
Received November 22, 2020, accepted December 1, 2020, date of publication December 7, 2020,
date of current version December 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042757

Reference-Based Sequence Classification
ZENGYOU HE 1, GUANGYAO XU 1, CHAOHUA SHENG 1, BO XU 1, (Member, IEEE),
AND QUAN ZOU 2, (Senior Member, IEEE)
1School of Software, Dalian University of Technology, Dalian 116024, China
2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 610054, China

Corresponding author: Zengyou He (zyhe@dlut.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61972066 and Grant 61572094, and in part by
the Fundamental Research Funds for the Central Universities under Grant DUT20YG106.

ABSTRACT Sequence classification is an important data mining task in many real-world applications. Over
the past few decades, many sequence classification methods have been proposed from different aspects.
In particular, the pattern-based method is one of the most important and widely studied sequence classifica-
tion methods in the literature. In this paper, we present a reference-based sequence classification framework,
which can unify existing pattern-based sequence classification methods under the same umbrella. More
importantly, this framework can be used as a general platform for developing new sequence classification
algorithms. By utilizing this framework as a tool, we propose new sequence classification algorithms that
are quite different from existing solutions. Experimental results show that new methods developed under the
proposed framework are capable of achieving comparable classification accuracy to those state-of-the-art
sequence classification algorithms.

INDEX TERMS Sequence classification, sequential data analysis, cluster analysis, hypothesis testing,
sequence embedding.

I. INTRODUCTION
In many practical applications, we have to conduct data anal-
ysis on data sets that are composed of discrete sequences.
Each sequence is an ordered list of elements. For instance,
such a sequence can be a protein sequence, where each ele-
ment corresponds to an amino acid. Due to the existence of a
large number of discrete sequences in a wide range of appli-
cations, sequential data analysis has become an important
issue in machine learning and data mining. Compared to non-
sequential data mining, sequential data analysis is confronted
with new challenges because of the ordering relationship
between different elements in the sequences. Similar to the
analysis of non-sequential data, there are different sequential
data mining problems such as clustering, classification and
pattern discovery. In this paper, we focus on the sequence
classification problem.

The task of classification is to determine which prede-
fined target class one unknown object should be assigned
to [1]. As a specific case of the general classification prob-
lem, sequence classification is to assign class labels to new
sequences based on the classifier constructed in the training
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phase. In many real-world applications, we can formulate
the data analysis task as a sequence classification problem.
For instance, the essential task in numerous bioinformatics
applications is to classify biological sequences into existing
categories [2].

To tackle the sequence classification problem, many effec-
tive methods have been proposed from different aspects.
Roughly, existing sequence classification methods can be
divided into three categories [3]: feature-based methods,
distance-based methods and model-based methods. Feature-
based methods first transform sequences into feature vectors
and then apply existing vectorial data classification meth-
ods. Distance-based methods apply classifiers such as KNN
(k Nearest Neighbors) to solve the sequence classification
problem, in which the key issue is to specify a proper distance
function to measure the distance between two sequences [3].
Model-based methods generally assume that sequences from
different classes are generated from different probability dis-
tributions, in which the key issue is to estimate the model
parameters from the set of training sequences.

In this paper, we focus on the feature-based method since
it has several advantages. First of all, various effective classi-
fiers have been developed for vectorial data classification [4].
After transforming sequences into feature vectors, we can
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choose any one of these existing classification methods to
fulfill the sequence classification task. Second, in some pop-
ular feature-based methods such as pattern-based methods,
each feature has a good interpretability. Last but not least,
the extraction of features from sequences has been exten-
sively studied across different fields, making it feasible to
generate sequence features in an effective manner.

The k-mer (in bioinformatics) or k-gram (in natural lan-
guage processing) is a substring that is composed of k con-
secutive elements, which is probably the most widely used
feature in feature-based sequence classification. Such a k-mer
based feature construction method is further generalized by
the pattern-based method, in which a feature is a sequential
pattern (a subsequence) that satisfies some constraints (e.g.
frequent pattern, discriminative pattern). Over the past few
decades, a large number of pattern-based methods have been
presented in the context of sequence classification [5]–[30].

In this paper, we present a reference-based sequence classi-
fication framework, which can be considered as a non-trivial
generalization of the pattern-based methods. This framework
has several key steps: candidate set construction, reference
point selection and feature value construction. In the first
step, a set of sequences that serve as the candidate reference
points are constructed. Then, some sequences from the can-
didate set are selected as the reference points according to
certain criteria. The number of features in the transformed
vectorial data will equal the number of selected reference
points. In other words, each reference point will correspond
to a transformed feature. Finally, a similarity function is used
to calculate the similarity between each sequence in the data
and every reference point. The similarity to each reference
point will be used as the corresponding feature value.

The reference-based sequence classification framework is
quite general and flexible since the selection of both ref-
erence points and similarity functions is arbitrary. Existing
feature-based methods can be regarded as a special variant
under our framework by (1) using (frequent or discriminative)
sequential patterns (subsequences) as reference points and (2)
utilizing a boolean function (output 1 if the reference point
is contained in a given sequence and output 0 otherwise)
as the similarity function. Besides unifying existing pattern-
based methods under the same umbrella, the reference-based
sequence classification framework can be used as a general
platform for developing new feature-based sequence classi-
fication methods. To justify this point, we develop a new
feature-based method in which a subset of training sequences
are used as the reference points and the Jaccard coefficient is
used as the similarity function. In particular, we present two
instance selection methods to select a good set of reference
points.

To demonstrate the feasibility and advantages of this new
framework, we conduct a series of comprehensive perfor-
mance studies on real sequential data sets. In the experi-
ments, we compare several variants under our framework
with some existing sequence classification methods in terms
of classification accuracy. Experimental results show that

new methods developed under the proposed framework are
capable of achieving better classification accuracy than tra-
ditional sequence classification methods. This indicates that
such a reference-based sequence classification framework is
promising from a practical point of view.

The main contributions of this paper can be summarized as
follows:
• We present a general reference-based framework for
feature-based sequence classification. It offers a unified
view for understanding and explaining many existing
feature-based sequence classification methods in which
different types of sequential patterns are used as features.

• The reference-based framework can be used as a gen-
eral platform for developing new feature-based sequence
classification algorithms. To verify this point, we design
new feature-based sequence classification algorithms
under this framework and demonstrate its advantages
through extensive experimental results on real sequential
data sets.

