maps them into a
higher dimension, using a kernel function, in order to find
the separating hyperplane. Popular kernel functions include
linear kernels, polynomial kernels, and the sigmoid kernel.

FIGURE 7. Support Vector Machine two-dimensional example, where x is
the input feature vector, w is the weight vector, and b is the bias.

In other words, the SVM algorithm aims at maximizing the
margin between the support vectors and derived the separat-
ing hyperplane, which is a quadratic programming problem,
and can be solved with standard methodology. SVMs can
achieve remarkable classification performance, while deriv-
ing an optimal global solution contrary to other machine
learning models like Neural Networks that find local min-
ima. However, SVMs suffer from computational and memory
issues in nonlinear problems with large datasets.

d: DECISION TREES AND RANDOM FORESTS
The Decision Tree is a tree-like structure that simulates the
segmentation of the training data. Each node represents a
rule/question regarding a feature, each branch represents the
answer to the question, and each leaf node represents an
output class label. The generated set of rules can then be used
for the prediction of new instances. Some of the most popular
algorithms that generate Decision Trees include CART [83]
and ID3 [84]. Decision Trees are simple to use and interpret,
but they have some major disadvantages, one of the biggest
being lack of robustness, meaning that a small alteration in the
training data can result in a significant change in the overall
architecture and the final predictions. Random Forests came
to the rescue to solve this and other problems by applying an
ensemble learning approach where the performance of some

weak learners is boosted via a voting scheme. A Random
Forest essentially consists of many Decision Trees. For the
development of each tree, a subset of the training data is used
at random but with replacement (bootstrap sampling). If K is
the number of input features, we specify a constant number
k < K so that for every node, k out of K features are selected
randomly (random feature selection). Every Decision Tree is
fully grown without pruning using a classic CART approach
and after the construction of the forest, all the predictions are
averaged in order to form the final output.

e: DEEP LEARNING
The building block of a Neural Network is the neuron which
consists of an input feature vector x, a weight vector w,
a bias term b and a non-linear activation function f (most
often tanh, sigmoid, or ReLU). Each neuron computes the
input weighted sum, adds the bias term, and passes the result
through an activation function producing the real-valued out-
put of the neuron. One of the most popular Neural Network
architectures is the Multi-Layer Perceptron (MLP). An MLP
consists of a given number of layers, the input layer, the hid-
den layers, and the output layer (Fig. 8). Each layer has a
number of neurons and each neuron uses all the outputs of
the previous layer neurons as an input:

hn = f (wnT x+ bn), (5)

where hn is the nth neuron of the hidden layer, x =
[x1, . . . , xk ] is the input feature vector, wn is the weight
vector, and bn is the bias.
A Neural Network learns all the weights and biases from

training data using an algorithm called backpropagation [85],
which is responsible for distributing the error gradient across
all the network nodes using the chain rule. The weights are
randomly initialized to small real values using for example
a uniform or Gaussian distribution. Then in each epoch3

and for each mini-batch4 of training examples, the output
of the network is computed and for each weight w, ∇E(w)
is calculated, where E(·) is the loss function output for
this specific mini-batch. The gradients are calculated from
right to left and each weight is updated using an optimizer.
The most commonly used optimizer is Stochastic Gradient
Descent (SGD), where the weights are updated using the
following rule:

w← w− η∇E(w), (6)

where η is the learning rate. More sophisticated optimiz-
ers to minimize loss are RMSprop [86], Adagrad [87], and
Adam [88], which are widely used to train Neural Networks.

Another popular Neural Network architecture is the Recur-
rent Neural Network (RNN). Unlike feed-forward Neural
Networks, RNNs consist of nodes/blocks which form a
directed graph (Fig. 9). Each node has its own state/memory,

3An epoch refers to iterating the whole training dataset just once.
4A mini-batch is a small subset of the training data used to calculate the

error gradient and update the Neural Network weights.
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FIGURE 8. Multi-Layer Perceptron (MLP) example that has an input layer
with k features, a hidden layer with n neurons, and an output layer with
m neurons.

enabling RNNs to perform much better than feed-forward
Neural Networks with sequences of inputs and tasks like
speech recognition, time-series forecasting, and natural lan-
guage processing.

FIGURE 9. Recurrent Neural Network (RNN) example for a time window
of size 3, where xt , yt , and ht are the input feature vector, output feature
vector, and hidden state vector respectively at time t .

2) SMART GRID CONSUMER CLASSIFICATION
APPLICATIONS
Classification models can be used in smart grid mobile apps
to classify new consumers in terms of socio-demographic
characteristics and energy-related behavior. These insights
are quite important for utilities and service providers, in terms
of accurate user profiling and behavior prediction, which then
are used to develop recommendation and incentive strategies
with greater impact and lower costs.

In [89], the authors present a use case where an energy
efficiency campaign manager wants to recruit household
occupants, based on their profile and preferences, through a
mobile app. These preferences are learned for each consumer
using a logistic regression classifier, trained on historical
data of demand reduction suggestions and corresponding
user reactions, i.e. if the consumer accepted the suggestion
or not. Different consumers have different preferences and
reactions to suggestions and incentives. Thus it is important
for the manager to derive such preference models, in order

to provide the most appropriate incentives to each user, and
hence maximize the probability that a suggestion is carried
out, as well as the campaign’s overall impact.

