
Received November 2, 2020, accepted November 22, 2020, date of publication December 7, 2020,
date of current version December 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042838

Imprecise Deep Forest for Partial Label Learning
JIE GAO, WEIPING LIN, KUNHONG LIU , QINGQI HONG , GUANGYI LIN,
AND BEIZHAN WANG
School of Informatics, Xiamen University, Xiamen 361005, China

Corresponding author: Qingqi Hong (hongqq@xmu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772023 and Grant 61502402, in part
by the Natural Science Foundation of Fujian Province of China under Grant 2020J01006, in part by the Fundamental Research Funds for
the Central Universities under Grant 20720180073, and in part by the National Key Research and Development Program of China under
Grant 2019QY1803.

ABSTRACT In partial label (PL) learning, each instance corresponds to a set of candidate labels, among
which only one is valid. The objective of PL learning is to obtain a multi-class classifier from the training
instances. Because the true label of a PL training instance is hidden in the candidate label set and inaccessible
to the learning algorithm, the training process of the classifier is significantly challenging. This study
proposes a novel deep learning method for PL learning based on the improved error-correcting output codes
(ECOC) algorithm and deep forest (DF) framework. For the ECOC algorithm, we extract the prior knowledge
of the candidate label sets from the PL training set to optimize the generation of its coding matrix, where
different binary training sets can be derived from the PL training set based on the dichotomy corresponding
to each column code. For the DF framework, this improved ECOC algorithm is embedded as a unit in its
cascade structure; moreover, an imprecise evaluation method is designed to determine the growth of the
cascade of the DF. The effectiveness of the proposed method is verified by conducting several experiments
on artificial and real-world PL datasets.

INDEX TERMS Deep forest, error-correcting output codes, partial label learning.

I. INTRODUCTION
Partial label (PL) learning is a type of weakly supervised
learning, where each PL training instance is associated
with a set of candidate labels, among which only one is
valid [1], [2]. We can explain the application scenario of PL
learning using a simple example: In news images that contain
several people, each face can be considered a PL instance,
and a set of names extracted from the corresponding news
content can be considered a set of candidate labels for each
instance. In this case, the correspondence between each face
and its true name is ambiguous. The objective of PL learning
is to obtain a multi-class classifier from the PL training set to
predict unseen instances [3].

From the perspective of data acquisition, fully labeled
data are expensive even in today’s era of big data. They are
time-consuming to collect and even need to be annotated by
domain experts. However, acquiring PL data is relatively easy
because of imprecise annotations. PL data represent a good
trade-off between fully labeled data and unlabeled data [4].
In the machine learning community, more attention has been
paid on using PL data to supplement fully labeled data in
existing learning frameworks. In recent years, PL learning

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

technologies have been widely used in many real-world
domains such as text mining [5], image classification [6], and
ecological informatics [7].

Mathematically, we suppose that X = Rd is the
d-dimensional instance space, and Y = {yq|1 ≤ q ≤ Q} is the
label space with Q class labels. Let D = {(xi, Si)|1 ≤ i ≤ m}
be the training set consisting of m PL training instances,
where xi ∈ X is a d-dimensional feature vector, and Si ⊆ Y is
the set of candidate labels associated with xi. The PL learning
task is to obtain a classifier f: X → Y fromD. In PL learning,
the true label ti of xi is hidden in its candidate label set (i.e.,
ti ∈ Si). Because the true label of a PL training instance is
inaccessible to the learning algorithm, training the classifier
is difficult. Moreover, false-positive labels occur alongside
the true label within the candidate label set (i.e., Siti) [8]. The
greater the number of false-positive labels in the candidate
label set, the greater the difficulty in finding the true label for
the PL training instance, which further increases the training
difficulty.

In most existing PL learning algorithms, commonly used
supervised learning classification techniques are modified to
fit PL data. For the maximum likelihood technique, the like-
lihood estimation of each PL training instance is defined
over its candidate label set instead of the true label [9].
For the K-nearest neighbor technique, weighted voting is

218530 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1222-8876
https://orcid.org/0000-0002-9996-6870
https://orcid.org/0000-0002-2846-5411
https://orcid.org/0000-0001-5063-8801

J. Gao et al.: Imprecise Deep Forest for PL Learning

implemented on the union of the candidate label sets of
the neighboring instances to predict unknown instances
(PL-KNN [10] for short). For the maximum margin tech-
nique, the classification margin over each PL training
instance is defined as the difference in the modeling outputs
between the candidate and non-candidate labels (PL-SVM [4]
for short).

Unlike the aforementionedmethods, othermethodsmodify
the PL data to adapt to existing learning technologies. For the
convex optimization technique, PL training instances perform
feature mapping via an improved convex loss optimization,
which transforms the PL learning problem into a binary
classification problem in the mapping space (CLPL [3] for
short). For the error-correcting output codes (ECOC) tech-
nique, a set of binary training sets are derived from the PL
training set based on a randomly generated coding matrix
(PL-ECOC [8] for short). It converts the PL learning problem
into a combination ofmultiple binary classification problems.
For the multi-output regression technique, Zhang et al. [11]
proposed a feature-aware disambiguation strategy that uti-
lizes the manifold structure of the feature space to generate
normalized labeling confidences over candidate label sets,
and then the predictive model is learned by performing reg-
ularized multi-output regression over the generated labeling
confidences (PL-LEAF for short). Xu et al. [12] proposed
a learning scheme from partial label instances via label
enhancement [13]. The generalized label distributions were
recovered using the topological information of the feature
space, and then a predictive model was learned by fitting
a regularized multi-output regression with the generalized
label distributions (PL-LE for short). Both these approaches
explore potentially useful information from the feature space
to promote the disambiguation process of the partial labels.
To the best of our knowledge, so far, no authors have applied
deep learning techniques to solve PL learning tasks. Because
of the outstanding performance of deep learning in various
classification tasks, it is meaningful to explore the application
of deep learning techniques in the field of PL learning.

In this article, we propose an imprecise deep forest for PL
learning (PL-DF). Deep forest (DF) [14], [15] is a multi-layer
cascade structure that uses a random forest (RF) [16] as a unit.
It shows excellent performance in the classification task of
supervised learning and can be considered an alternative to
deep neural networks (DNNs) [17]. Ourmain idea is to endow
each unit in the DF the ability to process PL instances so that
the entire DF framework is suitable for PL learning. The main
contributions of this study are as follows: (1) We propose
an improved ECOC algorithm for PL learning, which uses
the prior knowledge of the frequency counting of candidate
label sets to optimize the generation of the ECOC coding
matrix; (2) We perform a cascaded ECOC framework for PL
learning by embedding the above ECOC algorithm as a unit
into the DF. The original DF framework relies on a greedy
training mechanism to satisfy the growth of the cascade in
the context of supervised learning. However, this original
mechanism does not adapt to the case of PL learning. To solve

this problem, an imprecise evaluation algorithm is designed
to determine the convergence of the cascade.