The rest of the paper is structured as follows. Section II
gives a discussion on the related work. In Section III,
we introduce the reference-based sequence classification
framework in detail. In Section IV, we show that many
existing feature-based sequence classification algorithms
can be reformulated within the reference-based framework.
In Section V, we present new feature-based sequence clas-
sification algorithms under this framework, which are effec-
tive and quite different from available solutions. We exper-
imentally evaluate the proposed reference-based framework
through a series of experiments on real-life data sets in
Section VI. Finally, we summarise our research and give a
discussion on the future work in Section VII.

II. RELATED WORK
In this section, we discuss previous research efforts that are
closely related to our method. In Section II-A, we provide a
categorization on existing feature-based sequence classifica-
tion methods. In Section II-B, we discuss several instance-
based feature generation methods in the literature of time
series classification. In Section II-C, we present a concise dis-
cussion on reference-based sequence clustering algorithms.
In Section II-D, we provide a short summary on dimension
reduction and embedding methods based on landmark points.

A. FEATURE-BASED METHODS
1) EXPLICIT SUBSEQUENCE REPRESENTATION
WITHOUT SELECTION
The naive approach in dealing with discrete sequences is to
treat each element as a feature. However, the order informa-
tion between different elements will be lost and the sequen-
tial nature cannot be captured in the classification. Short
sequence segments of k consecutive elements called k-grams
can be used as features to solve this problem. Given a set of
k-grams, a sequence can be represented as a vector of the
presence or absence of the k-grams or the frequencies of the
k-grams. In this feature representation method, all k-grams
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(for a specified k value) are explicitly used as the features
without feature selection.

2) EXPLICIT SUBSEQUENCE REPRESENTATION WITH
SELECTION (CLASSIFIER-INDEPENDENT)
Lesh et al. [26] present a pattern-based classification method
in which a sequential pattern is chosen as a feature. The
selected pattern should satisfy the following criteria: (1) be
frequent, (2) be distinctive of at least one class and (3) not
redundant. Towards this direction, many pattern-based classi-
fication methods have been subsequently proposed, in which
different constraints are imposed on the patterns that should
be selected as features [5]–[25], [27]–[30]. Note that any
classifier designed for vectorial data can be applied to the
transformed data generated from such pattern-based meth-
ods. In other words, such feature generation methods are
classifier-independent.

3) EXPLICIT SUBSEQUENCE REPRESENTATION WITH
SELECTION (CLASSIFIER-DEPENDENT)
The above pattern-based methods are universal and classifier-
independent. However, some patterns that are critical to the
classifier may be filtered out during the selection process.
Thus, several methods which can select pattern features from
the entire pattern space for a specific classifier have been
proposed [31]–[33].

In [31], a coordinate-wise gradient ascent technique is
presented for learning the logistic regression function in the
space of all k-grams. The method exploits the inherent struc-
ture of the k-gram feature space to automatically provide a
compact set of highly discriminative k-gram features. In [32],
a framework is presented in which linear classifiers such
as logistic regression and support vector machine can work
directly in the explicit high-dimensional space of all sub-
sequences. The key idea is a gradient-bounded coordinate-
descent strategy to quickly retrieve features without explicitly
enumerating all potential subsequences. In [33], a novel doc-
ument classification method using all substrings as features
is proposed, in which L1 regularization is applied to a multi-
class logistic regression model to fulfill the feature selection
task automatically and efficiently.

4) IMPLICIT SUBSEQUENCE REPRESENTATION
In contrast to explicit subsequence representation,
kernel-based methods employ an implicit subsequence rep-
resentation strategy. A kernel function is the key ingredient
for learning with support vector machines (SVMs) and it
implicitly defines a high-dimensional feature space. Some
kernel functions K (x, y) have been presented for measuring
the similarity between two sequences x and y (e.g. [34]).
There are a variety of string kernels which are widely used

for sequence classification (e.g. [35]–[38]). A sequence is
transformed into a feature space and the kernel function is
the inner product of two transformed feature vectors.

Leslie et al. [35] propose a k-spectrum kernel for protein
classification. Given a number k ≥ 1, the k-spectrum of

an input sequence is the set of all its k-length (contiguous)
subsequences.

Lodhi et al. [36] present a string kernel based on gapped k-
length subsequences for text classification. The subsequences
are weighted by an exponentially decaying factor of their full
length in the text.

In [37], a mismatch string kernel is proposed, in which a
certain number of mismatches are allowed in counting the
occurrence of a subsequence. Several string kernels related
to the mismatch kernel are presented in [38]: restricted gappy
kernels, substitution kernels and wildcard kernels.

5) SEQUENCE EMBEDDING
All the methods mentioned above use subsequences as fea-
tures. Alternatively, the sequence embedding method gen-
erates a vector representation in which each feature does
not have a clear interpretation. Most existing approaches
for sequence embedding are proposed for texts in natural
language processing, where word and document embed-
dings are used as an efficient way to encode the text
(e.g. [39], [40]). The basic assumption in thesemethods is that
words that appear in similar contexts have similar meanings.

The word2vec model [39] uses a two-layer neural net-
work to learn a vector representation for each word. The
sequence (text) embedding vector can be further generated
by combining the feature vectors for words. The doc2vec
model [40] extends word2vec by directly learning feature
vectors for entire sentences, paragraphs, or documents.

Nguyen et al. [41] propose an unsupervised method
(named Sqn2Vec) for learning sequence embedding by pre-
dicting its belonging singleton symbols and sequential pat-
terns (SPs). The main objective of Sqn2Vec is to address the
limitations of two existing approaches: pattern-based meth-
ods often produce sparse and high-dimensional feature vec-
tors while sequence embedding methods in natural language
processing may fail on data sets with a small vocabulary.

6) SUMMARY OF FEATURE-BASED METHODS
Roughly, existing feature-based sequence classification
methods can be divided into the above five categories. Each
of these methods has its pros and cons, which we will discuss
briefly next.

First, using k-grams as features without feature selection
is simple and effective in practice. However, the feature
length k cannot be large and many redundant features may
be included.

Second, in the pattern-basedmethod, the length of a feature
is not restricted as long as the feature satisfies given con-
straints and redundant features can be filtered out in some
formulations. However, it is a non-trivial task to efficiently
mine patterns that can satisfy the constraints.

Third, sequence classification methods based on adaptive
feature selection can automatically select features from the
set of all subsequences. The basic idea is to integrate the
feature selection and classifier construction into the same
procedure. Hence, these methods are classifier-dependent in
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the sense that each algorithm is only applicable to a specific
classifier.

Fourth, kernel-based methods can implicitly map the
sequence into a high-dimensional feature space without
explicit feature extraction. The major challenge is how to
choose a proper string kernel function and how to handle large
data sets efficiently.