In [90], deep learning is utilized to model occupant charac-
teristics, leading to the design of a more effective and sophis-
ticated gamification approach. More specifically, a deep
bi-directional RNN with Long Short-Term Memory (LSTM)
cells is used to predict on/off events of appliances like ceiling
fans, lights, and A/Cs, and thus learn the user’s behavior.
A social game is also introduced to incentivize occupants
to reduce their energy consumption by rewarding them with
points and potential prizes if their consumption during a day
is lower than their baseline. A similar approach was taken
in [53], using machine learning algorithms to predict the
ON/OFF state of household appliances, and thus recognize
human activities like cooking, and washing of clothes and
dishes. In [51], the authors use appliance and water consump-
tion data as input features to train a classifier that predicts
the occupancy of a household, i.e. the number of occupants
present in the house.

Several works have utilized consumption data as input fea-
tures to classify households into socio-demographic classes
derived from questionnaires [91]–[94]. More specifically,
in [93], the authors conduct household classification regard-
ing various properties like number of residents and floor area,
using 22 features extracted only from the consumption load.
They evaluate the model on real residential data, and verify
that a priori knowledge of certain features can increase the
classifier performance. In [92], the authors build on the work
of [93]. They extend the input feature space from 22 dimen-
sions to 88 and then perform feature filtering techniques to
select the most important features based on classification
performance. They alsomake changes to some of the property
definitions and manage to further improve the household
classification results in most cases. In [91], previous works
are extended by incorporating weather data as additional
input features to predict 19 classes, using the Random Forest
classification algorithm. An application of deep learning for
consumer behavioral modeling is studied in [95]. A Convo-
lutional Neural Network (CNN) is implemented to extract
highly nonlinear relationships between household consump-
tion data and consumer socio-demographic characteristics
derived from surveys, like age, income, number of children
and floor area. The classification performance of the CNN
is enhanced by replacing the softmax output layer with a
Support Vector Machine (SVM).

C. HYBRID MODELS
In this subsection, we present approaches where both clus-
tering and classification algorithms are used to model con-
sumer behavior and characteristics more precisely. Insights
derived from unsupervised learning methods like cluster-
ing, where more data can be provided since there is no
need for labels, can then be used as inputs for classification
problems.
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Socioeconomic characteristics along with smart meter
household consumption data are used in [96] for household
load pattern forecasting. After the electricity load data are
clustered and a number of clusters with representative load
patterns are derived, the authors select a subset of the socioe-
conomic input features for each cluster, based on the corre-
lation between each feature and the cluster centroid pattern.
Then, they train a separate deep Neural Network for each
cluster, with the selected features as inputs, that outputs the
probability that the consumer belongs to the specific cluster,
resulting in a binary classification model.

In [97], a hybrid model that clusters consumers based
on daily load curves and then classifies them to different
categories using the k-Nearest Neighbors (kNN) algorithm
is proposed. Despite the fact that this study is conducted for
non-residential data, it can be transferred to household use
cases as well.

A similar model is implemented in [98], where smart meter
and survey data are used to classify new electricity customers
into consumption profile categories. This model can help
utilities find which consumer attributes are correlated to their
consumption behavior, and thus enhance their engagement
and energy efficiency through appropriate actions like per-
sonalized services. At first, smart meter data are processed to
derive representative demand profiles, which are then used to
cluster the consumers into groups. Afterwards, these group
labels are the ground truth labels that the supervised machine
learning algorithms use for the training procedure, while their
input features are survey data and a limited amount of smart
meter consumption data. Based on the input features, a new
customer with few historic consumption data available can
be classified into one of the consumer groups. The survey
input features include variables like sex, age, education level,
income, home age, heating type, and types of available
appliances.

In [99] a similar approach is taken into account, where
three clustering methods are evaluated based on household
consumption data, k-means, k-medoid and self-organizing
maps, with the latter showing the best results during exper-
iments. Afterwards, each day was clustered independently so
that seasonal characteristics of the household are not lost,
i.e. a consumer might belong on a different cluster on dif-
ferent days. Averaging the overall consumer consumption
for each day in a cluster, resulted in the final vectors of
each cluster-profile class (10 profile classes were derived).
A multi-nominal logistic regression model was trained to
predict the probability of a consumer belonging to a profile
class, based on consumer’s characteristics like house type,
number of bedrooms, family type, social class, heating type,
occupant age, and available appliances.

D. ENERGY EFFICIENCY WITH RECOMMENDER SYSTEMS
1) RECOMMENDER SYSTEMS BASICS
The ever-growing amount of digital content available online
has raised the need for personalized recommendation tech-
niques nowmore than ever. Recommender Systems (RecSys)

are widely used to make personalized recommendations of
products and services like movies, music, and electronic
devices to consumers, based on their preferences. In the basic
RecSys problem, there is a set V of users, and a set I of items,
which are candidates for recommendation. The usefulness of
item i ∈ I to user v ∈ V is measured by a utility function
U , i.e. U : V × I → R, with R being a totally ordered
set (e.g. 0-5 stars or a continuous set e.g. [0, 1]). The goal
of a recommender system is to choose items i ∈ I which
maximize U for each user v ∈ V . The utility function can
be learned from past user behavior, user and item similarity,
item context, etc.