Although the proposed method is unrelated to forest-style
or tree-style classifiers, we used the DF framework as the
basis, so we named the proposed method as PL-DF. The rest
of this article is organized as follows: Related studies are
presented in Section II. The construction of the PL-DF is
described in Section III. The experimental results and cor-
responding discussions are presented in Section IV. Finally,
concluding remarks are provided in Section V.

II. BACKGROUND
A. OVERVIEW OF ERROR-CORRECTING OUTPUT CODES
(ECOC)
The ECOC algorithm is a representative example of ensemble
learning, which can solve multi-classification problems very
well under the framework of supervised learning. It was
originally proposed by Dietterich and Bakiri [18] in 1995,
with a divide-and-conquer mechanism to decompose a
multi-classification problem into a set of binary classification
problems, and then obtain the final result by integrating the
predicted results of all the binary classifications [19]. So far,
many novel ECOC algorithms have been proposed based on
different principles; however, there is still no universal rule
for designing an optimal ECOC coding matrix [20], [21].

An effective coding matrix would be beneficial for the
ECOC algorithm. Common coding strategies fall into two
categories [22]: (1) Data-independent category, including
One-VS-All (OVA), One-VS-One (OVO) [23], and ordinal
ECOC [18], where the coding matrices are predefined based
on a simple partition of the label space, and without consider-
ing the relationship between the data features and data distri-
bution; (2) Data-dependent category, such as D-ECOC [24]
and ECOC-ONE [25], where the coding matrixes are gener-
ated based on the data distribution; ECOC-MDC [19] uses
data complexity [26] to guide the generation of the coding
matrix. In contrast, the data-dependent ECOC algorithms use
the inherent information of the data to guide the generation
of the coding matrices, which are intuitively better suited to
handle difficult multi-classification tasks. Unfortunately, all
the above ECOC algorithms are proposed under the frame-
work of supervised learning and cannot be directly applied to
PL learning.

B. PL-ECOC ALGORITHM
Recently, the PL-ECOC algorithm [8] has been specially
designed to deal with the multi-classification problem of PL
instances under the framework of weakly supervised learn-
ing. The coding matrix of PL-ECOC is randomly gener-
ated, where each column of the coding matrix corresponds
to a dichotomy of the training instances, dividing the label
space into a positive group and a negative group. A binary
training set is obtained, where each PL training instance is
used as a positive instance or a negative instance only if its
candidate label set entirely falls into a positive group or a

VOLUME 8, 2020 218531

J. Gao et al.: Imprecise Deep Forest for PL Learning

negative group. The PL-ECOC algorithm can be divided into
two phases: encoding and decoding. In the encoding phase,
PL-ECOC randomly generates a coding matrixM :

M ∈ {+1,−1}QxL , 1 ≤ q ≤ Q, 1 ≤ l ≤ L, (1)

whereQ is the number of labels in the label space, and L is the
number of base classifiers in PL-ECOC. The q-th row of the
coding matrix can be represented asM (q,:), corresponding to
L-bits codeword for the class label yq. The l-th column of the
coding matrix corresponds to a Q-bits column code:

M (:, l) = v = [v1, v2, v3, . . . , vQ]T ∈ {+1,−1}Q (2)

Eqs. (3) and (4) dichotomize the label space Y into a positive
group (Y+v) and a negative group (Y−v):

Y+v = {yq|vq = +1, 1 ≤ q ≤ Q}, (3)

Y−v = {yq|vq = −1, 1 ≤ q ≤ Q}. (4)

Considering the training of a base classifier, the training set
D = {(xi, Si)|1 ≤ i ≤ m} can be transformed into a binary
training set Bv, and the transformation process should satisfy
the following conditions:

Bv = {B+v ∪ B
−
v }, (5)

B+v = {(xi,+1)|Si ⊆ Y+v , 1 ≤ i ≤ m}, (6)

B−v = {(xi,−1)|Si ⊆ Y−v , 1 ≤ i ≤ m}. (7)

From Eqs. (5) to (7), any PL training instance xi is used as a
positive instance or a negative instance only if its candidate
label set Si entirely falls into Y+v or Y−v . Otherwise, xi will
be discarded, i.e., xi will not participate in the training of
the corresponding base classifier. To avoid the case where
the binary training set Bv has few instances, a constraint
condition (τ) is set in PL-ECOC to control the minimum
size of Bv. In other words, Bv is used to train a binary base
classifier (hl) only if τ |Bv| >.

In the decoding phase, given an unknown instance x∗,
the output of PL-ECOC is an L-bits codeword obtained by
concatenating the prediction results of the L base classifiers:

h
(
x∗
)
=
[
h1
(
x∗
)
, h2

(
x∗
)
, h3

(
x∗
)
, . . . , hL

(
x∗
)]
. (8)

The label whose codewordM (q, :) is closest to h (x∗)will be
selected as the final prediction on x∗:

f
(
x∗
)
= argminyq(1≤q≤Q) dist(h

(
x∗
)
,M (q, :)), (9)

where dist(∗, ∗) represents a distance metric such as the
Hamming distance [18], Euclidean distance [27], or
loss-based distance [28]. Numerical experiments [8] have
indicated that the PL-ECOC either outperforms or is com-
parable with many well-known PL learning approaches.
However, the main drawback of PL-ECOC is that the
randomly generated coding matrix may destabilize the
algorithm.

C. DEEP FOREST
Recently, the deep forest (DF) [14] has been proposed as an
alternative to DNNs. It deals with classification tasks under
the supervised learning framework. The main part of the DF
method is a multi-layer cascade structure, which is similar to
that of DNNs. Each layer in the DF is the ensemble of a set
of random forests (RFs). Each RF can be considered a unit
of the DF, just like a neuron in DNNs. The DF concatenates
the original input vector and the output of the previous layer
as the input at the next layer. Representation learning in the
DF relies on layer-by-layer data processing and in-model
data transformation. Moreover, the number of layers can be
adaptively determined through a greedy training mechanism.

Compared with DNNs that require significant effort for
tuning the hyper-parameters and large-scale training data,
DF has better characteristics including simple training, few
hyper-parameters, and reasonable performance on medium
and small-sized datasets. Zhou and Feng [15] showed that
the performance of the DF method is highly competitive with
those of DNNs. Utkin et al. [29] believed that the DF is not
only an excellent classification algorithm in the deep learning
field but also a novel ensemble learning framework. The DF
can be applied in diverse application scenarios by endowing
the corresponding function to its units [30]–[32].