Finally, sequence embedding methods generate a new vec-
tor representation for each sequence that may achieve better
classification accuracy. Unfortunately, the semantic interpre-
tation of each feature becomes a difficult issue.

B. INSTANCE-BASED FEATURE GENERATION METHODS
There are several instance-based feature generation methods
for time series classification which are closely related to our
method (e.g. [42], [43]).

Iosifidis et al. [42] propose a time series classification
method based on a novel vector representation. The vector
representation for each time series is generated by calcu-
lating its similarities from a subset of training instances.
To find a good subset of representative instances, a clustering
procedure is further presented. In [43], each time series is
represented as a feature vector, where the feature value is
its dynamic time warping similarity from one of the training
instances. Note that all training instances are used for feature
generation.

C. REFERENCE-BASED SEQUENCE CLUSTERING
In the literature of sequence clustering, the idea of using
reference/landmark points to accelerate the cluster analysis
process has been widely studied (e.g. [44], [45]). In this type
of sequence clustering algorithm, a reference point selection
method is first employed to obtain a small set of landmark
points and then the clustering process is conducted based on
the similarities between input sequences and selected refer-
ence points. Here, we would like to highlight the following
differences between our method and existing research efforts
in this field: (1) The objective is different. We focus on the
classification issue while these methods aim at the cluster
analysis problem. Besides, their main concern is to improve
the running efficiency of the sequence clustering procedure;
(2) The method is different. We present two reference point
selection methods: one unsupervised method and one super-
vised method (see Section V for the details). In existing
reference-based sequence clustering methods, only the unsu-
pervised reference point selection method is applicable since
no class label information is available.

D. REFERENCE-BASED DIMENSION REDUCTION
A number of research papers have presented the idea of using
the distances to a set of reference points to fulfill the dimen-
sion reduction task (e.g. [46], [47]). Our method shares some
similarities with these methods since the final objective is the
same. However, most of these methods are not developed for
the task of sequence classification. As a result, our method

FIGURE 1. The entire workflow of reference-based sequence
classification framework.

is quite different from these methods for both the reference
point selection and the similarity computation.

III. REFERENCE-BASED SEQUENCE CLASSIFICATION
FRAMEWORK
Let I = {i1, i2, . . . , im} be a finite set of m distinct items,
which is generally called the alphabet in the literature.
A sequence s over I is an ordered list s = 〈s1, s2, . . . , sl〉,
where si ∈ I and l is the length of the sequence s. A sequence
t = 〈t1, t2, . . . , tr 〉 is said to be a subsequence of s if there
exist integers 1 ≤ i1 < i2 < . . . < ir ≤ l such that
t1 = si1 , t2 = si2 , . . . , tr = sir , denoted as t ⊆ s (if t 6= s,
written as t ⊂ s). We use maxsize to denote the allowed
maximum length of subsequences.

Let C =
{
c1, c2, . . . , cj

}
be a finite set of j distinct classes.

A labeled sequential data setD over I is a set of instances and
each instance d is denoted by (s, ck ), where s is a sequence
and ck ∈ C is a class label, |D| is the number of sequences in
D. The setDci ⊆ D contains all sequences that have the same
class label ci (i.e.,D = ∪

j
i=1Dci ).Dci (t) is the set of sequences

in Dci that contain t , where t is a given sequence. Sequences
in D (Dci ) is divided into a training set TrainD (TrainDci ) and
a testing set TestD (TestDci ). The set of all subsequences of
TrainD is denoted by SubTrainD = {t|t ⊆ s, s ∈ TrainD}.
As shown in Fig. 1, we present a reference-based sequence

classification framework. It is composed of three major
phases: reference point selection, feature value generation,
model construction and prediction. In the following, we will
elaborate on each step in detail.

A. REFERENCE POINT SELECTION
In the first stage of the presented framework, a reference point
selection procedure is performed to generate a set of pivot
sequences. As shown in Fig. 2, this procedure can be further
divided into three steps: alphabet extraction, candidate set
generation and pivot sequence selection.

In the first step, we scan the training set TrainD to extract
the alphabet I that is composed of distinct items. Note that
there can be some items that only appear in the testing set
TestD. In the forthcoming paragraphs, we will see that this
extreme case does not affect our subsequent steps.
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FIGURE 2. The process of reference point selection.

In the second step, we generate the set of candidate ref-
erence sequences CR from the alphabet I . Note that any
sequence over I can be a member of CR. In other words, CR
can be an infinite set. In practice, some constraints will be
imposed on the potential member in CR. For instance, those
pattern-basedmethods only consider subsequences of TrainD
asmembers ofCR under our framework, whichwill be further
discussed in Section IV. Furthermore, the use of different
construction methods for building the candidate set CR will
lead to the generation of many new feature-based sequence
classification methods.

In the third step, we select a subset of sequences R from
CR as the landmark sequences for generating features. That
is, each reference sequence will correspond to a transformed
feature. The critical issue in this step is how to design an
effective pivot sequence selection method. To date, existing
pattern-based methods typically utilize some simple crite-
ria to conduct the reference sequence selection task. For
example, those methods based on frequent subsequences use
the minimal support constraint as the criterion for refer-
ence sequence selection. Apparently, many new and inter-
esting pivot sequence selection methods remain unexplored
under our framework. In the subsequent paragraphs of this
subsection, we will list some commonly used criteria for
selecting reference sequences from the set of candidate pivot
sequences.
Constraint 1 (Gap Constraint [11]): Given two sequences

s = 〈s1, s2, . . . , sl〉 and t = 〈t1, t2, . . . , tr 〉, if t is the
subsequence of s such that t1 = si1 , t2 = si2 , . . . , tr = sir ,
the gap between ik and ik+1 is defined as Gap(s, ik , ik+1) =
ik+1− ik −1. Given two thresholdsmingap andmaxgap (0 ≤
mingap ≤ maxgap), if mingap ≤ Gap(s, ik , ik+1) ≤ maxgap
(1 ≤ k ≤ r − 1), then the occurrence of t in s fulfills the
gap constraint .
Constraint 2 (Minsup Constraint [12]): Given a set of

sequences Dci with the class label ci and a sequence t ,
countDci (t) is used to denote the number of sequences in
Dci that contain t as a subsequence. The support of t in

Dci is defined as supDci (t) =
countDci (t)
|Dci |

. Given a positive

threshold minsup, if supDci (t) ≥ minsup, then t satisfies the
minsup constraint and t is a frequent sequential pattern inDci .
Constraint 3 (Mindisc Constraint [48]): Given two class

labels c1 and c2, a sequence t is said to be a discrimina-
tive pattern if it is over-expressed on Dc1 against Dc2 (or
the vice versa). To evaluate the discriminative power, many
measures/functions have been proposed in the literature [48].
If the discriminative function value of t can pass certain
constraints, then it satisfies the mindisc constraint . Here we
just list some measures that have been used for selecting
discriminative patterns in sequence classification.

