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ABSTRACT Transcription factors (TFs) recognize and bind to specific DNA sequences, thereby altering the
chromatin structure and regulating transcription. TFs aid in the formation of a guide genome that facilitates
the expression of genes under complex regulation. Understanding the underlying mechanism that mediates
the TF-led regulation of gene expression is a popular topic in current genomic research. However, identifying
the precise TF binding site (TFBS) and the specific role of the TFs in transcriptional regulation is challenging.
This article summarizes the status of research concerning the prediction of TFBS. First, the experimental
methods for identifying TFBS have been summarized by accessing related databases. Second, the machine
learning methods for predicting TFBS, especially deep learning, have been summarized. Finally, the study
elaborates on the main challenges faced in TFBS prediction. The purpose of this article is to provide
researchers with a comprehensively understand the prediction of TFBS and to promote further development
in this field.

INDEX TERMS Transcription factor binding site, genomic research, deep learning.

I. INTRODUCTION
Transcription factors (TFs) are proteins involved in the reg-
ulation of gene expression at the transcription level [1].
Their functions include initiation and regulation of transcrip-
tion, which depends on cell type, development stage and
disease status. TFs establish direct contact with the DNA
in a sequence-specific manner through their DNA binding
domain (DBD). TF binding sites (TFBS) is the combing posi-
tion between TF and their DBD and the length of TFBS usu-
ally is 6-20 bp long with variable sequences. Genome-wide
identification of TFBSs is the key to better understand tran-
scriptional regulation. However, it is impossible to experi-
mentally determine all TFBSs for each cell type and cell
condition; therefore, a calculation model based on determing
the TF binding specificity helps to predict TFBSs that have
not been identified by experimentation. These models can be
used to not only predict the precise location of TF interaction
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within the genome, but also forecast the effects of TFBSs
in a set of sequences [2], and the effect of mutations on
TF binding [3]. Although there has been significant progress
in elucidating TFBSs, recent research methods for accurate
identification of TFBS have increasingly shown that TF bind-
ing is much more complex and involves multiple regulatory
and structural changes than was originally known.

In the process of machine learning for data analysis,
feature extraction and feature representation are fundamen-
tal step for successful data prediction. The whole-genome
sequencing methods employed for TFBS discovery can be
divided into two types: genome-based comparison methods
and motif search-based methods. The comparative genomics
method is based on the assumption that the functional
elements (such as motif) are inherited from the common
ancestor comparing to the non-functional elements. These
conserved functional elements can be identified using pair-
wise and multiple sequence alignment techniques. The
commonly used alignment tools for conservation analysis
between the sequences of orthologous or paralogous species,
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including GenomeVISTA [5], LAGAN/MLAGAN [6], and
AVID and MULAN [7]. However, pairwise and multiple
sequence alignment methods are inefficient in terms of the
process speed. In order to accelerate the genome alignment
process, heuristic techniques such as anchoring, threaded
block set and greedy search algorithm are used [7]. Although
comparative genomic methods are effective in recognizing
conserved motifs, they often overlook some conserved func-
tional motifs. On the other hand, the motif search-based
method uses the annotated topic profiles database to detect
related TFs in the input dataset. Topic are usually repre-
sented as position weight matrices (PWM) [8] or variants [9].
The sequence-specificity in the identification of TFBS by
the TFs has been demonstrated by utilizing next-generation
sequencing (NGS) techniques such as systematic evo-
lution of ligands by exponential enrichment sequencing
(SELEX-seq) [10],chromatin immunoprecipitation sequenc-
ing (ChIP-seq) [11], ChIP-exo [12], and ChIP-nexus [13] in
several structural studies involving protein-DNA complexes.
The advent of chromatin immunoprecipitation (ChIP) tech-
nology has made genome-wide sequence analysis highly fea-
sible. Many computing tools have been proposed, especially
for deep learning methods. Since deep learning can automati-
cally perform feature extraction for the input data, it has been
widely used by researchers from multiple fields.

The unprecedented success of deep learning can be
attributed to the following factors: (1) the development of
a graphics processing unit (GPU), (2) availability of large
amounts of data, and (3) the development of a learning
algorithm. Deep learning has been associated with break-
through achievements because it can learn the good char-
acteristics of a feature representation from the data. The
known applications of deep learning include gene and splic-
ing regulation [14], DNA methylation [15], protein classifi-
cation [16], gene recombination [17], nucleic acid sequence
analysis [18], molecular evolution analysis [19], molecular
immunology [20], gene cloning [21], genomic diagnosis [22],
gene network construction [23], and TFBS prediction [24].
When the number of samples is large, the deep learning
method is highly effective. However, for medical and genetic
engineering applications, the number of samples is limited,
with less than 1000 sequence samples. Therefore, one of
the main challenges in the application of deep learning to
medical and genetic engineering is the limited availability
of training samples to build a deep model without the influ-
ence of overfitting. Researchers over the years have designed
various strategies to alleviate the challenge of limited sample
availability, such as (1) considering the structural information
in addition to the sequence information, so as to increase the
input dimension and expand the feature information; (2) gen-
erating some samples manually through data enhancement to
expand the data set.

In this review, we have summarized the recent research
progress on TF binding sites, focusing on the methods
based on deep learning. We began by defining the basic
concepts about TFBS and experimental methods used for

their identification. We then review a few TFBS databases
and explore the basic theory behind the different deep learn-
ing models, such as CNN, LSTM GAN, embedding. Next,
we introduce the application of machine learning and deep
learning in the prediction of TFBS. We also describe the
basic process of predicting TFBS by deep learning. In addi-
tion, we discuss the factors influencing TF-DNA binding.
Finally, the challenges and potential limitations of TFBS
prediction based on deep learning are discussion. Figure 1
represents TFBS analysis in a flow chart format, including
the biological experiment analysis, data acquisition from the
database, building of a computational model, and visualiza-
tion of results.

II. PROBLEM FORMULATION AND RESEARCH
TECHNOLOGY
A. PROBLEM FORMULATION
The issue of TFBS prediction can be defined as the manner in
which appropriate modeling of TFs and the local chromatin
structure at the TFBS can be performed. Efficient modeling
necessitates development of a computable and physically
reasonable model. According to the various histochemical
data available for the TFBSs, the input information can be
genomic DNA sequence, chromatin structure and accessi-
bility, and protein sequence and their antibody. The method
used for the prediction of TFBSs involves multiple learning
models run on different input datamodes. The output involves
the assessment of existing TFBSs. The TFBS is primarily
assessed for the presence of a motif, without judging the
boundary and location of the motif. Research applications of
TFBS prediction models include accurate recognition of the
individual or multiple TFBSs, identification of mutations at
TFBSs, and promotion of research concerning targeted drug
delivery.

B. DEVELOPMENT OF HIGH-THROUGHPUT SEQUENCING
TECHNOLOGY
With the emergence of high-throughput techniques for mea-
suring protein-DNA binding (Table 1 and Figure 2), design-
ing of complex TF and DNA binding models through
machine learning has made identification of TFBS more fea-
sible. The experimental dataset for complex modeling of the
TFBS contains both noise and bias. However, compared with
the simple PWM model, complex models can easily fit noise
and bias. Recently, some studies have focused on designing
TFBS specific models from high-throughput data [25]. How-
ever, even the best-performing models with specific in vitro
datasets do not always perform well on independent in vivo
data.