III. PROPOSED METHOD
A. EXTRACTING PRIOR KNOWLEDGE
Let X = {xi|1 ≤ i ≤ m} denote an instance space;
S = {Si|1 ≤ i ≤ m} denotes all candidate label sets;
Y = {y1, y2, . . . , yQ} denotes the label space, where Si ⊆ Y .
In Algorithm 1, we aim to extract the prior knowledge from S.
First, we remove the repeating items from S to ensure that
all the remaining items are unique. We then sort the remain-
ing items in descending order in terms of their occurrence
frequency.

We explain Algorithm 1 with a simple example. Suppose
the label space Y = {1,2,3,4,5} and all candidate label sets
S = {(1,2,3,4), (1,2,3), (1,2,3), (3,4), (3,5)}, the frequency
counting of each unique term is:

The occurrence frequency of (1,2,3) = 3,

The occurrence frequency of (3,4) = 2,

The occurrence frequency of (1,2,3,4) = 1,

The occurrence frequency of (3,5) = 1. (10)

S’ = {(1, 2, 3), (3, 4), (1, 2, 3, 4), (3, 5)} is the set of unique
items, sorted in descending order in terms of the correspond-
ing frequency counting. In other words, S’ is the prior knowl-
edge regarding the distribution of the candidate label sets
from the PL training data D.

B. OPTIMIZING THE COLUMN OF CODING MATRIX
An example is shown to explain the optimization of the
coding matrix using the prior knowledge of the candidate
label sets (See Figure 1). Given that one column of the coding
matrix of the ECOC is M (:, l) = {+1,+1,−1,−1,−1}T,

218532 VOLUME 8, 2020

J. Gao et al.: Imprecise Deep Forest for PL Learning

Algorithm 1 Extracting the Prior Knowledge From the PL
Training Set
Input:
S = {Si|1 ≤ i ≤ m}: all candidate label sets in the PL training

set, m is the number of training instances.
Output:
S’: all candidate label sets in S’ are unique and descending
sorted.
Algorithm process:
S’ = []
Frequency_list = []
FOR each Si ∈ S DO
frequency = 0
FOR each Sj ∈ S DO
IF Si ⊆ Sj THEN

frequency ++
END IF

END FOR
IF S’.count (Si) = 0 THEN
S’.append(Si)
Frequency_list.append(frequency)

END IF
END FOR
Descending sort S’ based on the corresponding frequency
RETURN S’

FIGURE 1. Example explaining the optimization of the column code.

the positive and negative groups are Y+ = (1, 2) and Y− =
(3, 4, 5), respectively. We first optimize the positive group,
and it searches for the frequent items containing Y+ in S’
(see Eq. (10)). There are (1,2,3) and (1,2,3,4). Because the
frequency of (1,2,3) is higher, it is selected to optimize Y+.
In the optimization process, the eligible frequent term

in S’ is used to replace Y+, i.e., Y+ = (1, 2, 3) and
Y− = Y\ Y+ = (4, 5). Finally, the adjusted column code
becomes M (:, l)’ = {+1,+1,+1,−1,−1}T, and the used
frequent item will be removed from S’. The purpose of opti-
mization is to encourage more PL instances to participate in
the training of the base classifier. Moreover, it reduces the
class imbalance rate of the training set of the base classifier.
The details of the optimization are fully shown in the experi-
mental section. In the above example, if an eligible frequent
term in S’ is not found to optimize Y+, we perform a similar
operation on Y−. If Y+ and Y- are not optimized, the column
code remains unchanged. The pseudo-code for optimizing the
column code is given in Algorithm 2.

Algorithm 2 Optimizing a Column of the Coding Matrix
Input:
v : randomly generated column code, v = [v1, v2, . . . , vQ]T.
Y : label space, Y = {Y+ ∪ Y−}.

// refer to Eq. (2)
Y+ : positive group. //refer to Eq. (3)
Y− : negative group. //refer to Eq. (4)
S ′ : set of non-repetitive candidate label sets in descending
order.

//refer to the output of Algorithm 1
Output:
The optimized column code.
Algorithm process:
Case1: FOR each St ∈ S ′ DO

IF Y+ ⊆ St THEN
Y+ = St
Y− = YY+

S ′.remove(St)
BREAK Loop

END IF
END FOR
Y+ and Y− are used for adjusting v;

Case2: If St is not found to optimize Y+, then Y− is optimized
similarly;
Case3: If neither Y+ nor Y− is optimized, we keep v
unchanged.

C. CONSTRUCTING UNIT ALGORITHM BASED ON ECOC
As explained in Section II, the coding matrix of PL-ECOC
is randomly generated without considering the prior knowl-
edge of the data distribution, and this may destabilize the
algorithm. Moreover, the dichotomy of each column code
excludes a part of the training instances, and although
PL-ECOC restrains the minimum size of the training set for
each base classifier, it may still lead to insufficient training
of the base classifier. In this study, we propose an improved
ECOC algorithm that uses the prior knowledge of the can-
didate label sets to optimize the randomly generated coding
matrix, which encourages more PL instances to participate
in the training process of the base classifiers. This improves
performance and reduces instability. The proposed ECOC
algorithm (see Algorithm 3) mainly includes the following
steps:
Step 1: The prior knowledge of the candidate label sets is

extracted (see Algorithm 1).
Step 2:After randomly generating a column code, we used

the extracted information to optimize the positive group or
the negative group of the column code (see Algorithm 2),
to ensure that a maximum number of PL training instances
can participate in the training of the base classifier.
Step 3:We transform the PL training instances into a binary

training set based on the optimized column code.
Step 4:We check whether the size of the binary training set

is eligible or not. If eligible, the binary training set is used to

VOLUME 8, 2020 218533

J. Gao et al.: Imprecise Deep Forest for PL Learning

train the base classifier; otherwise, we will discard the current
column code and regenerate one.
Step 5:Repeat step 2 to step 4 until all the column codes are

generated; in other words, all the base classifiers are trained.
Step 6:Given the unknown instance x∗, we concatenate the

predicted results of all the base classifiers as the codeword
of x∗. The class whose codeword is closest to the codeword
of x∗ is the prediction label.
Because the proposed ECOC algorithm acts as a unit in the

DF framework, we call it ECOC-UNIT for short. Moreover,
to match ECOC-UNIT with the DF framework, we need
to transform the output of ECOC-UNIT in the form of a
class probability vector [15]. Using Eq. (9), we can obtain a
distance vector d = [d1, d2, d3, . . . , dQ], where 1 < q < Q,
and dq indicates the distance between the codeword of x∗

and the codeword of the q-th label. The corresponding class
probability vector can be expressed as:

p =
[
p1, p2, p3, . . . , pQ

]
, s.t.