• Discriminative Function (DF) 1 [12]:

supDc1 (t) > minsup,

supDc2 (t) ≤ minsup, (III.1)

where minsup is a given support threshold.

• Discriminative Function (DF) 2 [11]:

occDc1 (t) > mincount,

occDc2 (t) ≤ mincount, (III.2)

where occDc1 (t) =
occountDc1 (t)
|Dc1 |

and mincount is a
given threshold. The occountDc1 (t) is the number of non-
overlapping occurrences of t in Dc1 .

• Discriminative Function (DF) 3 [12]:

supdiff = supDc1 (t)− supDc2 (t). (III.3)

• Discriminative Function (DF) 4 [11]:

F − ratio =
Occbetween
Occwithin

, (III.4)

where

Occbetween = |Dc1 |(occDc1 (t)−
occDc1 (t)+ occDc2 (t)

2
)2

+ |Dc2 |(occDc2 (t)−
occDc1 (t)+ occDc2 (t)

2
)2,
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and Occwithin is defined as:

Occwithin =

|Dc1 |∑
j=1

(occountDc1j (t)− occDc1 (t))
2

+

|Dc2 |∑
j=1

(occountDc2j (t)− occDc2 (t))
2.

• Discriminative Function (DF) 5 [30]:

GR(t, c1, c2) ≥ minGR

Sigcon(t, c1, c2) ≥ minSig, (III.5)

where GR(t, c1, c2) =
supc1 (t)
supc2 (t)

is the GrowthRate of t ,
minGR is a given GrowthRate threshold. Sigcon(t, c1, c2) =
minq∈Q

{
GR(t,c1,c2)
GR(q,c1,c2)

}
is used to describe the conditional

redundancy, where Q is the set of discriminative sub-patterns
of t , minSig is a given threshold.
• Discriminative Function (DF) 6 [26]:
The chi-squared test is used as the discriminative function

to check if the candidate sequence is correlated with at least
one class that it is frequent in.
Constraint 4 (Uniqueness Constraint [11]): A sequence

is said to satisfy the uniqueness constraint if all its items are
unique.
Constraint 5 (Closedness Constraint [19]): A sequence t

is said to satisfy the closedness constraint if no sequences that
contain t as a subsequence have the same support as t .
Constraint 6 (Redundancy Constraint [26]): A sequence t

is said to satisfy the redundancy constraint if conf(t) ≥
|Dci |
|D| ,

where conf(t) =
countDci (t)
countD(t)

is the confidence of t .
Constraint 7 (Interestingness Constraint [5]): Given a

set of sequences Dci with class label ci, two sequences
s = 〈s1, s2, . . . , sl〉 and t = 〈t1, t2, . . . , tr 〉, if t is the subse-
quence of s such that t1 = si1 , t2 = si2 , . . . , tr = sir , Ici (t) =
supDci (t) × Cci (t) is used to denote the interestingness of t ,
where Cci (t) =

|t|
Wci (t)

is the cohesion of t in Dci (t), Wci (t) =∑
s∈Dci (t)

W (t,s)

countDci (t)
and W (t, s) = min {ir − i1 + 1|i1 ≤ ir }. And

the cohesion of t in a sequence s is C(t, s) = |t|
W (t,s) . Given

two thresholds minsup and minint , if supDci (t) ≥ minsup and
Ici (t) ≥ minint , then t satisfies the interestingness constraint .
Constraint 8 (Level Constraint [17]): Given a sequence

t and a set of sequences D with j classes, a sequen-
tial classification rule π is denoted as π : t →

countDc1 (t), countDc2 (t), . . . , countDcj (t), where t is the body
of the rule. From a Bayesian point of view, to choose
the best rule is equivalent to maximizing p(π |D) =
p(π,D)
p(D) =

p(π )×p(D|π)
p(D) , where p(D) is a constant, cost(π ) =

− log(p(π ) × p(D|π )) is used as the evaluation criterion,
and the normalized criterion level is defined as level(π ) =
1 − cost(π )

cost(π∅)
, in which cost(π∅) is the cost of the null model

when the sequence body is empty. If 0 < level(π ) ≤ 1, then
t satisfies the level constraint .

B. FEATURE VALUE GENERATION
In the second stage of the presented framework, a similarity
function is used to generate vectorial representations for all
sequences in both training data and testing data. As shown
in the left part of Fig. 3, this procedure can be further
divided into two steps: (1) calculating the similarities between
training instances and reference points; (2) calculating the
similarities between testing instances and reference points.

In the first step, we utilize a similarity function to transform
TrainD into a vectorial training set TrainD′ by calculating
the similarity between each sequence in TrainD and every
reference point in R. Each similarity value will be used as
the corresponding feature value. The critical issue in this step
is how to choose a suitable similarity function. Note that
the selection of the similarity function is arbitrary. In other
words, any feasible similarity function can be used in this
step. In fact, many existing feature-based methods utilize a
boolean function as the similarity function, which outputs 1 as
the feature value if the reference point is a subsequence of the
target sequence and 0 otherwise.

In the second step, we use the same similarity function to
transform TestD into a vectorial testing set TestD′. Note that
the number of features in the transformed vectorial data set is
|R|, which is the number of reference points.

The similarity function plays an important role in generat-
ing feature values. Accordingly, it will have a great impact
on the prediction result. For the purpose of summarizing
existing research efforts under our framework with respect to
the similarity function, here we list some similarity functions
between two sequences s and t that have been deployed in the
literature.
• Similarity Function (SF) 1 [26]:

Sim(s, t) =

{
1, if t ⊆ s,
0, otherwise.

(III.6)

• Similarity Function (SF) 2 [12]:

Sim(s, t) =

{
1, if α and t are similar,
0, otherwise.