High-throughput technology provides a wealth of datasets
to enhance our ability to study the binding specificity of pro-
teins to DNA. For example, many prediction methods, such
as SELEX and protein binding microarray (PBM) have been
developed that rely on in vitro sequence data. SELEX [37]
and PBMmethods are cheaper and faster than ChIP-seq. Fur-
thermore, they do not rely on highly specific antibodies. The
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FIGURE 1. TFBS modeling and application diagram. (I) Representatives of TFBS obtained through the high-throughput sequencing
technology, ChIP, and collected from major databases. These include cross-linking, sequence truncation, enrichment, and storage sites.
(II) Represents the data required for querying and forecasting from the database, expressing the data with vectors, and finally extracting
the features through the vectorized data. (III) Represents the modeling and prediction TFBS (the modeling method can be machine
learning, deep learning, etc.), and the prediction results are used for visual analysis. (IV) Predicting TFBS will be helpful for the
construction of gene regulatory networks, drug research, and mutation detection [4].

PBM data measured TF binding specificity of all the possible
8 base pair (bp) sequences and facilitated the characterization
of low-affinity TFBSs on the DNA, which are usually not
captured by simple DNA binding models.

C. DEVELOPMENT OF ChIP TECHNOLOGY
ChIP is an effective method to study the mechanisms of gene
regulation by selectively enriching the DNA fragments inter-
actingwith given proteins in living cells. ChIP-basedmethods
for detecting the protein-DNA interaction site have witnessed

significant developments from ChIP-polymerase chain reac-
tion (ChIP-PCR) for single locus detection to ChIP-ChIP
microarray and ChIP-seq, which involve ChIP followed by
a microarray hybridization and high-throughput sequencing,
respectively [11].

Owing to the similarities between TFBS and enhancers,
conventional protein-DNA localization methods lack the res-
olution to distinguish the spatial arrangement of the TFs.
Therefore, the resolution of ChIP-exo close to a single
base is essential for understanding the molecular mechanism
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TABLE 1. In vivo high flux DNA determination.

FIGURE 2. Based on the TF-DNA binding specificity experiment and the calculation of research genome method schedule. Develop an
experimental high-throughput DNA binding assay (below the timeline) and computational DNA binding-specific models and algorithms
(above the timeline). These experimental and computational methods are provided in Table 1. Considering the appearance of ChIP-seq as
the boundary, the specific model algorithm changed from machine learning to a deep learning algorithm.

underlying TF binding [38]. ChIP-exo can significantly
improve the resolution and reduce noise at the same
time [39], [40]. Although mastering the ChIP-exo technol-
ogy is challenging compared to ChIP-seq, it has now been
widely adopted, aiming to obtain unique ultra-high resolution
using multiple biological systems. In addition, ChIP-nexus
developed as a variant of the ChIP-exo method, attempting to
increase the complexity of the ChIP-exo library by replacing
the traditional double-stranded DNA linear ligation with a
circular ligation step [13].

The protein-attached chromatin capture (PAtCh-Cap)
method involves bead-bound processing steps in addition to
the ChIP-based methods. It relies on the nonspecific capture

of chromatin-bound proteins via their carboxylate groups,
leaving DNA accessible to subsequent chemical treatments
in parallel, such as chromatin immunoprecipitation for the
target protein. Application of PAtCh-Cap includes enhanced
artifact removal fromChIP-exo data, increasing confidence in
peak identification and facilitating de novo motif search. The
PAtCh-Cap method also mediated the discovery of a novel
CCCTC-binding factor (CTCF) binding motif [33]. In order
to overcome the problem of low throughput of standard proto-
cols for ChIP and library preparation, Wallerman et al. devel-
oped a bead library for ChIP-seq protocol (lobChIP). The
applications of the proposed input strategy include enhanced
removal of artifacts from ChIP-exo data, accurate peak
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identification, and search for motifs from scratch. The study
by [36] proved that labeling immunoprecipitated chromatin to
bead-bound chromatin directly in a robust one-step reaction
is a fast and cost-effective ChIP-seq workflow. It has been
reported to produce some excellent results for histone label-
ing and TFs [41].

D. CONTRIBUTION AND LIMITATION OF HIGH
THROUGHPUT TECHNOLOGY
High-throughput protein-DNA binding technology has
revealed that a large number of proteins can bind to DNA
using two or more different modes. In order to fathom the
precise biochemical mechanism guiding the interaction of
the TF at TFBSs, it is necessary to study TFs with multiple
binding modes.

Although there is an increase in the use of ChIP-exo/nexus
methods, these technologies have some limitations. ChIP-exo
and ChIP-nexus are more complex than ChIP-seq, mak-
ing the experiments both expensive and time consuming.
For example, a single ChIP-seq or ChIP-exo experiment
may contain multiple types of binding events generated by
the variable protein-DNA interaction patterns. To systemat-
ically detect the multiple protein-DNA interaction patterns
in a single ChIP-exo experiment, Yamada et al. introduced
the ChIP-exo hybrid model (ChExMix). ChExMix uses the
ChIP-exo tag distribution pattern and DNA pattern to model
the genome location and subtype members of the combined
event. Yamada et al. proved that ChExMix could accu-
rately detect and classify the combined event subtypes using
computer technology [12]. For a detailed description of the
ChIP-exo/nexus methods, please refer to [33].

III. DATABASE OF TRANSCRIPTION FACTOR BINDING
SITES
Over the past decades, our ability to generate motifs and
genomic-binding sites simultaneously has improved sig-
nificantly, resulting in unprecedented amounts of data on
TF-DNA interactions. Motif was first discovered through
experimental methods. In other words, it is not that motif
analysis was only possible with ChIP-seq. The motif research
has been studied for a long time. For example, the ‘TATAAT’
box was discovered by pribnow in 1975 [42], and the
upstream ‘TTGACA’ motif is the specific sequence of the
RNA polymerase binding site. Moreover, not all the bind-
ing sites necessarily matched the motif perfectly, and most
of them only matched 7-9 of the 12 bases. The matching
degree between the binding site and the motif is often
related to the binding strength between the protein and
DNA. At present, there are more and more motifs recog-
nized being discovery. For example, TRANSFAC [43] and
JASPAR [44] databases have a large number of motifs for
transcription factors. With the massive output of ChIP-seq
data, motif research will be further in-depth. Some research
groups integrate existing ChIP-seq data to provide a more
comprehensive and accurate motif database. To develop
the current TF catalog, we have completely utilized

TF directories such as TRANSFAC [43], JASPAR [44],
SELEX_DB [10], high-throughput (HT)-SELEX [37],
UNIPROBE [45], Cis-BP [46], and previous human TF
catalogs [1].

With the accumulation of TFBSs verified by biological
experiments, there are various databases that collate this
information. For example, the Homo sapiens comprehen-
sive model (HOCOMOCO) [47] is a collection of selected
entries from various sources dedicated about human TFs.
Some major updates have been made in the latest version of
HOCOMOCO V11. The latest HOCOMOCO contains bind-
ing models for 453 mouse and 680 human transcription fac-
tors, including 1302 single nucleotide and 576 dinucleotide
position weight matrices, which describe the main binding
preference and reliable alternative binding specificity of each
transcription factor. For fruit flies, a large number of patterns
can be found in the FlyfactorSurvey [48] and in OnThe-
Fly [49]. For yeast, there is a database called ScerTF [50].
Until recently, the knownmotifs of TFs in C. eleganswere rel-
atively few; however, at present, about 40% of the PWM has
been determined or inferred [8], which can be accessed at the
CisBP database. PlantTFDB [25], the plant TF database, con-
tains information on 26402 TFs from 22 plants. International
system for agricultural science and technology (AGRIS) [51]
contains information on Arabidopsis TFs and their corre-
sponding binding sites. Transcriptional regulatory element
database (TRED) [52] is a collection ofmammalian transcrip-
tion regulatory elements. The promoter regions for human,
mouse, rat, and other species are almost completely annotated
in this database. The regulatory relationship between mam-
malian TFs and target genes has been collated in Integrated
TF platform (ITFP) [53].