∑Q

q=1
pq = 1, (11)

pq =

(
1−

dq∑Q
q=1 dq

)
/(Q− 1). (12)

In Eq. (11), the sum of all elements of the class probability
vector is equal to 1. In Eq. (12), each element pq repre-
sents the classification probability of the ECOC-UNIT on the
unknown instance x∗, where

(
1− dq

/∑Q
q=1 dq

)
indicates

that, the lower the distance, the greater the classification
probability, and (Q-1) is the normalization factor.

D. IMPRECISE DEEP FOREST
In this section, we propose an imprecise DF model for the
classification task of PL instances. For simplicity, the term
unit refers to ECOC-UNIT. Before introducing this model,
we define some notations and indices. Suppose there are R
layers in a trained PL-DF (see Fig. 2), where each layer has
K units, K is a user-defined parameter that depends on the
available computational resource. The components of PL-DF
can be represented as follows:
• Lr is the r-th layer, which is the ensemble of multiple
units, where r ∈ [1, R].

• Fr represents the cascade of multiple layers, starting
from the first layer up to the r-th layer.

• Ek,r denotes the k-th unit in the r-th layer, where
k ∈ [1, K].

It is assumed that an unknown instance x∗ (input fea-
ture vector) and three classes should be predicted. Eq. (11)
indicates that each unit generates a three-dimensional class
probability vector. For K units in a layer (K = 4),
a twelve-dimensional (3 × 4) class vector is concatenated
with x∗ as the input at the next layer. The correlation between
the layer and the cascade can be mathematically expressed as
follows:

Fr
(
x∗
)
=

{
L1
(
x∗
)

r = 1
Lr
([
x∗,Fr−1

(
x∗
)])

r > 1
(13)

FIGURE 2. Cascade structure of the imprecise deep forest.

where
[
x∗,Fr−1 (x∗)

]
indicates the concatenation of the raw

feature vector and the output of the previous cascade. In the
last layer of PL-DF, the sum of the corresponding elements
of all the class vectors is averaged, where the element with
the maximum value corresponds to the predicted label. More
specifically, the output of each unit in the last layer (the R-th
layer) can be expressed as:

Ek,R
(
x∗
)
=

[
pk,R1 , pk,R2 , . . . , pk,RQ

]
, 1≤q≤Q, 1≤k≤K ,

(14)

where Q is the number of labels, and K is the number of units
in a layer. The overall output of the R-th layer (or the R-th
cascade) is the concatenation of the outputs of all units in
this layer. Finally, the prediction of the entire PL-DF model
is expressed as:

PL − DF
(
x∗
)
= argmax1≤q≤Q

∑K

k=1
pk,Rq . (15)

The training process of the PL-DF is similar to that of the
DF. The original DF is proposed under supervised learning,
which divides the dataset into a training set, a validation set,
and a testing set. The training set is used to generate each layer
of the cascade, the validation set is used to evaluate whether
the cascade should grow, and the testing set is used to estimate
the final performance of the model. In the training process
of each layer, to reduce the risk of overfitting, each unit
generates a class probability vector for each training instance
using cross-validation, which is then concatenated with the
original feature vector to be inputted to the next layer of the
cascade. In the training stage, the layer-by-layer processing
of the instances is similar to that in the prediction stage,
except that the generation process of the class probability
vector is slightly different. After expanding a new layer,
the performance of the entire cascade will be estimated on
the validation set, and the training procedure will terminate
if there is no significant performance gain. More specifically,
the DF terminates the training only if the performance of Fr
is lower than that of Fr-1, then retains Fr-1 as the final model.
Thus, the layer number (R) of the DF is adaptively generated
through a greedy training mechanism. More details of the
training process can be found elsewhere [14], [15].

In PL learning, the PL instances are used to gener-
ate the algorithm model, and the fully labeled instances

218534 VOLUME 8, 2020

J. Gao et al.: Imprecise Deep Forest for PL Learning

Algorithm 3 Improved ECOC Algorithm for Processing the Partial Label Data
Input:
D: partial label training set, {(xi, Si) |1 ≤ i ≤ m}, where xi ∈ X , Si ⊆ Y ,Y = {yq|1 ≤ q ≤ Q}.
L: number of base classifiers of ECOC.
M : coding matrix of ECOC. //Eq. (1)
M (:,l) : one column of the coding matrixM.
h: base classifier.
τ : minimum size of the training set for each base classifier.
x∗ : unknown instance.
Output:
y∗ : predicted label for x∗, y∗ ∈ Y .
Algorithm process:
Extract the prior knowledge from the PL training set D; //Refers to Algorithm 1
l = 0;
WHILE l 6= L DO
Randomly generate a Q-bits column code v = [v1, v2, . . . , vQ]T ∈ {+1,−1}Q; //Eq. (2)
Optimize column code v via the prior knowledge; //Refers to Algorithm 2
Dichotomize the label space into positive and negative groups; //Eqs. (3)-(4)
Transform the PL training set D into a binary training set Bv; //Eqs. (5)-(7)
IF τ |Bv| ≥ THEN

l = l + 1;
Set the l-th column of the coding matrix M to v,M (:,l) = v;
Train the l-th base classifier based on Bv;

END IF
END WHILE
Obtain a codeword for x∗ by concatenating the outputs of the L base classifiers; //Eq. (8)
RETURN y∗ = f (x∗). //Eq. (9)

(single-label instances) are used to verify the final perfor-
mance of the model. In principle, the fully labeled data are
not used in the training process. In the PL-DF, the dataset
is divided into three parts, where the training and validation
sets are PL data, and the testing set is fully labeled data.
Each part contains 60%, 20%, and 20%, respectively, of the
original dataset instances. Whenever the PL-DF extends a
new layer, although the training of each unit can be done
using PL data (see Algorithm 3), we still need to evaluate
the performance of the current cascade to determine whether
the training process terminates. However, at this time, each
instance in the validation set corresponds to a set of can-
didate labels; therefore, the validation set cannot accurately
evaluate the performance gain of the cascade. To solve
this problem, we propose an imprecise evaluation method
(see Algorithm 4) that uses PL data as the validation
set to imprecisely calculate the performance of each cas-
cade, to realize the application of the DF framework in
PL learning.