(III.7)

In Equation (III.7), similar means ed(α, t) ≤ γ × |t|
(|s| ≥ |t|), ed(α, t) is the edit distance between α and t
(the minimum number of operations needed to transform α

into t , where an operation can be the insertion, deletion, or
substitution of a single item), α is a contiguous subsequence
of s with |t| items, which is extracted by using a sliding
window of length |t| that starts from the first element of s.
If α and t are not similar , then the sliding window will be
repeatedly shifted one position to the right until |s| − |t| + 1
subsequences have been checked or a new subsequence α
similar to t is encountered. γ is a given maximum difference
threshold.
• Similarity Function (SF) 3 [5]:

Sim(s, t) =

{
C(t, s), if t ⊆ s,
0, otherwise,

(III.8)
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FIGURE 3. The process of feature value generation, model construction and prediction.

where C(t, s) is the cohesion of t in the sequence s.
• Similarity Function (SF) 4 [18]:

Sim(s, t) =

{
occnum, if t ⊆ s,
0, otherwise,

(III.9)

where occnum is the number of occurrences of t in s.
• Similarity Function (SF) 5 [11]:

Sim(s, t) =

{
occounts(t), if t ⊆ s,
0, otherwise,

(III.10)

where occounts(t) is the number of non-overlapping occur-
rences of t in s.
• Similarity Function (SF) 6 [19]:

Sim(s, t) =
|LCS(s, t)|
Max {|s|, |t|}

, (III.11)

where |LCS(s, t)| is the length of the longest common
subsequence, |s| and |t| are the length of s and t respectively.

C. MODEL CONSTRUCTION AND PREDICTION
In the third stage of the presented framework, we construct a
prediction model to make predictions. As shown in the right
part of Fig. 3, this procedure can be further divided into three
steps: model construction, prediction and classification result
generation.

In the first step, an existing vectorial data classification
method is used to construct a prediction model from the
vectorial training set TrainD′ since we have transformed
training sequences into feature vectors in the second stage.

Numerous classification methods have been designed for
classifying feature vectors (e.g. support vector machines
and decision trees) [4], [49]. After training a classifier
with TrainD′, the prediction model is ready for classifying
unknown samples.

In the second step, we forward the vectorial testing set
TestD′ to the classifier to make predictions. In the third step,
we output the prediction result and compute the classification
accuracy by comparing the predicted class labels with the
ground-truth labels.

IV. GENERAL FRAMEWORK FOR
FEATURE-BASED CLASSIFICATION
In this section, we show that many existing feature-based
sequence classification algorithms can be reformulated
within the presented reference-based framework. The differ-
ences between these algorithms mainly lie in the selection
of reference points and similarity functions. As summarized
in Table 1, we can categorize these existing methods accord-
ing to three criteria: (1) How to construct the candidate set
of reference points? (2) How to choose a set of reference
points? (3) Which similarity function should be used? Note
that the definitions and notations for different constraints
and similarity functions have been presented in Section III-A
and Section III-B. From Table 1, we have the following
observations.

First of all, any sequence over the alphabet can be a
potential member of the candidate set of reference points
CR. However, all feature-based sequence classification algo-
rithms in Table 1 use SubTrainD to construct CR since the
idea of using subsequences as features is quite natural with
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TABLE 1. The categorization of some existing feature-based sequence classification algorithms under our framework.

a good interpretability. Although SubTrainD is a finite set,
its size is still very large and most sequences in SubTrainD
are useless and redundant for classification. Therefore, it is
necessary to explore alternative methods for constructing the
set of candidate reference points. For instance, wemay use all
original sequences in TrainD to construct CR, so that the size
of CR will be greatly reduced and the corresponding features
may be more representative.

Second, many sequence selection criteria have been
proposed to select R from CR, such as minsup and mindisc.
The main objective of applying these criteria is to select
a subset of sequences that can generate good features for
building the classifier. However, it is not an easy task to set
suitable thresholds for these constraints to produce a set of
reference sequences with moderate size. More importantly,
most of these constraints are proposed from the literature
of sequential pattern mining, which may be only applica-
ble to the selection of reference sequences from SubTrainD.
In other words, more general reference point selection strate-
gies should be developed.

Last, the most widely used similarity function in Table 1
is SF 1, which is a boolean function based on whether
the reference point is a subsequence of the sequence in
TrainD. Although some non-boolean functions have been
used, the potential of utilizing more elaborate similarity func-
tions between two sequences still needs further investigation.

Overall, our reference-based sequence classification
framework is quite generic, in which many existing pattern-
based sequence classification methods can be reformulated
as its special variants. Meanwhile, there are still many limita-
tions in current research efforts under this framework. Hence,
new and effective sequence classification methods should be
developed towards this direction.

V. NEW VARIANTS UNDER THE FRAMEWORK
In addition to encompassing existing pattern-based methods,
this framework can also be used as a general platform to
design new feature-based sequence classification methods.

As discussed in Section IV, there are three key ingredients
in our framework: the construction of the candidate reference
point set, the selection of reference points and the selection
of similarity function. Obviously, we will generate a ‘‘new’’
sequence classification algorithm based on an unexplored
combination of these three components. In view of the fact
that the number of possible combinations is quite large, it is
infeasible to enumerate all these variants. Instead, we will
only present two variants that are quite different from existing
algorithms to demonstrate the advantage of this framework.

A. THE USE OF TRAINING SET AS THE CANDIDATE SET
With our framework, all previous pattern-based sequence
classification methods utilize the set SubTrainD as the can-
didate reference point set CR in the first step. One limitation
of this strategy is that the actual size of CR will be very
large. As a result, it poses great challenges for the reference
point selection task in the consequent step. To alleviate these
issues, we propose to use all original sequences in TrainD to
construct the set of candidate reference points. The rationale
for this candidate set construction method is based on the
following observations.

Firstly, all information given for building the classifier is
contained in the original training set. In other words, we will
not lose any relevant information for the classification task if
TrainD is used as the candidate set of reference sequences.
In fact, the widely used candidate set SubTrainD is derived
from TrainD.
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Secondly, even we use all the training sequences in TrainD
as the reference points, the transformed vectorial data will be
a |TrainD|× |TrainD| table. That is, the number of features is
still no larger than the number of samples. Therefore, we do
not need to analyze a HDLSS (high-dimension, low-sample-
size) data set during the classification stage. In contrast,
the number of features may be much larger than the number
of samples in the vectorial data obtained from SubTrainD if
the parameters are not properly specified during the reference
point selection procedure. In fact, we have tested the per-
formance when all training sequences are used as reference
points. The experimental results show that this quite simple
idea is able to achieve comparable performance in terms of
classification accuracy.

Finally, the same idea has been employed in the literature
of time series classification [42], [43]. Its success motivates
us to investigate the feasibility and advantage in the context
of discrete sequence classification.

B. TWO REFERENCE POINT SELECTION METHODS
To select reference sequences from TrainD, those existing
constraints proposed in the context of sequential pattern min-
ing are not applicable. Therefore, we have to develop new
algorithms to choose a subset of representative reference
sequences from TrainD. To this end, two different reference
sequence selection methods are presented. The first one is
an unsupervised method, which selects reference sequences
based on cluster analysis without considering the class label
information. The second one is a supervised method, which
evaluates each candidate sequence according to its discrim-
inative ability across different classes. In the following two
sub-sections, we will present the details of these two refer-
ence point selection algorithms.