The TFBSshape database can be used to generate heat
maps and quantitative data from TF datasets for 23 dif-
ferent species for DNA structural features, that is, DNA
data for minor groove widths (MGW), rolls, propeller
twist (ProT), and helix twists (HelT) [54]. In the latest
TFBSshape database [55], the data content has been increased
to 2428 structural profiles, with 1900 TFs from 39 differ-
ent species. The structure profile of each TFBS entry now
includes 13 shape features of standardDNA andmicro groove
electrostatic potential, and 4 shape features of methylated
DNA. TFBSshape has improved the flexibility and accuracy
of shape-based transcription factor binding, and designed a
new tool to compare the methylation and non-methylated
structure of transcription factors, and deduced the method
of DNA shape keeping nucleotide mutation in transcription
factor binding. The construction of these databases greatly
promotes our understanding of the TF and TFBS interaction
inmultiple species and tissues during different developmental
stages. Table 2 provides brief information on some commonly
used databases for the reference of the reader.

IV. INTRODUCTION OF DEEP LEARNING METHODS
The basic unit of the neural network in deep learning is a
node, which has been inspired by the biological neurons in
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TABLE 2. Database of transcription factor binding sites.

the mammalian brain. Deep learning can be defined as a
neural network with a large number of parameters and layers,
which can be roughly divided into (1) convolutional neural
network, (2) long short-term memory, (3) generative adver-
sarial network, (4) Word2vec, (5) attention mechanism, and
(6) graph convolutional networks. The following paragraphs
briefly introduce each of them.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN a well-known deep learning framework, has been
widely applied in image recognition [57], speech recogni-
tion [58], computer vision [59], natural language process-
ing [60], bioinformatics [24], and other artificial intelligence
research fields [61]. Wang [62] investigated essential rela-
tionships between generalization capabilities and fuzziness of
fuzzy classifiers. The study makes a claim and offers sound
evidence behind the observation that higher fuzziness of a
fuzzy classifier may imply better generalization aspects of
the classifier. The components of CNN include convolutional,
pooling, and fully connected layers. The convolutional layer
is proposed to extract and represent the local information of
original features through several feature maps and kernels.
The pooling layer is employed to compress the resolution of
the feature maps to achieve spatial invariance. After several
convolution and pooling operations, there may be one or
more fully connected layers to perform advanced reasoning.
The output of the last fully connected layer is transfered

to an output layer. For a classifier or regression task, soft-
max regression is commonly used because it can produce
a well-formed probability distribution corresponding to the
outputs.

B. LONG SHORT-TERM MEMORY (LSTM)
Recurrent neural network is a neural network that recurs lin-
early in time. Comparedwith the general fully connected neu-
ral network, the structure of the recurrent neural network has
one or several memory units, and this memory unit is the key
to the recurrent neural network. The input of RNN includes
two parts: one is the current input xt , which is used to update
the state in real time, and the other is the state ht−1 of the hid-
den layer at the previous moment, which is used to remember
the state, while the network at different times shares the same
set of parameters. However, the back-propagation calculation
process used is time-dependent in RNN optimization. When
updating the gradient of the parameterW , the gradient at the
current time and the gradient at the next time must be con-
sidered, the derivative at time t will propagate to t1, t2 . . . , tn
time, so there is a coefficient of continuous multiplication.
Multiplication has always brought two problems: gradient
explosion and disappearance. Moreover, during the forward
process, the influence of the former input will be less and
less on the later nodes, which is the long-distance dependence
problem. In this way, the ability of the ‘‘memorize’’ is lost.
It is necessary to know that biological neurons have a strong
ability to remember past sequential states.
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Long short-term memory (LSTM) can solve the aforemen-
tioned problems about RNN, which introduce several gates
about the cell state. The cell state carries the information of
the previous states. Every time a new moment comes, there
are corresponding operations to decide what old information
to discard and what new information to add. This state is
different from the hidden layer state h. During the update
process, its update is slow, while the hidden layer state h
is updated quickly. LSTM is well suitable for capturing the
long and short dependency information in sequence [63].
A memory mechanism is applied in LSTM to replace the
hidden function in the traditional RNN. The functional unit in
LSTM consists of a memory cell, a forget gate, an input gate,
and an output gate, which is designed to enhance the ability
of LSTM to model long-range dependence. LSTM memory
cell is given in the following equations:

ft = σ (Wxf ∗ xt +Whf ∗ ht−1 + bf ) (1)

it = σ (Wxi ∗ xt +Whi ∗ ht−1 + bi) (2)

ct = ft
⊗

ct−1 + it
⊗

tanh(Wxc ∗ xt
+Whc ∗ ht−1 + bc) (3)

ot = σ (Wxo ∗ xt +Who ∗ ht−1 + bo) (4)

ht = ot
⊗

tanh(ct ) (5)

where σ is the logistic Sigmoid function, tanh is a function to
confine the values between −1 and 1, f , i, c, o represent the
forget gate, input gate, cell vectors and output gate, respec-
tively, which are specified to be the same value as given in
the hidden vector h, Wxf is the input-forget gate matrix, and
Whf is the hidden-forget gate matrix. The index t refers to the
time step.

⊗
represents the vector product. It is worthwhile

to note that the initial values of c0 = 0 and h0 = 0.

C. THE GENERATIVE ADVERSARIAL NETWORK (GAN)
GAN learns by letting two neural networks play against each
other. GAN mediates the generation of new and fake data
based on the original data set. The model generates a fairly
good output through the mutual game learning of at least
two modules in the framework: the generative model and
the discriminative model. The discriminator differentiates the
generated false target from the real one, while the generator
cheats the discriminator in generating false targets [64], [65].

D. Word2vec
The word2vec model is essentially a simplified neural net-
work. The input is a one-hot vector, and the hidden layer,
which is a linear unit, has no activation function. The dimen-
sion of the output layer is the same as that of the input layer,
and is obtained using Softmax regression. However, when the
model is trained; we will not use the trained model to handle
new tasks. What we really need are the parameters learned by
the model through the training data, such as the weight matrix
of the hidden layer. How does this model define data input
and output? The word2vec model architecture can be divided
into two types: Continuous Bag-of-Words (CBOW) and

continuous Skip-Gram. In case of CBOW, multiple
context-related words are used as the input information to
get the target word as the output, Whereas, in the Skip-Gram
model, the concept is reversed, that is, the input is the word
vector of a specific word, and the output is the context
word vector corresponding to the specific word. CBOW is
more suitable for small databases, while Skip-Gram performs
better for large ones [66].

E. ATTENTION MECHANISM
Recently, the concept of attention mechanism has achieved
great success in neural machine translation and sentiment
analysis [67]. It enhances the ability of RNNs by focusing on
information that is highly valuable for successful prediction
within the input [68]. Combined with RNNs, it allows models
to learn high-level representations of the input sequences
with long-range dependencies. In addition, attention mecha-
nismmakes the RNNmodels more interpretable by assigning
attention weights based on importance to different positions
of the input. Different visualization methods have also been
developed to explore the relationship between the input and
output sequences using the attention mechanism, the align-
ment view [69], and the extra layer of interpretability. It is
anticipated that introducing the attention mechanism to the
prediction of binding sites would enhance the prediction
accuracy as well as the level of interpretability for existing
CNN-RNN architecture models [70].