The most well known RecSys techniques are Collaborative
Filtering (CF) and Content-Based, with the former relying
on user similarity measures to recommend items to a user
that users with similar profiles have liked, and the latter
relying on item profiles (e.g. descriptions and other features)
to recommend similar items to those that the user liked in the
past.

The CF paradigm mainly consists of two methodologies,
user-user and item-item. In user-user CF, for each user v ∈ V
the algorithm finds a set N of other users who have similar
ratings with user v in terms of a chosen similarity measure
(e.g. Jaccard similarity, Cosine similarity, or Pearson cor-
relation coefficient). Then, the ratings of user v are calcu-
lated based on the ratings of users belonging to set N (e.g.
by averaging), and the items with the top derived ratings for
v are recommended. In item-item CF, for each item i ∈ I
the algorithm finds other similar items in terms of other user
ratings, and calculates the rating of item i based on the ratings
of the target user on these similar items.

In the Content-Based approach, a predictivemodel for each
user’s preferences is derived, based only on the past user
behavior and actions (e.g. ratings, clicks, accepted sugges-
tions, etc.), as well as on the content of the items that the user
likes. Thus, similarity measures are used to find similar items
to those that the user has liked in the past.

Matrix factorization or latent factor models [100] comprise
a different category of CF algorithms, that utilize latent fac-
tors to describe user and item attributes and characteristics
from item-rating patterns. Suchmodels can include additional
implicit user feedback and behavioral features (e.g. search
history, past purchases, visited pages, etc.) when explicit user
feedback, such as ratings, is not available. In a basic matrix
factorization model that uses latent factors of dimensional-
ity f , each item i ∈ I is represented by a vector qi ∈ Rf ,
and each user v ∈ V is represented by a vector pv ∈ Rf . The
item-user utility function U or rating matrix is approximated
by calculating the dot product:

r̂vi = qiT pv, (7)

and captures the utility of item i to user v. The goal of matrix
factorization is to find latent factor vectors qi and pv that lead
to low error (e.g. RootMean Squared Error - RMSE) between
the real utility matrix part used for training, and the predicted
utility values of the model. These latent factor vectors can be
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derived with algorithms such as Stochastic Gradient Descent
(SGD), while regularization techniques can be used to avoid
overfitting on the training segment of the utility matrix. To
capture the effect of various external factors on the resulted
user-item utilities, bias approximation approaches can be
integrated into (7), which becomes:

r̂vi = µ+ bi + bv + qiT pv, (8)

where µ is the average utility, bi is the item bias, and bv is the
user bias. For instance, the item bias term bi might represent
the fact that item i has a higher utility than average, while
user bias bv might represent a situation where user v tends to
experience lower utility compared to the average user.

However, the utilization of RecSys in the smart grid sector
is sparse, and only a few studies have tackled this area.
RecSys can be utilized in smart grids for scenarios like
energy-saving appliance recommendation, utility retail plan
recommendation and load shift recommendation [101]. Smart
meter consumption data along with household basic informa-
tion and user preference data are processed by such systems
to derive better recommendations.

2) APPLICATIONS OF RecSys IN SMART GRIDS
In [102], a system that makes recommendations to elec-
tricity consumers based on their profiles is presented. This
system recommends other cheaper tariff plans for specific
users, as well as how much energy can be saved by shifting
specific appliance loads. In [103], a thorough description
of an electricity retail plan recommender system is con-
ducted. More specifically, this recommender system uses a
Collaborative Filtering algorithm, which utilizes consump-
tion data to offer similar retail plans to similar consumers.
A clustering phase takes place, to identify which consumers
are similar, and historical retail plan data are used to train
the model. In [104] and [105], the authors use pattern
mining techniques to extract energy-saving patterns from
household smart meter (appliance level) data and create
association rules. These rules are then used as part of a
recommender system that matches the incoming real-time
household data with the association rules pool, and if a pattern
is matched, the relevant action of the rule is recommended to
the user.

VI. COMPARISON OF EXISTING APPS
The mobile applications presented in section IV all have a
common underlying objective, that of engaging and motivat-
ing electricity consumers to become more energy-efficient,
i.e. reduce their consumption, or shift their loads. Some of
them use similar approaches to achieve this goal, while oth-
ers propose new and innovative concepts. A comprehensive
comparison of the existing apps is conducted in this section,
with Table 1 serving as a summary to guide the discussion.

A. DATA VISUALIZATION
One of the most common features among the applications
presented in this study is data visualization. Such data are

often generated by smart meters and IoT sensors installed at
the user’s premises, and have to pass through a pre-processing
phase before being presented to the consumers in a mean-
ingful way. This phase includes techniques like data cleans-
ing, aggregation, and enrichment. A visualization module
should follow specific design guidelines to raise consumption
awareness and spark consumer behavioral change. According
to [106] these guidelines include visualizing electricity con-
sumption in a comprehensible manner, presenting particular
aspects of consumption, and making comparisons to related
references.