1) UNSUPERVISED REFERENCE POINT SELECTION
As we have discussed in Section V-A, we may choose all
sequences in the training set as reference points. However,
the number of features in the transformed vectorial data
can still be very large if the number of training instances
is large. The selection of a small subset of representative
training sequences as reference points will greatly reduce the
computational burden in the subsequent stage. One natural
idea is to divide the training sequences in CR into different
clusters using a clustering algorithm [50]. Then, we can select
a representative sequence from each cluster as the reference
point.

To date, many algorithms have been presented for clus-
tering discrete sequences (e.g. [51]). We can just adopt an
existing sequence clustering algorithm in our pipeline. Here
we choose the Group-average Agglomerative Hierarchical
Clustering (GAHC) algorithm [52] to fulfill the sequence
clustering task. This algorithm is used because it can often
generate a high-quality clustering result and can handle any
forms of similarity measure.

In the following, we will describe the details of the refer-
ence point selection method based on GAHC.

In the first stage, the i-th sequence in CR will form a
cluster Ci.
In the second stage, a similarity function is used to cal-

culate the similarity between each pair of clusters to pro-
duce a similarity matrix Sim, where Sim[i, j] is the similarity
between the two clustersCi andCj. Many similarity measures
have been presented for sequential data (e.g. [53]). Here we
choose the Jaccard coefficient. More specific details on the
similarity function will be discussed in Section V-C.

In the third stage, we first search the similarity matrix Sim
to identify the maximum value maxSim, which corresponds
to the most similar pair of clusters Ck and Cl . Then, these
two clusters are merged to form a new cluster Ck and the
number of clusters in total is decreased by 1. Meanwhile,
the entries related to Cl in Sim are set to be 0 and Sim
is updated by recalculating the similarity between Ck and
each of the remaining clusters. The similarity between the
newly generated cluster and each of the remaining clusters
is calculated as the average similarity between all members
in the two clusters since we use the group-average method.
We repeat the third stage until the number of clusters is equal
to the number of reference points we want to select.

In the last stage, we select a representative sequence from
each cluster. For each cluster, any sequence in this cluster
can be used as a representative. To provide a consistent and
deterministic output, we use the sequence with the minimum
subscript in the cluster as the reference point.

2) SUPERVISED REFERENCE POINT SELECTION
To choose a subset of representative reference sequences from
TrainD, we can also employ a supervised method in which
the class label information is utilized. As we have discussed
in Section IV, different mindisc constraints have been widely
used to evaluate the discriminative power of sequential pat-
terns. Unfortunately, these constraints are only applicable to
the selection of reference points from SubTrainD. In addition,
it is not an easy task to set suitable thresholds to control
the number of selected reference points. In order to over-
come these limitations, we present a reference point selection
method based on hypothesis testing, in which the statistical
significance in terms of p-value is used to assess the discrim-
inative power of each candidate sequence.

Hypothesis testing is a commonly used method in statisti-
cal inference. The usual line of reasoning is as follows: first,
formulate the null hypothesis and the alternative hypothesis;
second, select an appropriate test statistic; third, set a sig-
nificance level threshold; finally, reject the null hypothesis
if and only if the p-value is less than the significance level
threshold, where the p-value is the probability of getting a
value of the test statistic that is at least as extreme as what
is actually observed on condition that the null hypothesis is
true.

In order to assess the discriminative power of each can-
didate sequence in terms of p-value, we can use the null
hypothesis that this sequence does not belong to any class
and all sequences from different classes are drawn from the
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same population. If the above null hypothesis is true, then
the similarities between the candidate sequence and training
sequences are drawn from the same population. Therefore,
we can formulate the corresponding hypothesis testing prob-
lem as a two-sample testing problem [54], where one sample
is the set of similarities between the candidate sequence and
the training sequences from one target class and another sam-
ple is the set of similarities between the candidate sequence
and the training sequences from the remaining classes.

Since we test all candidate sequences in CR at the same
time, it is actually a multiple hypothesis testing problem. If
no multiple testing correction is conducted, then the number
of false positives among reported reference sequences may be
very high. To tackle this problem, we adopt the BH procedure
to control the FDR (False Discovery Rate) [55], which is
the expected proportion of false positives among all reported
sequences.

The reference point selection method based onMHT (Mul-
tiple Hypothesis Testing) is shown in Algorithm 1. In the
following, we will elaborate on this algorithm in detail.

Algorithm 1 Reference Point Selection Based on MHT
Input: Candidate reference sequence set CR, α
Output: Reference point set R
1: R← ∅;
2: for each Dci in CR do
3: D+← Dci ;
4: D−← CR− Dci ;
5: for each sequence Sk in D+ do
6: Sim+← ∅;
7: Sim−← ∅;
8: for each sequence Sj in D+ do
9: calculate Sim[k, j];
10: Sim+← Sim+ ∪ {Sim[k, j]};
11: end for
12: for each sequence Sj in D− do
13: calculate Sim[k, j];
14: Sim−← Sim− ∪ {Sim[k, j]};
15: end for
16: Sk .pvalue← Utest(Sim+, Sim−);
17: end for
18: sort D+;
19: maxindex ← 0;
20: for each sequence Sk in D+ do
21: if Sk .pvalue ≤ α k

|D+|
then

22: maxindex ← k;
23: end if
24: end for
25: for k ← maxindex + 1 to |D+| − 1 do
26: D+← D+ − {Sk};
27: end for
28: R← R ∪ D+;
29: end for
30: return R;

In the first stage (step 1-4), we select a set of sequences
Dci with the class label ci from CR, then we regard Dci as the
positive data setD+ and use the set of all remaining sequences
in CR as the negative data set D−.

In the second stage (step 5-17), for each sequence Sk in
D+, a similarity function is used to calculate the similarity
between Sk and each sequence in D+ and D−, where the
similarity function is the same as that used in Section V-B1
and Sim[k, j] is the similarity between the two sequences
Sk and Sj. Then, the Mann-Whitney U test [56] is used to
calculate the p-value based on the two similarity set Sim+
and Sim−.