F. GRAPH CONVOLUTIONAL NETWORKS (GCN)
Interpreting complex graphs and extracting potential knowl-
edge from them is a challenging task. Graphs are the storage
medium for knowledge, and deep learning is an important
tool for extracting graphical information. The combination of
the two is an inevitable trend. Many data in the real world are
stored in the form of graphs, such as social networks, knowl-
edge graphs, and protein-DNA interaction networks [71].
Recently, some researchers have developed a general neu-
ral network model that could process graphical data. Since
majority of the approaches are associated with correlating
CNN to graph, the resulting structures often have certain
commonalities. Using ideas similar to convolution weight
sharing, this type of network can be referred to as graph
convolutional networks (GCNs) [72].

V. APPLICATION OF TRADITIONAL MACHINE LEARNING
METHODS
A. REPRESENTATION OF CONSENSUS SEQUENCE
‘‘Consensus’’ is used to indicate the most frequently occur-
ring nucleotide at each position of the transcription factor
binding site. In practical, we found that the frequency of
certain two or three nucleotides at some binding sites is
relatively close, or even completely equal. In this case, only
using a single nucleotide to represent the position cannot fully
reflect the degree of conservation. Therefore, the expression
‘‘degenerate consensuses’’ is also used in the description of
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TABLE 3. IUPAC degenerate codes for representing nucleotide sequence
patterns.

transcription factor binding sites. The degenerate consensus
sequence uses symbols to indicate different nucleotides that
occur at the same position, not just a single nucleotide.
International union of pure and applied chemistry (IUPAC)
codes [73] is a widely used symbolic representation of degen-
erate consensus sequences, as shown in Table 3. The repre-
sentation method based on the consensus sequence is simple
and easy to understand, but it cannot reflect the probability
of different bases at each position. This way of expression
sacrifices specificity and sensitivity.

Selective microfluidics-based ligand enrichment (SMiLE)
[74] and WEEDER [75] were used to solve the problem
of random replacement of the bases at each position of the
motif during pattern matching. This kind of algorithm uses a
suffix tree structure to build the initial index of the sequence,
and thereafter exhaustively searches all consistent candidate
sequences. The SMiLE algorithm compares the number of
subsequences in the input sequence set with the number of
subsequences in a negative or random sequence set. The
WEEDER algorithm compares the actual number of occur-
rences of a subsequence with the expected number of occur-
rences of the subsequence in all promoter regions in the same
set. It uses a measurement function similar to the amount of
information, to measure the entire subsequence rather than a
single base. The target motif is obtained on completion of the
measurement [75]. In order to overcome the rough descrip-
tion of the motif by the consistent sequence, the algorithm
based on the consistent sequence selects a better subsequence
to form the profile and then extracts the corresponding motif
instance of the sequence from the spectrum. In this way, not
only can the predicted model instances be arranged more
carefully, but the real model instances can also be filtered and
the threshold can be found. The total number of permutation
methods increases exponentially with the number of input
sequences. Therefore, heuristic and clustering methods could
effectively reduce the search space and be widely used in the
motif discovery problem to obtain the statically significant
sequence.

B. REPRESENTATION OF POSITION WEIGHT MATRIX
Compared with the consensus sequence method, the posi-
tion frequency matrix can reflect the probability of different
bases at each position. The hypothesis of this model is that
the probability of the occurrence of bases at each site is
independent of each other. Some studies have shown that
there is a correlation between the bases of transcription factor

binding sites. The most commonly used statistical model is
the position frequency matrix (PFM), which is used to repre-
sent the frequency of each character in the character set � =
A,C,G,T at each position in the motif (transcription factor
binding site). PFM from position count matrix (PCM). At the
same time, the PFM is often transformed into position weight
matrix (PWM) considering the bias of base composition in
DNA sequence.

PWM [9] is sometimes called a position-specific scoring
matrix (PSSM) or a weighing matrix, and it is a special
expression matrix used to express TF. When using position
weights to predict the TFBS, there are certain considerations:
(1) how to obtain the PWM, (2) how to combine the search
algorithm with PWM to predict TFBS, and (3) the limitations
of using PWM to predict TFBS.

First, PWM provides a score for all possible bases at
each position in the binding site. Any specific TF has its
own PWM to describe its characteristics, and there are
many ways to determine the PWM elements, as shown in
Figure 3. A counting matrix, obtained from the aligned posi-
tions, simply records the numbers of each base at each posi-
tion. Through the generated probability matrix, the statistical
measures of these subsequences relative to the background
sequence are calculated, to evaluate conservatism and speci-
ficity. The probability matrix with the highest score is the
corresponding motif component.

Second, after determining the PWM, the motif discovery
problem is transformed into a ‘‘combination optimization’’
problem, wherein, all possible subsequence combinations
are explored to find the combination with the highest mea-
surement value. Note that the size of the solution space
will increase exponentially with the increase in the input
sequence. Therefore, in order to avoid the huge overhead cost,
in terms of time and space, involved in the exhaustive search,
heuristic methods are often used to explore the solution space.
At the same time, a large number of combinatorial optimiza-
tion techniques are also widely used to design motif recog-
nition algorithms such as greedy algorithm, local search,
random search, and genetic algorithm. Another type of algo-
rithm uses different strategies to explore the solution space:
first, it selects some subsequences from the input sequence
to form the initial state (probability spectrum); then, at each
step of the algorithm, it replaces some of the subsequences to
update the probability spectrum to obtain a higher measure-
ment value. The training iterations continue until the highest
measurement value is attained. Lawrence andReilly first used
a probabilistic algorithm based on training iterations for the
motif discovery problem [76]. The algorithm is considered a
well-known expectation maximization (EM) algorithm.

Finally, in the probability model using PWM, it is assumed
that the independently distributed background components
will have a huge impact on the phantom recognition sig-
nal. However, as not all nucleotides in the input sequence
are affected by adjacent nucleotides, this assumption may
seem impractical. Therefore, some algorithms improve the
background model and use more complex high-order Markov
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FIGURE 3. Position weight matrix (PWM) is a widely used representation of transcription factor recognition motif. It is a matrix of N rows and four
columns, in which the frequency of each base at each position is described. The sequence score can also be interpreted in a physical framework as the
binding energy for that sequence.

models as the background to improve the accuracy of identi-
fying the phantom. The limitation of the PWM model, when
used to express TF binding specificity, is the assumption that
the position in the binding site independently affects the bind-
ing affinity. This is usually a good assumption, but it does not
hold true for every TF. There are also some examples where
the assumption is violated, and the TF binds in different ways
at different locations. Hence, a single PWMcannot accurately
capture the TF binding specificity [25].

C. STATISTICAL LEARNING METHOD
Widely used computational methods for TFBS prediction
based on PWMs usually have high rate of false positives.
Moreover, computational studies of transcription regulation
in eukaryotes frequently require numerous PWM models
of TFBSs because of the large number of TFs involved.
To overcome these problems, Khamis developed DRAFmod-
els, a novel method for TFBS prediction DRAF [77]. DRAF
models use more features than PWM models, by combin-
ing information from TFBS sequences and physicochemical
properties of TF DNA-binding domains into machine learn-
ing models.