Two simple examples are used to explain Algorithm 4.
Suppose x’ is a PL instance in the validation set, the asso-
ciated candidate label set of x’ is S’=(1,2), and three classes
should be predicted. The prediction of the current cas- cade
on x’ is a class probability vector, i.e., Fr(x′) = [p1, p2, p3].
We select the top |S’| labels with the highest probability from
the vector. Suppose p3 > p2 > p1, two labels with the highest
probability in the prediction result of Fr are (3, 2); thus,

the coverage rate of the prediction results for the candidate
label set is:

| (1, 2) ∩ (3, 2) |
|S ′|

=
1
2
= 0.5. (16)

Suppose p2 > p1 > p3, two labels with the highest probabil-
ity in the prediction results of Fr are (2, 1); thus, the coverage
rate of the prediction result for the candidate label set is:

| (1, 2) ∩ (2, 1) |
|S ′|

=
2
2
= 1. (17)

For the above examples, we introduce an adjustable param-
eter ω to present the threshold of the coverage rate, ω ∈
[0, 1]. When the calculated coverage rate is greater than the
threshold, we consider that this instance is correctly classified
by the current cascade, and vice versa. Thus, we can use the
PL instances as the validation set to imprecisely evaluate the
performance of each cascade. We discuss the effect of this
parameter on the algorithm performance in the experimental
section.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS AND COMPARISON ALGORITHMS
In the experimental section, we use two types of datasets: con-
trolled UCI datasets and real-world datasets. Tables 1 and 2
list the details of the datasets used. First, we follow the control
protocol [3], [9], [33] commonly used in PL learning to

VOLUME 8, 2020 218535

J. Gao et al.: Imprecise Deep Forest for PL Learning

Algorithm 4 An Imprecise Evaluation Method for the
Cascade
Input:
x’: PL instance in the validation set.
S’: candidate label set of x’.
F: cascade that needs to be evaluated.
p: prediction of the cascade, it is a class probability vector,
F(x’) = p = [p1,p2,. . . ,pQ], where Q is the number of labels.
ω : adjustable threshold, ω ∈ [0, 1].
Output:
CP: coverage rate (CP) of the prediction result for the candi-
date label set;
and determine if the instance x’ is correctly classified by the
cascade F.
Algorithm process
p’ = descending_argsort(p)
temp=[]
FOR i in range (|S’|) DO

temp.append(p’[i])
END FOR
CP = |temp∩S

′
|

|S ′|
IF CP≥ ω THEN

The instance x’ is correctly classified by the cascade F;
ELSE

The instance x’ is misclassified by the cascade F;

TABLE 1. Controlled UCI datasets.

TABLE 2. Real-world partial label datasets.

transform multi-class UCI datasets into artificial PL datasets
using two controlling parameters α and β, where α controls
the number of false-positive labels in the candidate label
sets (i.e., |Si| = α + 1), and β controls the proportion
of PL instances. As listed in Table 1, we set α = 2, and
β ∈ [0.1, 0.2, . . . , 0.7], i.e., for each UCI dataset, a total
of seven control parameter configurations are used to gen-
erate the artificial PL training sets. Suppose α = 2 and
β = 0.7, the proportion of PL instances in the artificial
dataset accounts for 70%, and the candidate label set of
each PL instance is composed of the true label and two
false-positive labels randomly selected from the label space,
i.e., |Si| = 1+ 2 = 3.

Table 2 lists the real-world PL datasets obtained from
different domains used in the experiment, such as Lost [3],
Soccer player [6], Yahoo! News [34] from automatic
face naming; MSRCv2 [9] from object classification; Bird
Song [7] from sound classification. For automatic face
naming, a face appearing in the image or video is considered a
PL instance, and the names extracted from the corresponding
caption and subtitle are used as the candidate labels. For
object classification, image segmentation represents a PL
instance, whereas objects appearing within the same image
are considered candidate labels. For sound classification,
every 10 s of birdcall are taken as a PL instance, where bird
species that jointly sing are considered a set of candidate
labels [8]. Table 2 also provides the average sizes of the
candidate label sets in each dataset.

To verify the performance of PL-DF, we select six classical
algorithms for comparison: PL-ECOC [8], PL-KNN [10],
PL-SVM [4], CLPL [3], PL-LEAF [11], and PL-LE [12].
The default settings in these algorithms are based on the
values reported in the corresponding articles. The parameters
of PL-DF are divided into unit-related and cascade-related.
First, each unit is the ensemble of multiple base classifiers,
the number of base classifiers is set to L = [10∗ log2(Q)],
the type of base classifiers is SVM with the radial basis func-
tion (RBF) kernel [35], and the minimum size of the training
set of each base classifier is set to τ = 0.1∗|D|. In addition,
PL-DF is the cascade of multiple layers, where four units
are placed in each layer, the number of layers is determined
adaptively, and the parameter ω is set to 0.5 to evaluate the
performance of each cascade imprecisely. We analyze the
effects of these parameters on the model performance in
the following sections.

B. EXPERIMENTAL RESULTS
As listed in Table 1, each UCI dataset can be converted to
seven artificial datasets with different PL instance proportions
based on seven configurations. Each algorithm performs ten
five-fold cross-validations on each dataset to obtain the aver-
age prediction accuracy. With the increase in β, we plotted
the performance change curves of PL-DF and other compared
algorithms on all the artificial PL datasets (see Fig. 3). When
the red curve is superior to the other curves in space, we con-
sider that PL-DF outperforms the compared algorithms (win).
When the red curve overlaps with the other curves in space to
a large extent, we consider that the performance of PL-DF
is similar to those of the corresponding algorithms (tie).
Otherwise, PL-DF is said to be inferior to the algorithms in
terms of the performance (loss).

As shown in Fig. 3, we use the rank statistics (win/tie/loss)
of the Wilcoxon signed-rank test [36] to compare the classi-
fication performance between PL-DF and the other six algo-
rithms (see Table 3). The ‘‘Subtotal’’ column in Table 3 lists
the pairwise comparisons between PL-DF and the other algo-
rithms. In most cases, PL-DF exhibits the best performance,
whereas in a few cases, its performance is similar to those of
the compared algorithms.

218536 VOLUME 8, 2020

J. Gao et al.: Imprecise Deep Forest for PL Learning

FIGURE 3. Accuracy change trends of all algorithms with increasing β (proportion of partially labeled instances), with α = 2 (two
false-positive labels).

TABLE 3. Win/Tie/Loss statistics on the classification performance of PL-DF against the compared algorithms on controlled UCI datasets.

TABLE 4. Average performance rank of all algorithms on real-world partial label datasets.