In the third stage (step 18-27), the BH method first
sorts sequences in D+ according to their corresponding p-
value in an ascending order, i.e., D+ =

{
S1, S2, . . . , S|D+|

}
(S1.pvalue ≤ S2.pvalue ≤ . . . ≤ S|D+|.pvalue).
Then, we sequentially search D+ to identify the maximal
sequence index maxindex which satisfies the condition that
Sk .pvalue ≤ α k

|D+|
, where α is the significance level thresh-

old. Those sequences whose indices are larger thanmaxindex
will be removed from D+.
In the last stage (step 28-30), we select all sequences from

D+ as reference points. The whole process will be terminated
after each set of sequences from every class has been regarded
as D+.

C. SIMILARITY FUNCTION
In order to measure the similarity between two sequences,
we choose the Jaccard coefficient as the similarity function
in our method. The larger the Jaccard coefficient between the
two sequences is, the more similar they are.

Given two sequences s = 〈s1, s2, . . . , sl〉 and t =
〈t1, t2, . . . , tr 〉, the Jaccard coefficient is defined as:

J (s, t) =
|s ∩ t|

|s| + |t| − |s ∩ t|
, (V.1)

where |s ∩ t| is the number of items in the intersection of
s and t . However, this may lose the order information of
sequences. To alleviate this issue, we use the LCS (Longest
Common Subsequence) between s and t to replace s∩t . Then,
the Jaccard coefficient is redefined as:

J (s, t) =
|LCS(s, t)|

|s| + |t| − |LCS(s, t)|
. (V.2)

Example 1: Given two sequences s = 〈a, b, c, d, e〉 and
t = 〈e, c, d, c〉, the LCS(s, t) is 〈c, d〉, then the modified
Jaccard coefficient is

J (abcde, ecdc) =
2

5+ 4− 2
≈ 0.286.

Note that we can also use other similarity functions in the
literature, such as those methods summarized and reviewed
in [53]. The choice of a more appropriate similarity func-
tion may yield better performance than the modified Jaccard
coefficient. In order to check the effect of similarity func-
tion on the classification performance, we also consider the
following two alternative similarity functions.
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The first one is the String Subsequence Kernel (SSK) [36].
The main idea of SSK is to compare two sequences by
means of the subsequences they contain in common. That is,
the more subsequences in common, the more similar they are.

Given two sequences s = 〈s1, s2, . . . , sl〉 and t =
〈t1, t2, . . . , tr 〉 and a parameter n, the SSK is defined as:

Kn(s, t) = 〈8(s),8(t)〉

=

∑
u∈In

φu(s).φu(t)

=

∑
u∈In

∑
u⊆s

λls(u)
∑
u⊆t

λlt (u)

=

∑
u∈In

∑
u⊆s

∑
u⊆t

λls(u)+lt (u), (V.3)

where φu(s) is the feature mapping for the sequence s and
each u ∈ In, I is a finite alphabet, In is the set of all
subsequences of length n and u is a subsequence of s such
that u1 = si1 , u2 = si2 , . . . , un = sin , ls(u) = in − i1 + 1
is the length of u in s, λ ∈ (0, 1) is a decay factor which
is used to penalize the gap. The calculation steps are as
follows: enumerate all subsequences of length n, compute the
feature vectors for the two sequences, and then compute the
similarity. The normalized kernel value is given by

K̂n(s, t) =
Kn(s, t)

√
Kn(s, s)Kn(t, t)

. (V.4)

Example 2: Given two sequences s = 〈a, b, c, d, e〉 and
t = 〈e, c, d, c〉, the subsequences of length 1 (n = 1) are
a, b, c, d, e. The corresponding feature vector for each of the
sequences can be denoted as φ1(s) = 〈λ, λ, λ, λ, λ〉 and
φ1(t) = 〈0, 0, 2λ, λ, λ〉, then the normalized kernel value is

K̂1(abcde, ecdc) =
K1(abcde, ecdc)

√
K1(abcde, abcde)K1(ecdc, ecdc)

=
4λ2

√
5λ2 × 6λ2

≈ 0.73.

When this function is employed in our method, n = 1 is
used as the default parameter setting. Although the setting of
n = 1 may lose the order information, it will greatly reduce
the computational cost and can provide satisfactory results in
practice.

Another alternative similarity function is the normalized
LCS. The larger the normalized LCS between two sequences
is, the more similar they are.

Given two sequences s = 〈s1, s2, . . . , sl〉 and t =
〈t1, t2, . . . , tr 〉, the normalized LCS is defined as:

Sim(s, t) =
|LCS(s, t)|
Min {|s|, |t|}

, (V.5)

where |LCS(s, t)| is the length of the longest common subse-
quence, |s| is length of s, and |t| is the length of t .
Example 3: Given two sequences s = 〈a, b, c, d, e〉 and

t = 〈e, c, d, c〉, the LCS(s, t) is 〈c, d〉, then the normalized
LCS is

Sim(abcde, ecdc) =
2
4
= 0.5.

TABLE 2. Summary of the sequential data sets used in the experiments.

VI. EXPERIMENTS
To demonstrate the feasibility and advantages of this new
framework, we conducted experiments on fourteen real
sequential data sets.We compared our two algorithms derived
under the reference-based framework with other sequence
classification algorithms in terms of classification accuracy.
All experiments were conducted on a PC with Intel(R)
Xeon(R) CPU 2.40GHz and 12G Memory. All the reported
accuracies in the experiments were the average accuracies
obtained by repeating the 5-fold cross-validation 5 times
except SCIP (accuracies in SCIP were obtained using 10-
fold cross-validation because this is a fixed setting in software
package provided by the author).

A. DATA SETS
We choose fourteen benchmark data sets which are widely
used for evaluating sequence classification algorithms: Activ-
ity [57], Aslbu [14], Auslan2 [14], Context [58], Epitope [12],
Gene [59], News [5], Pioneer [14], Question [60], Reuters [5],
Robot [5], Skating [14], Unix [5], Webkb [5]. The main
characteristics of these data sets are summarized in Table 2,
where |D| represents the number of sequences in the data set,
#items denotes the number of distinct elements, minl, maxl
and avgl are used to denote the minimum length, maximum
length and average length of the sequences respectively, and
#classes represents the number of distinct classes in the data
set.

B. PARAMETER SETTINGS
Our two algorithms are denoted by R-MHT (Reference
Point Selection Based on MHT) and R-GAHC (Reference
Point Selection Based on GAHC), respectively. In addition,
the method that uses all sequences in TrainD as reference
points is denoted as R-A, which is also included in the per-
formance comparison. We compare our algorithms with five
existing sequence classification algorithms: MiSeRe1 [17],

1http://www.misere.co.nf
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TABLE 3. Performance comparison of different algorithms in terms of the classification accuracy.
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TABLE 4. The average classification accuracies of different methods over all data sets used in the experiment.