Because PWM assumes an independent distribution of
sequence bases, which has a huge impact on the recogni-
tion of phantom signals, Gao and Ruan [78] proposed a
novel algorithm based on the so-called multi-instance learn-
ing (MIL) paradigm. MIL divides each DNA sequence into
multiple overlapping subsequences, and models each subse-
quence separately. It not only implicitly identifies the location
of the binding site, but also maps sequence level features
(k-mers) to binding events. Since MIL takes into account the
dependence between the bases, themodel has higher accuracy
and better interpretability.

VI. APPLICATIONS OF DEEP LEARNING IN TFBS
A. VARIOUS APPLICATION BASED ON DEEP LEARNING
In recent years, deep learning finds application in various
fields. In TFBS prediction-based research, there are some
benchmark deep learning models. It is natural to regard a
DNA sequence as an input sentence with four characters
A, C, G, and T instead of an image; however, research on

FIGURE 4. The prediction model of TFBS using deep learning. The input is
the DNA sequence. Following this, the input DNA sequence is encoded to
a 4-dimensional matrix by one-hot encoding. Next, deep learning is
employed to build the prediction model. Finally, the output indicates
whether there are binding sites.

image classification and natural language processing pro-
vides valuable experience for DNA, for example, Deep-
Bind [24] and IDeep [79], the recently developed applications
for TF-DNA binding prediction. Figure 4 shows a conceptual
model using deep learning for TFBS prediction. Using the
DNA sequence as the input information, the neural network
is trained autonomously to adjust the network parameters and
results. Furthermore, Table 4 summary the TFBS prediction
methods based on deep learning.

B. APPLICATION OF CNN
DeepBind [24] shows that deep learning technology can
be used to determine sequence specificity from experi-
mental data. It provides a scalable, flexible, and unified
calculation method for pattern discovery. In addition,
DeepBind is the first ever method that addresses the
need for accurate representation of protein target binding
motifs. The deep convolution method has ushered in the
upsurge of deep learning applications to process biological
information.

Due to the lack of effective methods to extract higher-order
dependence, most of the proposed TFBS prediction methods
use only low-order dependence for prediction. In this work,
the author proposed a novel method to extract high-order
dependence by applying CNN to histone modification fea-
tures. Then, a novel TFBS predictionmethod called CNN_TF
that combines low-order and high-order dependence is
reported [94].

In addition to the dependence between nucleotides,
the variable binding lengths of different TFs are also
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TABLE 4. Summary of TFBS prediction method based on deep learning.

considered in CNN. Zhang proposed [85] a high-order con-
volutional neural network architecture (HOCNN), to over-
come the limitations of conventional CNN. HOCNN uses a
high-order coding method to construct the high-order depen-
dence between nucleotides, and a multi-scale convolutional
layer to capture the pattern features of different binding
lengths.

CNN usually distributes the learned topics among multiple
filters, which makes the learned topic difficult to explain.
In addition, the network trained on small datasets cannot
be extended to new larger sets of sequences. Blum and
Markus [95] introduced a circular filter, which can convolute
the sequences with circular permutation variants of the same
filter. They studied CNN’s filters that correspond to shifting
and truncating variants of real topics to activate loop filters.
The circular filter not only learns the full-length pattern and
explains the learned filter easily, but also improves the per-
formance of base order reasoning in a wide range of super
parameters and sequence lengths. In addition, for inferring
DNA binding sites from ChIP-seq data, CNN with a cir-
cular filter is superior to conventional CNN in most cases.
Chen et al. [82] proposed a hybrid method between the kernel
method and CNN-seq method that retains the neural network
to provide good representation for learning problems and
defines a Hilbert space with clear characteristics to describe
prediction functions.

C. APPLICATION OF LSTM
Some studies have shown that RNN and their variants
have better performance in processing time series data.

Huang et al. proposed a model named KEGRU, which
identifies TFBS by combining a two-way gating recurrent
unit (GRU) network with k-mer embedding. First, the DNA
sequences are divided into k-mer sequences of specific length
and spanwindows. Second, the word2vec algorithm is used to
treat each k-mer as aword representationmodel. Third, a deep
bidirectional GRU model is build to feature learning and
classification. The robustness of KEGRU is attributed to the
different lengths of the k-mer, stride window, and embedded
vector size [87].

Despite its clever design, DeepBind lacks the ability to
capture the dynamics of the probe sequence by indirectly
assuming that there is at most one motif in each probe. This
preconceived notion can mislead the training process. For
instance, commonly, several moderately good motifs in the
probe have high binding affinity because of their respective
contributions. In this case, the TFBS prediction model tries
to adjust the weight of the motif detector (kernel) so that all
motifs except one are punished, while the remaining motifs
are overweighed because of the high affinity of the entire
probe. Even for a probe with only one pattern, its position
may be important due to technical limitations. Wang et al.
proposed DeeperBind, a novel double-deep model that can
address the deficiencies of the DeepBind model. They
added the location dimension to the core design of Deep-
Bind by incorporating recursion into the model. CNN and
LSTM are complementary in modeling capabilities. There-
fore, it is desirable to combine these two to achieve syner-
gistic improvement in the prediction of protein-DNA binding
specificity [67].
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D. APPLICATION OF HYBRID NEURAL NETWORK
In order to explore the impact of deep learning architec-
ture on predicting the DNA- and RNA-binding specificity
of the proteins, Trabelsi et al. proposed deepRAM, an end-
to-end deep learning tool, which can provide the realization
of multiple architectures; its fully automated model selection
programs enable a fair and just comparison of deep learning
architectures. After research, it was found that when the
data samples are sufficient, the deeper and more complex
architecture clearly has advantages, and the CNN-based RNN
hybrid architecture is superior to other methods in terms
of accuracy. Trabelsi et al. [92] provided insights into the
differences between the models of convolutional networks
and cyclic networks. In particular, they found that although
recursive networks improve the accuracy of the model, they
sacrifice the interpretability of the characteristics of model
learning.

The in-depth learning method successfully simulates
protein-DNA binding in vivo, but it usually follows a fully
supervised learning framework and ignores the weak super-
vision information about the genome sequence. The com-
bined DNA sequence may have multiple TFBSs that could be
coded using single heat coding ((s) and (b)). The dependence
between nucleotides can be ignored. Huang et al. proposed a
weakly-supervised convolutional neural network (WSCNN)
architecture that puts forward a weak supervision framework,
combining multi-instance learning with a hybrid deep neural
network [86]. After achieving good results, they continued
to optimize the model and used k-mer code to transform
DNA sequences for the in vivo modeling of protein-DNA
binding. First, the frame uses a sliding window to segment the
sequence into multiple overlapping instances, and then uses
k-mer coding to encode all instances as high-order dependent
image classes input. Second, it uses the hybrid deep neural
network of integrated convolution and RNN to calculate the
scores of all instances in the same package. It uses the noisy
method to integrate the prediction values of all instances into
the final prediction of the package. The improved method is
termed as WSCNNLSTM [89].

E. APPLICATION OF OTHER METHODS
In addition to CNN, RNN, and their variants, an increasing
number of efficient models that have achieved remarkable
results in other fields have been applied to the prediction of
TFBSs. The attention mechanism in deep learning has shown
the ability to learn from long-term dependent input features.
To date, this mechanism has not been applied to the deep
neural network model for input data from large-scale parallel
sequencing. In this study [70], the author established a model
for TF binding site prediction by combining the attention
mechanism with traditional deep learning techniques. The
performance of the method was evaluated using the challenge
dataset of TFBS prediction in ENCODE DREAM. Bench-
mark tests show that incorporation the focus mechanism
(called deepGRN) improves the performance of the deep
learning model. Visualization of attention weights extracted

from the trained models reveal the mechanisms by which
these weights move when the combined signal peaks move
along the genome sequence. This explains the method of
prediction. Case studies show that the attention mechanism
can help extract useful features by focusing on areas that are
critical to successful prediction while ignoring the irrelevant
signals from input information.