We report the average accuracy and standard deviation of
all the algorithms on the real-world PL datasets (see Table 4).
We use the average rank of the Friedman test [37] to verify
the performance difference between the algorithms, where
the values in brackets represent the performance rank of the
algorithms on the same dataset. More specifically, the best-
performing algorithm is assigned rank 1, the second-best is
assigned rank 2, and so on. In the case of similarities (e.g., for
the MSRCv2 dataset in Table 4), the mean ranks are assigned
(e.g., (1+2)/2 = 1.5). The last row in Table 4 lists the average
rank of the classification performance of each algorithm on
all datasets. The lower the average rank, the better the average
classification performance of the corresponding algorithm on
all the datasets. Among the seven algorithms, the average

ranks of PL-DF and PL-LE are much higher than those of
the other compared algorithms, where the performance of the
PL-LE is particularly close to that of the PL-DF on both the
artificial and real-world PL datasets.

C. PARAMETER ANALYSIS OF PL-DF
Before beginning this section, we review the parameters
involved in the proposed model (see Table 5). From the
overall structure of the proposed model, we see that PL-DF is
the cascade of R layer, each layer of PL-DF is the ensemble
of K units, and each unit is the ensemble of L base classifiers.
We first analyze the unit-related parameters, namely L, τ , and
h, and then analyze the cascade-related parameters, namely
K, ω, and R.

VOLUME 8, 2020 218537

J. Gao et al.: Imprecise Deep Forest for PL Learning

TABLE 5. Review of the parameters of the proposed model.

1) PARAMETER ANALYSIS OF THE UNIT
For convenience, we used three real-world PL datasets (Lost,
MSRCv2, and Bird Song) for all the parameter sensitiv-
ity experiments. In ECOC-UNIT, L not only represents the
length of the coding matrix rows but also represents the num-
ber of base classifiers. Some ECOC-based studies indicate
that L = [t∗ log2(Q)] is close to the optimal [38], [39],
where Q is the number of class labels, and t is an adjustable
parameter with the step length log2(Q). We suppose t =
{1, 2, 3, . . . , 15}, and observe the variation in the perfor-
mance of ECOC-UNITwith increasing L. As shown in Fig. 4,
the performance curve of ECOC-UNIT exhibits an upward
trend when t is in the range of 1–9, and it tends to be
stable after t = 10. According to the principle of Occam’s
Razor [40], entities should not be multiplied unnecessarily;
therefore, we set L = [10∗ log2(Q)] as the number of base
classifiers in the ECOC-UNIT.

FIGURE 4. Accuracy change trend of ECOC-UNIT with increasing base
classifiers (L).

Moreover, the size of τ is set in proportion to the num-
ber of PL training instances (see Table 6), τ = ϕ ∗ |D|,
ϕ = {0.1, 0.2, 0.3, 0.4}. From Table 6, we find that when
τ increases, the unit performance decreases. An increase in
τ indicates a compulsive increase in the minimum number of
PL instances used to train a single base classifier. In this case,
there may be only a few ECOC column codes that meet the
requirements, so the ECOC algorithm repeatedly generates
similar column codes. In a good ensemble system, the base
classifiers should be as accurate and diverse as possible,
so that the combination of these base classifiers can com-
pensate for the prediction error of a single base classifier and
improve the performance of the ensemble [41], [42]. When
many ECOC column codes are similar, the overall ensem-
ble will lack diversity, resulting in performance degradation.
Therefore, we simply set τ = 0.1 ∗ |D| in ECOC-UNIT.

TABLE 6. Variation in the performance of ECOC-UNIT with an increase
in τ (ϕ).

Both ECOC-UNIT and PL-ECOC are modified based on
the ECOC framework. The difference between ECOC-UNIT
and PL-ECOC is that the former uses the prior knowledge of
the label distribution to optimize the generation of the coding
matrix, whereas the latter uses a randomly generated coding
matrix. In Table 7, we not only list the influence of the choice
of the base classifier on the model performance but also list
the performance difference between the two models when the
same base classifier is used. From Table 7, we find that the
performances of the twomodels are the best when the SVM is
selected as the base classifier; when the same base classifier
is used, ECOC-UNIT outperforms PL-ECOC.

Moreover, we use a supplementary experiment to fully
demonstrate the impact of the coding matrix optimization
on the model training process. First, we use a fixed random
seed to generate the coding matrix of the PL-ECOC. Taking
the Bird Song dataset as an example, we find that its class
number is 13, and the column number corresponding to the
coding matrix is 38 (L = 10∗ log2 13 = 38). We then use
the same coding matrix in ECOC-UNIT, and the optimization
process had an impact on the six columns in the coding
matrix. In other words, the proposed optimization algorithm
improves the six base classifiers. Fig. 5 shows the difference
between the training instances of these six base classifiers
before and after the optimization. Each number on the X
axis represents a base classifier, and each base classifier
corresponds to two columns, which respectively represent the
number of training instances before and after the optimiza-
tion. The green and blue parts on each column represent the
corresponding number of positive and negative instances in a
training set. Table 8 lists the statistical data shown in Figure 5.
The size of the training set for the first five base classi-
fiers increases after the optimization; the percentage increase
ranges from 8.48% to 27.25%; the training instances of the
last base classifier is slightly reduced by 5.46%.

Another interesting phenomenon is that the class imbal-
ance rate of the positive and negative instances of each clas-
sifier significantly decreases after the optimization. Many
studies [43], [44] have shown that the increase in the training
instances and the decrease in the class imbalance rate are the
key factors for improving the performance of the classifier.

2) PARAMETER ANALYSIS OF THE CASCADE
In terms of the cascade, we focus on three parameters (K, ω,
and R). First, from Table 9, we find that the performance of
PL-DF gradually improves with the increase in K. Each layer
of PL-DF is the ensemble of K units; PL-DF concatenates

218538 VOLUME 8, 2020

J. Gao et al.: Imprecise Deep Forest for PL Learning

TABLE 7. Effects of different base classifiers on model performance under the frameworks of PL-ECOC and ECOC-UNIT. Symbol ‘‘•/◦’’ indicates that the
performance of ECOC-UNIT is superior/ inferior to PL-ECOC.

FIGURE 5. Impact of the optimization of coding matrix on the training set of base classifier.

TABLE 8. Impact of the optimization of coding matrix on the training set of base classifier (data statistics based on fig. 5).

the output of K units with a raw feature vector as the input
of the next layer (see Fig. 2). On the one hand, this is the
re-representation of the raw feature vector. On the other hand,
it implies that the classification results of the previous layer
guide the classification process of the next layer. When the
dimension of the raw feature vector is very high, we can
consider increasing the number of units in each layer to
prevent the useful guidance information (the output of K
units) of the previous layer from being overwhelmed within

the high-dimensional feature vector. In the proposed PL-DF
model, we place four units in each layer, and increasing the
value of K depends on the available computing resources.