1) CONSUMPTION VISUALIZATION
Some of the surveyedmobile apps in this study, only visualize
energy consumption, which is the most important aspect
of electricity consumer behavior. Power Explorer [34] only
visualizes the current total power level with a bar. TheGreen-
Soul app [47] presents both total and device power consump-
tion to the users, while ChArGED [44], [45] also provides
historical data visualization. The Social Power App [60],
except for total hourly consumption and history visualization,
also presents a comparison with the baseline consumption of
the user.

2) ADVANCED VISUALIZATION
Most of the surveyed apps present additional visualization
services to end-users, in order to inform them in a richer way.
EnergyLife [35], EnergyCoupon [36], EnergyWiz [37] and
GreenPlay [64] visualize additional metrics like energy sav-
ings, costs, and CO2 emissions. PEAKapp [41] incorporates
all the visualizations mentioned above, as well as solar gen-
eration graphs, consumption forecasts, and comparison with
other households. Similarly, the Neurio app [68] visualizes
current and historic consumption, costs, savings, solar gen-
eration, and comparison with neighboring houses. GAIA [46]
visualizes current total and appliance consumption, history
data, as well as other sensor metrics related to climate, lumi-
nosity, noise levels, and occupant presence. Furthermore,
it presents consumption anomaly detection events, building
clustering, and statistics. The enCOMPASS [48] app presents
the basic insights of total and device power consump-
tion, and historical data, but it also visualizes personalized
consumer impact (i.e. monetary, environmental, hedo-
nic), and goal progress as a ‘‘charging battery’’ graph.
ENTROPY [58] shows real-time total consumption data,
household baselines, target/goal progression, and daily num-
ber of energy peaks. MyEarth [39] and JouleBug [69] only
present CO2 and water savings related to user activities,
which are not derived from smart meter data but directly
through the app interface. Furthermore, the Smappee [66]
application visualizes current total and appliance consump-
tion, historic data, solar generation, gas and water consump-
tion, costs, aggregates/analytics, and comparison with other
locations. Last but not least, the TED [67] app shows current
power consumption, costs, history, and total location grid
demand.
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TABLE 2. Smart grid mobile app most common gamification features.

B. GAMIFICATION
As we analyzed in section III, gamification can substan-
tially enhance electricity consumer engagement and provide
incentives for consumption reduction. For that reason, a great
number of mobile applications targeted at energy efficiency
incorporate gamification techniques like the ones we men-
tioned earlier in the survey.

Some mobile apps like Power Explorer [34], Ener-
GAware [57], and Tribe [63] are essentially serious mobile
games that aim at reducing user energy consumption through
various graphic interfaces and gaming interactions. Others
like PEAKapp [41], ChArGED [45], GreenPlay [64], and
MyEarth [39] include simpler serious games, alongside the
rest of their features, mainly related to the users’ con-
sumption and actions. However, as depicted in Table 2 the
most common gamification features of the studied mobile
apps are challenges, points, levels, badges, rewards, leader-
boards, competitions, goals, and quizzes. In addition, Ener-
gyCoupon [36] uses coupons, ENTROPY [58] shows user
progression, and the Social Power App [60] has a competitive
structure for competitive users, and a collaborative structure
for users to reduce consumption collectively.

C. FLEXIBILITY
Flexibility refers to dynamic consumption adjustment from
the consumer’s side, most often at an appliance level, for
energy efficiency and demand response purposes. Household
occupants can provide flexibility either manually by shifting
energy-consuming activities and switching on/off devices,
or automatically by letting a third party (e.g. their utility or
a mobile app) to directly control pre-specified appliances.
Consumers providing flexibility can immensely help energy
utilities and grid managers to evenly balance electricity
demand, and thus avoid peaks that can cause blackouts and
substantial emission increase.

Most of the studied mobile applications do not implement
features that can help the user with flexibility, e.g. controlling
devices directly from the mobile app like many existing smart

home automation systems do, which means that despite the
fact that most apps provide incentives for certain actions
(e.g. to turn off the A/C), the user has to physically perform
these actions. With apps like Smappee [66] and Constella-
tion Connect [70], users can control/actuate their registered
devices directly through a mobile app, as well as automate
household energy flows. Constellation Connect also allows
users to create triggers on certain events.

D. USER PROFILING
Constructing detailed user profiles based on electricity con-
sumption patterns and behavioral characteristics can help
utilities to better understand their consumers, and thus enact
more targeted and personalized services to achieve greater
impact. Data acquired through a mobile application, like the
ones studied in our work, can be effectively utilized for the
purpose of user profiling.
EnergyCoupon [36] analyzed the energy consumption

profile of the users to validate the effects of the mobile
app in terms of demand reduction and savings. Green-
Soul [47] incorporates a profiling module, that not only col-
lects socio-demographic data from an in-app questionnaire,
but also captures behavioral insights from smart meters and
user interaction. The user profiles extracted are then used
as input for data analytics and forecasting. enCOMPASS
enhances the user profiling procedure by detecting appli-
ance states and thus recognizing user activity patterns [53].
ENTROPY [58] categorized users based on questionnaires
into profile types (i.e. philanthropist, socializer, free spirit,
achiever, player, and disruptor), while also extracting energy
load profiles with clustering algorithms.