Abdollahyan et al. [96] proposed a graph-based method to
detect TFBS that often occurs simultaneously with evolution-
arily conserved non-coding elements (CNEs). They presented
a graphical representation of the TFBS sequences recognized
in CNE, which enables handling of overlapping binding sites.
They used a dynamic programming algorithm to align these
graphs and determine the relative enrichment of short TFBS
sequences in alignment. In addition, Song et al. [71] proposed
a new graph-based feature extraction algorithm that can accu-
rately extract the features of TFBSs. The obtained features
describe the pairwise correlation of the different positions of
binding sites. Based on these characteristics, two correlations
can be integrated into a statistical model, which describes the
TFBS. The test results show that this method can recognize
the important features of TFBSs, and that the statistical model
based on these features can achieve a prediction accuracy
higher than or comparable to other feature extraction meth-
ods.

We have tabulated the prediction methods, both described
above and otherwise, as shown in Table 4. The results of this
analysis can be used for planning and also as a guide for
researchers who intend to predict TFBSs.

VII. TFBS PREDICTION PROCESS BY DEEP LEARNING
The prediction of TFBs mainly includes data pre-processing,
feature extraction, model building, and research application.
A graphical representation is shown in Figure 5, which we
will introduce in detail.

A. DATA PRE-PROCESSING
In this study, data pre-processing is aimed at DNA sequence,
protein sequence, and DNA shape analysis. Among them,
sequence processing includes high-throughput data selection,
data standardization, transcription factor selection, sequence
truncation, and negative sample generation. In the following
sections, each part has been briefly introduced.

1) HIGH THROUGHPUT DATA SELECTION
It is known from the earlier discussion that high-throughput
sequencing provides high-resolution TF binding datasets in
vivo and in vitro. Despite the increasing number of such
datasets, our ability to predict the location of TFBS on
genomic DNA is still insufficient. Predicting the TFBS in a
certain species needs contextual information as the basis for
selection.

2) DATA STANDARDIZATION
Because there are many redundant TFBSs in the forward
and reverse directions of each DNA strand, we choose either
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FIGURE 5. Basic flow chart for predicting transcription factor binding sites using Intelligent Computing.

the forward or the reverse chain for each TFBS. In addition,
the method for generating background (negative) sequence is
very important. It is well known that the background sequence
must be selected to match the statistical properties of the fore-
ground set; otherwise, the resulting motif may be inaccurate.

3) TRANSCRIPTION FACTOR SELECTION
There are multiple TFs in a cell, each binding to one or
more chromosomes. Our research may focus on only one TF
binding to a single chromosome or several TFs in a certain
cell line. For example, the Sp1 factor on chromoseme 1,
a well-known TF family, is related to important biological
processes and has a significant role in cell growth and dif-
ferentiation.

4) SEQUENCE TRUNCATION
Many existing computational methods are either tissue-
specific and species-specific or limited to short DNA
sequences; therefore, they cannot be used to identify potential
TFBSs in long DNA sequences without knowledge of the
tissues or species. Owing to these limitations, predicting long
series using the model reduces its reliability. The existing
methods are divided into two categories according to the
inputl. One truncates the sequence to a fixed length while the
other accepts sequences of indefinite length and preprocesses
it before sending as an input to the model.

5) NEGATIVE SAMPLE GENERATION
One of the difficulties in developing a calculation method
for predicting TFBS is building a negative dataset. Unlike
positive datasets, which are usually constructed from TFBS,
negative datasets can be very unreliable. The performance
of the classifier is certainly affected by the negative datasets

used in the training classifier. Several methods have been pro-
posed for preparation of negative datasets with low expected
TF binding. They are: (a) sequences not labeled as TFBS [85],
(b) downstream random exons [97], (c) random selection of
non-coding sequences [81],and (d) DNA regions far away
from genes.

B. FEATURE EXTRACTION
The comprehensive feature extraction is of great significance
for the prediction of TFBSs. Whether it can completely
extract all the features of DNA or protein sequence will
directly determine the accuracy of TFBS prediction, since
different features have different importance. The sequence
and shape feature extraction are aimed at DNA and protein.
We divided the features into sequence features and shape fea-
tures. The sequence features include nucleotide dependence,
phantom position, and binding affinity, while the shape fea-
tures include MGW, rolling, ProT, and HelT. Owing to the
lack of consideration of shape features in the existing litera-
ture, we will not expand on the description.

1) NUCLEOTIDE DEPENDENCE
Identifying the interactions between regulatory proteins and
DNA, especially between TFs and their corresponding bind-
ing sites, is an important step in predicting the binding
sites. The dependence of nucleotide positions in TFBSs
can be clearly indicated by k-mers such as dinucleotides or
trinucleotides.

2) MOTIF POSITION
TFBSs are usually unique, but a TFBS that does not show
a one-to-one correspondence, may not be unique. The input
sequence of the model usually includes the sequence of the
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binding site and the sequences of the non-coding regions on
both sides of the binding site. In case of high-resolution data,
the boundary position can be identified by the model [80].

3) BINDING AFFINITY
In addition to the binding motifs, other sequence charac-
teristics, such as low-affinity binding sites, flanking DNA,
and specific targets for flanking symmetry of some repeat
sequences, also affect the binding affinity of the TFs. For
better TF-DNA binding specificity, it is important to also
consider the length of the binding site sequence.

4) SHAPE FEATURES
An important challenge in TFBS prediction is attaining
the correct modeling of the binding involving multiple TFs
and local chromatin structure effects. Recent studies have
shown that the interaction between TF, co-binding factors,
and the local chromatin structure affects the TF-DNA bind-
ing [98]. On the other hand, because of the stacking interac-
tion between the neighboring base pairs, a three-dimensional
(3D) DNA structure is generated, and the DNA shape features
represent an alternative method to implicitly code nucleotide
dependence. It is known that the local structural features of
the double helix (such asMGW,Roll, ProT, andHelT) greatly
affect the TF-DNA interaction.

C. MODEL ESTABLISHMENT
The task of model building begins with the input of the
processed data; then, we analyze the data using the corre-
sponding methods to determine whether there are TFBSs in
the different input sequences. Finally, if a TFBS is reported,
the existing site boundary or the relationship between the
multiple points is determined. The overall accuracy of the
model depends on the data location, accuracy of feature
extraction, and selection of the learning model. To perform
this task, we need various learning algorithms to integrate
and analyze the data clues of gene expression. In recent
years, prediction of TFBSs based on sequence data has
been achieved in some studies. Among these, the meth-
ods to determine the presence of motifs are mainly based
on traditional machine learning methods such as EM and
support-vector machines [99], [100], and deep learning meth-
ods such as CNN and LSTM [24], [89]. Due to the abstract
and sequential nature of DNA sequences, prediction method
of TFBSs solely based on sequence is not suitable for
complex sequence data. Scholars have, therefore, proposed
hybrid methods for predicting TFBSs in complex sequence
data. Examples include combination models such as CNN
+ LSTM [89], sequence2vec + CNN [83], word2vec +
GRU [87], and attention + CNN [70]. Using the combi-
nation models, researchers can identify TFBSs in complex
sequences, thereby allowing for a better understanding of
the transcription process. Shown in Figure 6 is a model for
predicting TFBSs based on CNN + LSTM [67].
In the first step, each probe sequence is converted into

a 4l one-hot coded binary matrix (L is the probe length)