Second, Fig. 6 shows that the performance of the PL-DF
remains stable with the increase in ω. The combination of
ω and coverage rate (see Algorithm 4) allows PL-DF to use
PL instances as a validation set, which imprecisely evaluates
the performance of each cascade in the training stage of the
model. This parameter only standardizes the performance

VOLUME 8, 2020 218539

J. Gao et al.: Imprecise Deep Forest for PL Learning

TABLE 9. Variation in the performance of PL-DF as K increases.

FIGURE 6. Accuracy change trend of PL-DF with increasing ω.

evaluation of each cascade, to determine the convergence
of model training. It does not affect the final performance
of PL-DF; we simply set this parameter to 0.5.

Third, theoretically, the deeper the cascade (layer), the
better the performance of the model. In other words, the
re-representation of an unknown instance is more discrim-
inative after being processed layer-by-layer; it can be cor-
rectly classified by the output layer of the model more easily.
However, the cascade number R is adaptively generated
based on a greedy trainingmechanismwith different datasets.
Although R is an important parameter, it is not analyzed here.

V. CONCLUSION
In this study, we analyzed the problem of PL learning
by developing a novel deep learning method based on the
ECOC-UNIT and DF framework. From the unit level of DF,
we give the unit the ability to process PL instances by mod-
ifying the conventional ECOC algorithm; from the cascade
level, we use an imprecise evaluation method to determine
the convergence of the cascade of the DF. The effectiveness
of the proposed method was verified by conducting several
experiments on artificial and real-world PL datasets.

The proposed method has a potential shortcoming in that
not all the PL instances participated in the training of the base
classifiers of the ECOC. An interesting research direction
would be to develop a method to more effectively utilize
the excluded PL training instances in the ECOC-based unit
[1], [8]. In addition, more prior knowledge of the PL training
instances can be used to design the new unit for the DF
framework, such as data spatial information [45], data com-
plexity [19], [26], and data splitting performance [46]. In the
future, it is also important to explore other deep learning
techniques to fit the PL learning problem.

REFERENCES
[1] X. Wu and M.-L. Zhang, ‘‘Towards enabling binary decomposition for

partial label learning,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 2868–2874.

[2] F. Yu and M.-L. Zhang, ‘‘Maximum margin partial label learning,’’Mach.
Learn., vol. 106, no. 4, pp. 573–593, Apr. 2017.

[3] T. Cour, B. Sapp, and B. Taskar, ‘‘Learning from partial labels,’’ J. Mach.
Learn. Res., vol. 12, pp. 1501–1536, Apr. 2011.

[4] N. Nguyen and R. Caruana, ‘‘Classification with partial labels,’’ in Proc.
14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
2008, pp. 551–559.

[5] L. Jie and F. Orabona, ‘‘Learning from candidate labeling sets,’’ in Proc.
23rd Int. Conf. Neural Inf. Process. Syst., vol. 2, 2010, pp. 1504–1512.

[6] Z. Zeng, S. Xiao, K. Jia, T.-H. Chan, S. Gao, D. Xu, and Y. Ma, ‘‘Learning
by associating ambiguously labeled images,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2013, pp. 708–715.

[7] F. Briggs, X. Z. Fern, and R. Raich, ‘‘Rank-loss support instance machines
for MIML instance annotation,’’ in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2012, pp. 534–542.

[8] M.-L. Zhang, F. Yu, and C.-Z. Tang, ‘‘Disambiguation-free partial label
learning,’’ IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2155–2167,
Oct. 2017.

[9] L.-P. Liu and T. G. Dietterich, ‘‘A conditional multinomial mixture model
for superset label learning,’’ in Proc. 25th Int. Conf. Neural Inf. Process.
Syst., vol. 1, 2012, pp. 548–556.

[10] E. Hüllermeier and J. Beringer, ‘‘Learning from ambiguously labeled
examples,’’ in Proc. 6th Int. Symp. Intell. Data Anal., 2005, pp. 168–179.

[11] M.-L. Zhang, B.-B. Zhou, and X.-Y. Liu, ‘‘Partial label learning via
feature-aware disambiguation,’’ in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, San Francisco, CA, USA, Aug. 2016,
pp. 1335–1344.

[12] N. Xu, J. Lv, and X. Geng, ‘‘Partial label learning via label enhance-
ment,’’ in Proc. 33rd AAAI Conf. Artif. Intell., Honolulu, HI, USA, 2019,
pp. 5557–5564.

[13] X. Geng, ‘‘Label distribution learning,’’ IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 7, pp. 1734–1748, Jul. 2016.

[14] Z.-H. Zhou and J. Feng, ‘‘Deep forest: Towards an alternative to deep
neural networks,’’ in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3553–3559.

[15] Z.-H. Zhou and J. Feng, ‘‘Deep forest,’’ Nat. Sci. Rev., vol. 6, no. 1,
pp. 74–86, 2019.

[16] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[17] J. Su, D. V. Vargas, and K. Sakurai, ‘‘One pixel attack for fooling deep
neural networks,’’ IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841,
Oct. 2019.

[18] T. G. Dietterich and G. Bakiri, ‘‘Solving multiclass learning problems via
error-correcting output codes,’’ J. Artif. Intell. Res., vol. 2, pp. 263–286,
Jan. 1995.

[19] M. Sun, K. Liu, Q. Wu, Q. Hong, B. Wang, and H. Zhang, ‘‘A novel ECOC
algorithm for multiclass microarray data classification based on data com-
plexity analysis,’’ Pattern Recognit., vol. 90, pp. 346–362, Jun. 2019.

[20] M. Á. Bautista, S. Escalera, X. Baró, and O. Pujol, ‘‘On the design of
an ECOC-compliant genetic algorithm,’’ Pattern Recognit., vol. 47, no. 2,
pp. 865–884, Feb. 2014.

[21] K.-J. Feng, S.-T. Liong, and K.-H. Liu, ‘‘The design of variable-length
coding matrix for improving error correcting output codes,’’ Inf. Sci.,
vol. 534, pp. 192–217, Sep. 2020.

[22] X.-L. Zhang, ‘‘Heuristic ternary error-correcting output codes via
weight optimization and layered clustering-based approach,’’ IEEE Trans.
Cybern., vol. 45, no. 2, pp. 289–301, Feb. 2015.