E. MACHINE LEARNING TECHNIQUES
As discussed in section V, integrating machine learning
techniques into mobile applications for energy efficiency
can substantially enhance end-user engagement with refined
incentive mechanisms. However, only a few of the existing
apps use such approaches.
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EnergyCoupon [36] utilizes classification Decision Trees
to predict if the future electricity price is going to be
high. GAIA [46] uses the k-means algorithm to clus-
ter buildings based on seasonal and yearly energy con-
sumption, as well as on building characteristics from
their knowledge base. It also performs anomaly detection
with a Generalized Additive model. GreenSoul [47] and
enCOMPASS [51] use machine learning techniques for occu-
pancy prediction, while enCOMPASS also conducts user
activity profiling through appliance state prediction with
models like Support Vector Machines (SVM) and Neu-
ral Networks, and user clustering based on consumption
behavior with k-means. ENTROPY [58] also applies the
k-means algorithm for user clustering based on socio-
demographic data, household characteristics, and smart meter
measurements. Additionally, ENTROPY includes consump-
tion forecasting using popular machine learning techniques
like Support Vector Regression (SVR).

F. RECOMMENDER SYSTEMS INTEGRATION
Recommender System (RecSys) techniques can provide very
important insights to utilities regarding user preferences and
thus help them to develop incentive techniques. Despite
that, most mobile apps providing incentives for energy effi-
ciency do not take full advantage of the available RecSys
approaches.
GAIA [46] and ENTROPY [58] use rule-based sys-

tems for their personalized recommendations. enCOM-
PASS [48] also makes customized recommendations based
on user clustering, while also utilizing collaborative fil-
tering techniques to make similar energy-saving sugges-
tions to similar users in terms of consumption profile,
while also taking into account user feedback regarding these
suggestions [50].

G. USER FEEDBACK AND ELICITATION
User feedback, either in the form of direct feedback regarding
specific app features or in the form of in-app questionnaires,
can help build better user profiles, targeting strategies, and
more accurate models to achieve higher levels of energy
efficiency. ecoGator [40] integrates feedback with user rat-
ings for the energy efficiency tips it provides. Similarly,
GreenSoul [47] gives its users the ability to express positive
or negative feedback on the messages the mobile app sends.
Furthermore, consumers can fill an in-app questionnaire
regarding socio-economic characteristics. enCOMPASS [48]
also uses a questionnaire to determine what appliances the
user owns, while occupants can give feedback on the energy
efficiency tips (i.e. ‘‘Okay, will do,’’ ‘‘already doing this,’’
‘‘not for me’’). In ENTROPY [58] consumers can fill ques-
tionnaires that include demographic data. Implicit feedback
can be derived from the ENTROPY app (i.e. a tip has been
read by the user), while users can provide explicit feedback
by accepting or declining a task. Smappee [66] includes an
in-app survey where users declare parameters like building
type, family structure, and appliances.

H. PASSING NOTIFICATIONS AND SUGGESTIONS
TO USERS
The majority of mobile applications for consumer energy
efficiency use tips, suggestions, and notifications to keep
their users engaged and communicate their incentives in an
effective and user-friendly manner. However, such mecha-
nisms should be designed with great care, since app users
can become irritated if they get overwhelmed with tips and
notifications throughout a short period of time.
Power Explorer [34] alerts its users when a high con-

sumption load is detected. Social Power App [60], Green-
Play [64], and Neurio [68] send general energy-saving tips
and advice to their users. In addition, EnergyCoupon [36],
ChArGED [44], and enCOMPASS [48] also provide person-
alized energy efficiency tips, based on the conducted user
profiling. EnergyLife [35] uses contextualized tips based on
specific user actions and triggers, in order to change their
behavior. ecoGator [40] also sends simple pieces of advice,
hints, and shopping tips for energy-efficient products to the
consumers, while PEAKapp [41] notifies them with sav-
ing tips, and discounts. GreenSoul [47] uses high-level rec-
ommendations/advice and context-aware notifications, i.e.
different message formats are used for different user types
(e.g. generic, energy, financial, and environmental mes-
sage formats). The ENTROPY [58] app also utilizes gen-
eral tips and personalized recommendations based on user
types, and notifications with invitations for environmental
awareness events. Furthermore, Tribe [63] educates con-
sumers on energy efficiency measures for public build-
ings, while TED [67] sends alerts/messages for tariff
changes, excessive demand load for the user’s location, and
surpassing power consumption thresholds. JouleBug [69]
uses push-notifications for gamification, social activity, and
reminders, whileConstellation Connect [70] alerts occupants
for events and triggers inside the house, mainly related to
security aspects.