Sqn2Vec2 [41], SCIP3 [5], FSP (the algorithm based on fre-
quent sequential patterns) and DSP (the algorithm based on
discriminative sequential patterns).

In MiSeRe, num_of _rules is specified to be 1024 and
execution_time is set to be 5 minutes for all data sets.

Sqn2Vec is an unsupervised method for learning sequence
embeddings from both singleton symbols and sequential pat-
terns. It has two variants: Sqn2VecSEP and Sqn2VecSIM,
where Sqn2VecSEP (Sqn2VecSIM) generates sequence rep-
resentations from singleton symbols and sequential pat-
terns separately (simultaneously). In these two variants,
minsup = 0.05, maxgap = 4 and the embedding dimension
d is set to be 128 for all data sets.

SCIP is a sequence classification method based on interest-
ing patterns, which has four different variants: SCII_HAR,
SCII_MA, SCIS_HAR and SCIS_MA. In the experiments,
the following parameter setting is used in all data sets:
minsup = 0.05, minint = 0.02, maxsize = 3, conf = 0.5 and
topk = 11.
Frequent sequential patterns have been widely used as

features in sequence classification. To include the algorithm
based on frequent sequential patterns in the comparison
(denoted by FSP), we employ the PrefixSpan algorithm [61]
as the frequent sequential pattern mining algorithm. The
parameters are specified as follows: maxsize = 3 and minsup
= 0.3 for all data sets except Context (the minsup in Context
is set to be 0.9 in order to avoid the generation of too many
patterns).

Similarly, discriminative sequential patterns are widely
used as features in many sequence classification algorithms
and applications as well. To include the algorithm based on
discriminative sequential patterns in the comparison (denoted
by DSP), we first use the PrefixSpan algorithm to mine a set
of frequent sequential patterns and then detect discriminative
patterns from the frequent pattern set. The parameters for Pre-
fixSpan are identical to those used in FSP and minGR = 3 is
used as the threshold for filtering discriminative sequential
patterns.

C. RESULTS
In Table 3, the detailed performance comparison results in
terms of classification accuracies are presented. Note that
the result of DSP on the Skating data set is N/A because

2https://github.com/nphdang/Sqn2Vec
3http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/SCIP.zip

we cannot find any discriminative patterns from this data
set based on the given parameter setting. In the experiments,
α = 0.05 is used for R-MHT and pointnum is specified to be
1/10 of the size of TrainD for R-GAHC. After transforming
sequences into feature vectors, we chose NB (Naive Bayes),
DT (Decision Tree), SVM (Support Vector Machine), KNN
(k Nearest Neighbors) as the classifiers. The implementation
of each classifier was obtained from WEKA [62] except
Sqn2Vec. In Sqn2Vec, all classifiers were obtained from
scikit-learn [63] since its source code is written in python.

In order to have a global picture of the overall performance
of different algorithms, we calculate the average accuracy
over all data sets for each classifier. The corresponding aver-
age accuracies for different methods are recorded in Table 4.
The results show that among our two methods, R-MHT can
achieve better performance than R-GAHC when NB, DT
and SVM are used as the classifier. However, R-MHT has
a bad performance when KNN is used as the classifier. Since
we select a representative sequence from each cluster in
R-GAHC and any sequence in a cluster can be used as a rep-
resentative, we may miss the most representative sequence.
Meanwhile, the choice of clustering method and the speci-
fication of the number of clusters will influence the results.
In addition, the R-A method outperforms R-MHT and
R-GAHC since we will not lose any relevant information for
the classification task when all training sequences are used
as reference points. However, the feature dimension will be
very high in R-A, which will incur high computational cost
in practice.

Compared with other classification methods, our methods
are able to achieve comparable performance. In particular,
R-A and MiSeRe [17] can achieve the highest average classi-
fication accuracy among all competitors since all information
given for building the classifier is contained in the reference
point set in R-A. The reason why R-MHT and R-GAHC are
slightly worse may be that their reference points are less dis-
tinct from each other in different classes and some sequences
that are important for classification are missed. It is quite
amazing since R-A is a very simple algorithm derived from
our framework. This indicates that the proposed reference-
based sequence classification framework is quite useful in
practice. It can be expected more accurate feature-based
sequence classification methods will be developed under this
framework in the future. From Table 3 and Table 4, it can be
also observed that none of the algorithms in the comparison
can always achieve the best performance across all data sets.
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TABLE 5. The average classification accuracies of different similarity functions over all data sets used in the experiment.

Therefore, more research efforts still should be devoted to the
development of effective sequence classification algorithms.

The use of different similarity functions may affect the
performance of our algorithms. To investigate this issue,
we use two additional similarity functions in the experiments
for comparison: SSK and the normalized LCS, whose details
have been introduced in Section V-C.

Table 5 presents the average classification accuracies of
different similarity functions over all data sets. Jaccard coef-
ficient, SSK and normalized LCS are denoted as J, S and
N, respectively. In Table 5, R-A-J means that the Jaccard
coefficient is used as the similarity function in R-A. Other
notations in this table can be interpreted in a similar manner.
The results show that the use of different similarity functions
can affect the performance of our algorithms. Among these
three similarity functions, the use of the Jaccard coefficient
as the similarity function can achieve better performance in
most cases. However, R-MHT-J has unsatisfactory perfor-
mance when KNN is used as the classifier. It can be also
observed that none of the similarity functions is always the
best performer. Therefore, more suitable similarity functions
should be developed.

The above experimental results and analysis show that the
proposed new methods based on our framework can achieve
comparable performance to those state-of-the-art sequence
classification algorithms, which demonstrate the feasibility
and advantages of our framework. And our framework is
quite general and flexible since the selection of both reference
points and similarity functions is arbitrary. However, since the
feature selection and classifier construction in our framework
are separate and any existing vectorial data classification
methods can be used to tackle the sequence classification
problem, some features that are critical to the classifier may
be filtered out during the selection process.

VII. CONCLUSION
In this paper, we present a reference-based sequence classifi-
cation framework by generalizing the pattern-based methods.
This framework is quite general and flexible, which can
be used as a general platform to develop new algorithms
for sequence classification. To verify this point, we present
several new feature-based sequence classification algorithms
under this new framework. A series of comprehensive exper-
iments on real data sets show that our methods are capa-
ble of achieving better classification accuracy than existing
sequence classification algorithms. Thus, the reference-based

sequence classification framework is quite promising and
useful in practice.

In future work, we intend to explore more appropriate ref-
erence sequence selectionmethods and similarity functions to
improve the performance and reduce the computational cost.
As a result, more accurate feature-based sequence classifica-
tion methods would be derived under this framework.
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