[23] L. Zhou, Q. Wang, and H. Fujita, ‘‘One versus one multi-class classifica-
tion fusion using optimizing decision directed acyclic graph for predicting
listing status of companies,’’ Inf. Fusion, vol. 36, pp. 80–89, Jul. 2017.

[24] O. Pujol, P. Radeva, and J. Vitria, ‘‘Discriminant ECOC: A heuristic
method for application dependent design of error correcting output codes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1007–1012,
Jun. 2006.

[25] P. Radeva, O. Pujol, and S. Escalera, ‘‘ECOC-ONE: A novel coding and
decoding strategy,’’ in Proc. 18th Int. Conf. Pattern Recognit. (ICPR),
vol. 3, Aug. 2006, pp. 578–581.

[26] J.-R. Cano, ‘‘Analysis of data complexity measures for classification,’’
Expert Syst. Appl., vol. 40, no. 12, pp. 4820–4831, Sep. 2013.

218540 VOLUME 8, 2020

J. Gao et al.: Imprecise Deep Forest for PL Learning

[27] T. E. Schouten and E. L. van den Broek, ‘‘Fast exact Euclidean distance
(FEED): A new class of adaptable distance transforms,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 11, pp. 2159–2172, Nov. 2014.

[28] S. Escalera, O. Pujol, and P. Radeva, ‘‘On the decoding process in ternary
error-correcting output codes,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 1, pp. 120–134, Jan. 2010.

[29] L. V. Utkin, A. A. Meldo, and A. V. Konstantinov, ‘‘Deep forest as a
framework for a new class of machine-learning models,’’ Nat. Sci. Rev.,
vol. 6, no. 2, pp. 186–187, Mar. 2019.

[30] L. V. Utkin, M. S. Kovalev, and A. A. Meldo, ‘‘A deep forest classifier
with weights of class probability distribution subsets,’’Knowl.-Based Syst.,
vol. 173, pp. 15–27, Jun. 2019.

[31] L. V. Utkin, ‘‘An imprecise deep forest for classification,’’ Expert Syst.
Appl., vol. 141, Mar. 2020, Art. no. 112978.

[32] L. V. Utkin and M. A. Ryabinin, ‘‘A siamese deep forest,’’ Knowl.-Based
Syst., vol. 139, pp. 13–22, Jan. 2018.

[33] Y.-C. Chen, V. M. Patel, R. Chellappa, and P. J. Phillips, ‘‘Ambiguously
labeled learning using dictionaries,’’ IEEE Trans. Inf. Forensics Security,
vol. 9, no. 12, pp. 2076–2088, Dec. 2014.

[34] M. Guillaumin, J. Verbeek, and C. Schmid, ‘‘Multiple instance metric
learning from automatically labeled bags of faces,’’ inProc. 11th Eur. Conf.
Comput. Vis., vol. 6311, 2010, pp. 634–647.

[35] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
Apr. 2011.

[36] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[37] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[38] E. L. Allwein, R. E. Schapire, and Y. Singer, ‘‘Reducing multiclass to
binary: A unifying approach for margin classifiers,’’ J. Mach. Learn. Res.,
vol. 1, pp. 113–141, Sep. 2001.

[39] O. Pujol, S. Escalera, and P. Radeva, ‘‘An incremental node embedding
technique for error correcting output codes,’’ Pattern Recognit., vol. 41,
no. 2, pp. 713–725, Feb. 2008.

[40] B. K. Natarajan, ‘‘Occam’s Razor for functions,’’ in Proc. 6th Annu. Conf.
Comput. Learn. Theory (COLT), 1993, pp. 370–376.

[41] H. Guo, H. Liu, R. Li, C. Wu, Y. Guo, and M. Xu, ‘‘Margin &
diversity based ordering ensemble pruning,’’ Neurocomputing, vol. 275,
pp. 237–246, Jan. 2018.

[42] Q. Dai, R. Ye, and Z. Liu, ‘‘Considering diversity and accuracy simulta-
neously for ensemble pruning,’’ Appl. Soft Comput., vol. 58, pp. 75–91,
Sep. 2017.

[43] J.M. Johnson and T.M. Khoshgoftaar, ‘‘Survey on deep learningwith class
imbalance,’’ J. Big Data, vol. 6, no. 1, p. 27, Dec. 2019.

[44] J. Gao, K. Liu, B.Wang, D.Wang, and Q. Hong, ‘‘An improved deep forest
for alleviating the data imbalance problem,’’ Soft Comput., early access,
Aug. 2020.

[45] Y. Zhou and H. Gu, ‘‘Geometric mean metric learning for partial label
data,’’ Neurocomputing, vol. 275, pp. 394–402, Jan. 2018.

[46] J. Yan, Z. Zhang, L. Xie, and Z. Zhu, ‘‘A unified framework for decision
tree on continuous attributes,’’ IEEE Access, vol. 7, pp. 11924–11933,
2019.

JIE GAO received the B.Sc. and M.Sc. degrees
from RMIT University, Australia, in 2008 and
2010, respectively. He is currently pursuing the
Ph.D. degree in computer science with the School
of Informatics, Xiamen University, China. His cur-
rent research interests include data mining and
machine learning.

WEIPING LIN received the bachelor’s degree in
management from the Dalian University of Tech-
nology, China, in 2019. He is currently pursuing
the M.S. degree in software engineering with the
School of Informatics, Xiamen University. His
current research interests include data mining and
machine learning.

KUNHONG LIU received the B.Sc. and
M.Sc. degrees from Fujian Normal University
in 1999 and 2004, respectively, and the Ph.D.
degree from the University of Science and Tech-
nology of China. He is currently a Professor with
the School of Informatics, Xiamen University. His
research interests include machine learning with
a focus on ensemble learning and evolutionary
algorithm.

QINGQI HONG received the Ph.D. degree in
computer science from the University of Hull,
U.K. He is currently an Associate Professor
with the School of Informatics, Xiamen Univer-
sity, China. His current research interests include
medical imaging processing, 3-D visualization,
3-D modeling, computer-aided diagnosis and
surgery, deep learning, and GPU computing.

GUANGYI LIN received the B.Sc. degree in
computer science from Shandong University
in 2011 and the M.Sc. degree from Xiamen Uni-
versity, China, in 2015, where he is currently
pursuing the Ph.D. degree with the School of
Informatics. His current research interests include
data mining, machine learning, computer vision,
and deep learning techniques.

BEIZHAN WANG received the Ph.D. degree in
computer science from Northwestern Polytech-
nical University, China. He is currently a Pro-
fessor with the School of Informatics, Xiamen
University, China. His current research interests
include data warehouse, data mining, and software
architecture.

VOLUME 8, 2020 218541