I. SOCIAL MEDIA INTEGRATION
Social media have a great impact on our lives in recent
years, and are the main tool in the hands of advertisers and
engineers to incentivize end-users of various products. This
is also the case in the smart grid sector, where many exist-
ing mobile apps aimed at energy efficiency integrate social
media as a central component of their consumer engagement
mechanisms.
EnerGAware [57] allows players to communicate with

each other and read related news. EnergyLife [35] devel-
oped an in-game community for users to interact with
each other and share knowledge and experience related to
consumption reduction. Moreover, PEAKapp [41], ecoGa-
tor [40], GreenSoul [47], ENTROPY [58], JouleBug [69],
EnergyWiz [37], and GAIA [46] give their users the ability
to share in-app accomplishments on popular social media
platforms. In addition, EnergyWiz [37] includes one-to-one
energy efficiency challenges and user comparison on Face-
book, while JouleBug [69] integrates both sharing on social
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media platforms and on its own social activity section with a
trending feed, likes, comments, and follows.

J. MEASURED IMPACT
Arguably, one of the most meaningful aspects of a mobile
app aimed at consumer energy efficiency is its resulted
impact. In other words, the essence of each app’s objective
is the amount of energy consumption reduction and energy
efficiency its users accomplish. Thus, it is crucial to compare
the studied mobile apps in terms of validation outcomes
and results achieved, using appropriate Key Performance
Indicators (KPIs).

However, this is possible only for some of the apps we
present in this paper, which were developed and validated
through research projects and pilots. Information for the mea-
sured impact of commercial products and standalone mobile
apps is either partial or not existent. KPIs that reflect each
app’s impact include energy consumption (reduction in kWh
or as a percentage), costs of energy consumption, greenhouse
gas emissions, and various app interaction statistics. In this
subsection, we focus on energy consumption since it is the
most common KPI measured by most of the apps.

Nonetheless, a direct comparison of the energy efficiency
impact achieved by the apps is not possible since the val-
idation approaches and the pilots of the projects are very
different in terms of user types, number of users participating,
and duration. For example, some projects recruited residential
users while others focused on public buildings and offices.
Furthermore, the validation procedure carried out by some
of the residential projects only included a small number of
houses, meaning that their results have not the same value
compared to larger validation phases, even if the energy
savings seem greater.

More specifically regarding apps used by residential con-
sumers, Power Explorer [34] achieved an average energy
consumption reduction of 14% for a small sample of 15 users,
during a 7-day trial. On the other hand, EnergyCoupon [36]
focused on energy consumption shifting to off-peak hours
instead of consumption reduction in general. The app’s
impact was measured through a 3-month validation period
with 10 users, resulting in an average energy shift of 5%
of the total consumption, while some users reached an aver-
age shift of up to 20%. Considerable residential impact was
also reported by EnerGAware [57] and the Social Power
App [60] with an average energy consumption reduction of
about 5% (for 44 households during 2 years) and 8% (for
108 households during 4months) respectively.PEAKapp [41]
and GreenPlay [64] conducted larger validation procedures
with 811 (during 17 months) and 157 (during about one year)
users respectively. PEAKapp achieved average energy sav-
ings around 1%, while GreenPlay [64] did not show substan-
tial energy savings in practice. Finally, the enCOMPASS [48]
project conducted a validation phase with 223 households,
that lasted 10 months and showed separate energy savings for
the different pilot sites that averaged around 10%. In Fig. 10
we illustrate the measured impact for the apps that provide

validation results regarding household users. Fig. 10 does not
reflect a direct comparison between the impact of the apps
since they were validated under very different circumstances
in terms of number of users, location, and time frame, but it
serves as a visual representation of the measured impact for
the reader.

FIGURE 10. Measured impact of mobile apps used by residential users.

As for the mobile apps that were deployed for building
occupants (e.g. offices, schools, and public buildings), greater
savings were achieved since such buildings had a consider-
able consumption footprint in the first place. ChArGED [45]
reported an average consumption reduction of approximately
40% and GAIA [46] measured savings between 15%-20%
for several school buildings.GreenSoul [47] reported average
savings of about 10% for a realistic scenario, while Tribe [63]
stated a consumption reduction between 15%-20%. Finally,
ENTROPY [58] managed to reduce average occupant energy
consumption by approximately 16%.

As it is evident both from Table 1 and Fig. 10, most of the
studied apps achieved significant energy savings for diverse
use cases, although there is still room for improvement
regarding substantial long term energy savings, especially
for residential consumers. In addition, one can argue that
the integration of machine learning for residential consumer
modeling can significantly improve the resulted impact of a
smart grid mobile app in terms of household consumption
reduction, as we observed with the enCOMPASS [48] project,
which achieved greater energy savings compared to other
residential projects (with a large number of recruited houses)
that did not utilize machine learning approaches.

VII. OPEN ISSUES AND FUTURE WORK
After conducting a thorough comparison among existing
mobile apps for smart grid consumer engagement, it is clear
that most of them use data visualization, gamification, and
energy saving tips as their main motivation and engagement
mechanisms. However, as it is evident from Table 1, none of
the existing mobile apps integrates all the features studied in
this survey, and thus there is still room for improvement in
order to achieve higher levels of electricity consumer engage-
ment and consumption reduction.

Future directions should also focus on the integration and
deployment of machine learning and recommender systems,
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as well as architecture interoperability, big data, and security.
Furthermore, several of the studied mobile app features are
interrelated, e.g. machine learning and RecSys integration
can affect notifications and user profiling. Thus it is crucial to
design these features having in mind potential dependencies
that might affect them, in order to achieve a smoother user
experience.