FIGURE 6. Deeperbind block diagram. First, the input sequence is
represented as a 2D binary matrix by an one-hot coding. The convolution
layer generates the feature map by applying a number of pulse-width
modulation (PWM) filters and rectifying linear elements. Pool layer is not
used. Following this, two LSTM layer stacks capture the order dependence
of the suborders on the probe [67].

and the intensity value is normalized. Next, we input the
pre-processed probes into the convolution layer, followed by
the corrected linear elements to map them into the interme-
diate feature vectors through parameterized nonlinear trans-
formation. The pooling layer is often used in convolution
network architecture; however, it is omitted to avoid losing
location information in this way. Subsequently, one or two
layers of LSTM are used, in which each LSTM block in
the first layer receives the local features extracted from the
location of interest on the DNA and encodes its interpretation
of the overall contribution of the history in the hidden state.
This interpretation is passed on to the next LSTM block
above and to the right, and so on. Once the last nucleotide
is observed, the last expanded LSTM module makes the
final decision on the probe’s merits and demerits based on
the processed feedback from the nearest neighbor, which is
the integration of all history in an attractive way. Finally,
the results of the LSTM network are presented to a fully
connected network, which contains at the most one hidden
layer and can predict the binding preference of each probe by
packet loss regularization.

D. EVALUATION INDEX
The prediction of TFBSs mainly includes five basic evalu-
ation indices: accuracy, precision, recall, F1 measure, and
area under the receiver operating characteristic (ROC) curve
(AUC). AUC metric has been widely used to rank the perfor-
mance of excitationmotifs in the literature. However, existing
approaches for motif refinement choose to directly maxi-
mize the non-convex and discontinuous AUC itself, which
is known to be difficult and may lead to suboptimal solu-
tions.Therefore, researchers propose a method to optimize
motif search based on AUC combined with deep learning
technology. For example, De-Shuang Huang et al. propose
a novel approach named Discriminative Motif Learning via
AUC (DiscMLA) to discover motifs on high-throughput
datasets [101] and Lin Zhu et al. propose Large Margin
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TABLE 5. Confusion matrix.

Motif Optimizer (LMMO), a large-margin-type algorithm for
refining regulatory motifs [102].

Confusion matrix is a situation analysis table that summa-
rizes the prediction results of classification model in machine
learning. The records in the data set are summarized in the
form of matrix according to the two standards of real category
and predicted category. For k-ary classification, it is actually
a k × k table to record the prediction results of the classifier.
The row of the matrix represents the real value, and the
column of thematrix represents the predicted value. Let’s take
the dichotomy as an example to see the matrix representation,
as shown in the following Table 5:

where t (true) represents right, f (false) represents error,
P (positive) represents 1 (positive sample), and n (negative)
represents 0 (negative sample). In our task, TP represents
the number of positive samples with correct classification,
FP represents the number of positive samples with wrong
classification, TN represents the number of negative samples
with correct classification, and FN represents the number of
negative samples with wrong classification.

1) ACCURACY
The so-called accuracy rate is the proportion of predicted
correct results in the total sample. The calculation formula
is as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

Accuracy, though a commonly used evaluation index, it is
not a very good indicator because the results are not accurate
when the samples are unbalanced. Therefore, balanced accu-
racy is introduced, and the calculation formula is as follows:

BalancedAccuracy = c ∗
TP

TP+ FN
+ (1− c) ∗

TN
TN + FP

(7)

Among them, c belongs to [0,1], and the value of c depends on
the relative importance of sensitivity and specificity, usually
1 / 2.

2) PRECISION
The so-called precision rate is the proportion of real positive
samples to all positive samples in the prediction results. The
calculation formula is as follows:

Precision =
TP

TP+ FP
(8)

The precision rate is the overall prediction evaluation, while
the accuracy rate is only for local evaluation, which includes
only the prediction evaluation of positive samples.

3) RECALL RATE
The so-called recall rate is the proportion of the number of
predicted positive samples to the number of real samples that
are positive. The calculation formula is as follows:

Recall =
TP

TP+ FN
(9)

4) F1 VALUE
The F1 value is based on the precision rate and recall rate,
which have mutual influence and a complementary relation-
ship. The F1 value not only considers the accuracy rate, but
also the recall rate. Both these parameters are considered
equally important, and F1 is expected to reach the highest
value. The calculation formula is as follows:

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(10)

The above F1 values apply mainly for binary classification;
however, when encountering multiple classification prob-
lems, we need to use macro F1 (F1macro) and micro F1
(F1micro), which can be regarded as multiple binary classi-
fication problems when dealing with multiple classification
problems. F1_macro and F1_micro are based on the F1 value,
and there are differences in the methods of calculation of
the two indicators. F1_macro calculates and averages the
F1 value of each category, among which, the F1 value weight
of each category is the same, while F1_micro calculates the
TP,FN , and FP as a whole and then calculates F1. The
calculation formula of the two is

F1macro =
1
C

C∑
i=1

F1(i), (11)

F1macro =
2 ∗

∑C
i=1 TP(i)

2 ∗
∑C

i=1 TP(i)+
∑C

i=1 FP(i)+
∑C

i=1 FN (i)
,

(12)

where C is the number of categories.

5) ROC (RECEIVER OPERATING CHARACTERISTIC)
ROC focuses on two indicators:
• True positive rate (TPR) = TP / [TP + FN], TPR rep-
resents the probability that positive examples can be
paired.

• False positive rate (FPR) = FP / [FP + Tn], FPR rep-
resents the probability of dividing negative cases into
positive cases.

In the ROC space, the abscissa of each point is the FPR,
and the ordinate is the TPR, which describes the tradeoff
between the true positives and the false positives. For binary
classification problems, the value of an instance is often a
continuous value. By setting a threshold value, we can clas-
sify an instance into positive or negative class (for example,
if the observed value is greater than the threshold value,
and when the condition is vice versa, into a negative class).
We can change the threshold value, classify according to
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different thresholds, calculate the corresponding points in
the ROC space according to the classification results, and
connect these points to form the ROC curve. The ROC curve
is an appropriate method to express the performance of a
classifier. However, there is always the need for a number
that marks the quality of the classifier. Therefore, the AUC
is introduced. The value of AUC is the area below the ROC
curve. In general, AUC values range from 0.5 to 1.0, with
larger AUCs representing better performance.

VIII. FACTORS INFLUENCING PROTEIN-DNA
INTERACTION
Recent studies have revealed that TFs recognize a subset of
putative DNA binding sites beyond the core binding site,
which contributes to TF-DNA binding specificity. Several
features contribute to TF-DNA readout at multiple levels,
including the nucleotide sequence, 3D structure of the bind-
ing site, binding of TF-DNAwith cofactors, chromatin acces-
sibility and nucleosome occupancy, indirect co-operativity
with nucleosomes, DNAmethylation and so on. Additionally,
interactions exist among all of these factors, which might
alter the TFBS in a specific cell type. TFs can also recognize
the structural features of their DNA binding sites, such as
sequence-dependent DNA bending and unwinding. To fully
understand the determinants of TFBS specificity in gene
regulation, it is necessary to collectively understand all the
factors that affect TFBS in cells [37].

A. DNA ACCESSIBILITY
DNA accessibility in vivo is commonly measured through
DNase I hypersensitive site sequencing (DNase-seq),
formaldehyde-assisted isolation of regulatory elements
(FAIRE-seq), and assay for transposase-accessible chromatin
using sequencing (ATAC-seq). DNase-seq is based on the
differential DNase I sensitivity of nucleosome-associated and
nucleosome-free DNA. DNase I selectively cleaves DNA
that is not protected by nucleosome association; therefore,
accessible DNA regions manifest as DNase I-hypersensitive
sites. TF binding protects DNA from cleavage by DNase I.
Consequently, footprints of TF-DNA binding can be identi-
fied within hypersensitive regions.

B. NUCLEOSOMES
Nucleosomes are the basic structural units of the chromatin
and are composed of DNA and histone proteins. Each nucle-
osome comprises 146 base pairs of DNA wound 1.75 times
around a histone octamer. Nucleosome-DNA interactions
cause steric impediment to TF binding and increase the rates
of TF-DNA dissociation. Consistent with this concept, most
of the TFBSs identified by ENCODE consortium fall within
the highly accessible DNA regions.

C. HISTONE PROTEINS AND CHROMATIN STATUS
Histones and their variants exchange labeled promoter
regions with the DNA in nucleosomes [103]. This proves that
histones play an important role in the transcription process.

Histones are subjected to extensive post-translational modifi-
cations (PTMs), which regulate chromatin compaction and
affect the recruitment of certain transcriptional regulators.
With more than 100 possible histone PTMs and a tremendous
possibility for combinatorial PTM interactions, the burgeon-
ing field of epigenomics is rapidly defining genome-wide
chromatin states (i.e., distinct combinations of histone mod-
ifications and other chromatin-associated factors at a given
locus) across many cellular contexts [104]. Based on the
integration of data for chromatin state and TF binding, it is
observed that many TFs have specific histone PTM prefer-
ences that are consistent across multiple cell types. However,
it is often unclear whether a specific chromatin state is simply
permissive to TF binding, actively directs TF binding, or is
a result of TF binding. Further mechanistic elucidation of
the relationships between TFs and histone PTMs will likely
influence our model targeting TF-DNA binding interactions.

D. DNA 3D SHAPE
The DNA shape feature represents an alternative method
of implicitly encoding nucleotide dependencies. The DNA
shape integrates the complex interdependence between mul-
tiple positions of the TFBS. This integration is implemented
implicitly without any explicit knowledge of personal depen-
dencies. The combination of DNA shapes reduces the number
of required parameters, while providing a convincing expla-
nation for the mechanism that explains why dinucleotides
and trinucleotides can improve the accuracy of motif descrip-
tions [105]. Recent evidence suggests that key aspects of TF
binding can be explained by the DNA shape at the selected
target site [53].

E. ENHANCER AND SNP
Enhancer is a key determinant of cell identity, and together
with tissue-specific TFs, maintains gene expression patterns
for a given cell type. Enhancer is a high-level complex of
multiple TFs that are tightly linked to each other to regulate
gene expression. Single nucleotide polymorphisms (SNPs)
affect gene regulation by altering the TF-DNA binding.
A recent study has shown that only a few regulatory SNPs
can act through TF. The inheritance of SNPs contributes to the
genetic diversity between humans and, in some cases, devel-
opment of diseases. However, most disease-related SNPs are
located in non-coding regions of the genome [79], including
many enhancers and TFBSs [82]. However, the extent to
which SNPs alter TF binding is still poorly understood.

IX. SUMMARY AND CONCLUSION
In this review, we elaborate on the development of deep
learning techniques and some state-of-the-art applications for
the prediction of TFBSs. First, we introduce related research
techniques and databases. Following this, we describe the
development of deep learning and its applications in TFBS
prediction. Next, we introduce the workflow of deep learning
in the TFBS prediction problem. Finally, we conclude this
article by summarizing the research trends and suggesting
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directions for further improvements. Although deep learning
techniques have improved the performance of TFBS pre-
diction research, there are still significant challenges for its
application in TFBS prediction data analysis.

A. DATA RESOLUTION AND NOISE ISSUES
An increasing number of databases have been collecting
data regarding TFBSs. It is understood that these data will
have problems with quality and even resolution. Different
tasks have different resolution requirements. Resolution of
the most common data is mostly around 10-100 bp at present.
Data based on the resolution of a single base pair re rela-
tively small, and the access method is not easy; therefore,
it also limits the scope of the research. The experimental data
obtained by high-throughput sequencing has the limitation
of high false positives. The performance of the models is
also limited by the generation of negative samples for model
training. DNA is a double-stranded structure, and the current
sequence data do not indicate the strand on to which the
TF binds. The performance of the same model on the data
complementary to the training datamay be inconsistent [106].

B. THE DESIGN CONSIDERATIONS OF THE MODEL
Motif is a relatively conserved short fragment that remains
diffusely distributed within the long DNA sequence. Identi-
fying the position of the motif within the DNA sequence is
challenging. The assumptions of existing models often limit
the prediction of TFBSs. The most suited prediction model
should ideally have good compatibility for both long and
short sequences. Training a long sequence using a model
with poor robustness will seriously affect the efficiency of
the model. Models based on traditional deep learning, such
as CNN and LSTM, have certain limitations on the input.
Therefore, most researchers have come up with improved
combination models that make up for this deficiency. Com-
bining two technologies to develop a hybrid model enhances
the compatibility and robustness of the model. Usually, there
is an interaction between motifs, and the prediction abil-
ity can be improved by identifying or assisting each other.
The same TF may have different TFBSs [106]. In other
words, there is no one-to-one correspondence between TFs
and TFBSs. There may be more than one binding site for
the same TF in different tissues or a few with different
structures, which greatly increases the difficulty of prediction
modeling. To address these challenges, complex models have
been developed, for example, combining preferences for din-
ucleotides and higher-order k-mers, and improving accuracy
based on TF and its series. However, in many cases, this
improvement is small and undetectable.

C. THE PROBLEM OF OBTAINING AND USING
MULTI-SOURCE DATA
Data on TF are highly complex as they contain information
on sequence, structural features, DNA-binding domains, and
cell type. However, the factors that the prediction model
can consider are limited. Since transcriptional regulation is

a highly dynamic and complex process that occurs in a cell-
and tissue-specific manner, unbiased quantitative modeling
of TFBS should be combined with TF to improve the pre-
dictability. This includes considering variables such as nucle-
osome localization, chromatin state, methylation patterns,
and the 3D genome structure. All of these variables greatly
affect TF binding and in a subset of these binding events,
affect gene expression. Therefore, these variables should be
incorporated into any model for better description of the in
vivo functional TF binding and the concomitant gene reg-
ulation. Thus, it can be concluded that prediction based on
the first-order sequence is, to an extent, unreliable. How-
ever, in addition to the DNA sequence, the direct sequence
characteristics of protein-DNA complexes, histone proteins,
chromatin accessibility, and DNA shape information are
currently limited, and far from being complete. Hence,
there is a lack of multi-source data for the prediction of
TFBSs.

Key Points
1. The databases commonly used in TFBS prediction

research at present are summarized.
2. The methods for using computer algorithms to
establish models that help predict the TFBS, and the
process of using them to predict TFBSs are elaborated.
3. The list of data sources pertaining to transcription
regulation that can be used for the development of
a computational model for the prediction of TFBS
is collated. This will serve as a useful reference for
interested researchers to access all available data sources
for comprehensively understanding the research status
on TFBS prediction. This study would also promote
further development in this research field.
4. The limitations and challenges of research at
the present stage and general directions for future
development are discussed.
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