In the future, mobile apps should be a fundamental
component of the smart energy grid ecosystem, constantly
providing bidirectional real-time communication between
end-consumers and the smart grid. Users should have the
ability to monitor and control all the energy-related aspects
of their lives in the palm of their hands, while constantly
receiving crucial information about the current, past, and
future state of their energy-related activities, consumption,
generation (e.g. solar panels), and impact, through advanced
and interactive visualization approaches.

At the same time, smart grid mobile apps should provide
advanced consumer flexibility and feedback mechanisms to
the users, which still remains an open issue to this day. More
specifically, demand response mechanisms can be optimized
and achieve a higher amount of demand shifting, if they
utilize real-time flexibility schedules for multiple appliances
and tasks, while user feedback regarding the quality and
acceptance of the proposed demand response actions will
help the system to make adjustments. The integration of
machine learning and recommender system techniques in
such approaches can further improve the system’s perfor-
mance and increase energy savings, but still remains an open
issue. We envision to tackle such issues related to flexibility
and machine learning utilization as part of our future work
during the InterConnect project.

A. MACHINE LEARNING AND RECOMMENDER SYSTEMS
Smart grid mobile apps such as the ones presented in this
survey, generate and consume a significant amount of elec-
tricity consumer data, which if processed appropriately can
provide crucial insights regarding user behavior, consump-
tion patterns, and the smart grid in general. However, few of
the existing apps utilize advanced user profiling techniques
and machine learning, and those that do are research projects,
meaning that such approaches have not been adopted yet by
utilities and the industry.

The same is the case with recommender systems, since
just a few research projects take advantage of them to
make more effective energy-related recommendations to con-
sumers. Open issues regarding recommender systems in
smart grid mobile apps include the design of specific recom-
mendation formats, soliciting explicit and implicit feedback
from consumers to continuously learn, and leveraging rec-
ommender system theory and algorithms while identifying
differences and specifics to smart grid recommendations.
For instance, detailed energy consumer profiles should be
constructed based on various parameters, such as consump-
tion features, socio-demographic characteristics, and past
responses to recommendations. In addition, item profiles
should also be derived based on their context, e.g. the text

of the recommendation message, overall past user response,
recommendation type, etc.

One more related aspect is that of feature engineering,
i.e. how should the recommendation features/parameters be
tuned, to maximize the probability of adherence by a specific
user, since each user has different profile characteristics. Such
parameters can include the timing of the recommendation,
the incentive provided (e.g. monetary or ecological), and the
wording used. Hence, an additional open issue is the optimal
matching of the generated incentives and recommendations
to the most appropriate consumers based on the advanced
consumer profiling conducted, in order to increase the rec-
ommendation impact.

Furthermore, the integration of deep learning models in
smart grid mobile app systems is still quite sparse, despite
the immense success such algorithms have achieved in other
domains. More complex models like deep learning and rein-
forcement learning could be tested and adopted by smart grid
mobile apps, in order to derive high-level behavioral charac-
teristics regarding electricity consumers, buildings, and the
smart grid as a whole. More specifically, deep learning archi-
tectures like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) can be used to extract
highly non-linear relationships between energy consumption
measurements and consumer characteristics, as well as to
build better recommendation engines as in [107]. To achieve
that, such models should be trained on large datasets consist-
ing of complex consumer profiles and smart meter data of
diverse nature and granularity, e.g. appliance, whole building,
indoor/outdoor climate, occupancy, and other measurements.
Consequently, more accurate clustering and classification
can be achieved, meaning that the mobile app will be able
to provide more targeted personalized feedback and recom-
mendations, thus achieving greater engagement and energy
efficiency.

Moreover, reinforcement learning agents can learn what
recommendations are useful to propose to users through feed-
back, either explicit (e.g. user accepts/declines the recom-
mendation) or implicit (e.g. after a load shift recommendation
the smart meters record a drop in consumption). The agent
will learn, from a set of possible fixed recommendations,
the probability that a user will follow what the recommen-
dation suggests in a short time horizon.

B. SYSTEM ARCHITECTURE AND BIG DATA
One area where smart grid mobile app systems could
be improved is architecture interoperability, meaning that
the various system software components should be eas-
ily replaced if needed so that more entities and services
are involved. For instance, a new smart home device or a
new electricity provider should not lead to major adjust-
ments in the system architecture. This can be achieved
by utilizing guidelines, standards, and ontologies like
SAREF [108], and REST APIs. The Smart Application REF-
erence ontology (SAREF) constitutes a reference ontology
specially designed for the IoT ecosystem. SAREF incorpo-
rates a variety of classes, objects, and properties to make the
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communication with different IoT devices seamless, even if
they utilize different standards and protocols from different
manufacturers. The mobile app we are developing as part of
our ongoing work in the InterConnect project will take full
advantage of the SAREF ontology to collect and process data
from various sources while ensuring interoperability. Other
technical IoT and energy standards that should be considered
in the system architecture design of a smart grid mobile
app include: the Universal Smart Energy Framework (USEF)
[109] for communication with flexibility markets, the Open
Charge Point Interface (OCPI) protocol [110] for smart elec-
tric vehicle charging, and the IEC 61970 standards [111] for
energy management system APIs.

Despite the recent advancements in mobile device per-
formance, apps might face operational problems when pro-
cessing a large volume of smart grid measurement data with
high variety and velocity. Hence, smart grid mobile apps
must be supported by appropriate backend systems with big
data processing capabilities that incorporate frameworks like
HDFS [21], Kafka [22], or Spark [23]. The integration of such
frameworks and approaches by smart grid mobile app sys-
tems has not been fully studied, thus it is important for future
efforts to adopt such big data processing mechanisms in order
to provide richer services to end-users. Such services could
include more complex and faster data analytics pipelines for
better energy insights, as well as visualization with higher
granularity and overall greater system reliability and fault
tolerance.

C. APP SUSTAINABILITY
It is critical for smart grid mobile apps to achieve long-term
consumer engagement and sustainability in terms of energy
efficient behavior, otherwise the app’s impact on consump-
tion reduction and load shaping will be short-term and
insignificant. Only a few of the aforementioned studied
mobile apps included a thorough sustainability plan in order
to retain user engagement throughout time. This can be
accomplished by continuous development of new content and
features, in order to avoid user fatigue and eventual dropout.
The gamification content should be updated over time and
new rewards should be provided to consumers. Furthermore,
new visual insights should be presented, so that the users
always learn something new about their energy consumption
patterns and characteristics. In addition, mobile apps should
adapt to the behavior and characteristics of each user, in order
to provide themwith personalized content, thus keeping them
engaged throughout time.

D. SECURITY AND PRIVACY
One more aspect that we think should be better addressed by
such applications is security since household energy data are
sensitive, and in the wrong hands can raise serious issues. For
example intruders can derive the working hours of occupants
from their energy data and break into their house. Advanced
anonymization technologies, Distributed Identifiers (DIDs),
Distributed Ledger Technologies (or blockchains), smart con-
tracts, and Verifiable Credentials (VCs) can help improve

privacy, by collecting household IoT measurement data in
a secure, robust, and privacy-preserving manner [112], and
provide access to it under specific and tight authorization
rules [113].

E. FUTURE WORK
After identifying open issues in the area and highlighting
future research directions, we present our envisioned mobile
app for energy consumer engagement, and overall residential
consumption reduction, which is part of our ongoing work
during the InterConnect project. The mobile app will incor-
porate all the consumer engagement features identified in
this survey, i.e. advanced visualization, gamification, flex-
ibility, detailed consumer profiling, feedback mechanisms,
sharing through social media, machine learning models,
and tips/notifications with recommendations for energy effi-
ciency utilizing recommender system methodologies.

More specifically, our new architecture will focus on the
integration of machine learning and recommender system
components to achieve higher levels of engagement and
energy savings. As it is evident from our survey, this is an
aspect that the majority of the previous apps for residential
energy efficiency have not touched upon, and the ones that
do so, do not take full advantage of the recent advancements
in machine learning (e.g. deep learning) and recommender
systems.

In our future work, we will construct detailed energy pro-
files for each user/household (as described in section V)
utilizing energy consumption data, socio-demographic data
from questionnaires, and other IoT measurements (e.g. cli-
mate conditions, occupancy, and illuminance). Then, super-
vised and unsupervised machine learning algorithms are
going to be used to extract highly nonlinear correlations
between consumer profile features and behavioral charac-
teristics (such as the clustering solution depicted in Fig. 6).
Such insights will be utilized to engage consumers based on
their behavioral characteristics in a targeted manner using
advanced RecSys approaches, thus achieving greater energy
savings compared to the state-of-the-art. Furthermore, our
mobile app will enable flexibility from the consumer per-
spective, providing appropriate incentives for users who are
involved in the flexibility procedure, thus further decreasing
the overall consumption. The app will be validated through
a pilot with consumers from multiple companies (i.e. energy
retailers and IoT providers), to verify its generality and inter-
operability capabilities.

VIII. CONCLUSION
A thorough survey of existingmobile applications for inform-
ing, educating, and incentivizing smart grid consumers was
presented. Approaches for user engagement and motiva-
tion were briefly discussed, with a focus on gamification,
as well as state-of-the-art mobile app system architecture
approaches. Moreover, the role and importance of machine
learning integration by such apps, for more effective user and
building modeling was discussed, analyzing the application
of techniques like classification and clustering. Furthermore,
a presentation and comparison of existing mobile apps for
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energy efficiency was carried out, both for research projects
and industrial products, regarding features like data visu-
alization, gamification, flexibility, user profiling, feedback
mechanisms, tips or notifications, social media, machine
learning, and recommender systems integration. This paper
highlights the positive impact that such mobile apps can have
on electricity consumer engagement and overall smart grid
efficiency through consumption reduction and demonstration
of improved flexibility or load shifting, and points out the
features that are missing from existing applications in order
to achieve higher levels of energy savings, more ecological
energy consumption profiles, and overall lowering environ-
mental impact.
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