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ABSTRACT Existing models for assessing ship collision risk involve complex calculations that complicate
the simultaneous qualitative and quantitative analysis of the factors affecting ship navigation safety. There-
fore, these models often exhibit slow generation of the risk index and evaluation results with reduced
accuracy. To resolve these issues, we model the ship collision risk based on the cloud model theory.
Specifically, we select ‘‘distance of closest point of approach (DCPA)’’ and ‘‘time to closest point of approach
(TCPA)’’ as the main factors affecting the ship collision risk and analyze the data of DCPA, TCPA, and
collision risk index (CRI) based on their cloudmodels. By combining these analyses with a double-condition-
single-rule generator, we construct a cloud model for ship collision risk and finally develop a cloud model-
based inference engine system to assess ship collision risk. This engine allows us to establish different
ship collision risk analysis models according to the scenario encountered by the ship, which can be used
to verify the feasibility of the proposed algorithm for ship collision risk modeling. Through comparisons
with traditional ship collision risk models, the proposed ship collision risk model is found to be superior
owing to its simple implementation, accurate results, and shorter time required to generate the risk model.
The model established in this study enables the crew to determine the key objects to be avoided in case of
potential collision with multiple ships. At last,analysis and research of cloud model ship collision risk based
on global sensitivity and uncertainty are done to reduce the dimension of the risk parameters and show
the main factors of unstable collision risk,therefore,the uncertain results in the calculation of the degree of
danger are avoided, some reasonable suggestions are proposed for real navigation safety. the maritime pilot
can make correct decisions promptly to reduce or avoid the occurrence of collision accidents.

INDEX TERMS Cloud model theory, distance of closest point of approach, double-condition-single-rule
generator, ship collision risk, time to closest point of approach.

I. INTRODUCTION
Fuzzy analysis, gray theory, comprehensive safety evalua-
tion, and fuzzy comprehensive evaluation have been used
extensively for safety assessment of ship navigation [1]–[3].
However, despite the many advances made in the field of ship
navigation safety assessment, several issues are encountered
during the assessment process [4]. Ship collision avoidance
is a complex problem that requires a comprehensive analysis
frommany different perspectives. There aremany influencing
factors associated with ship collision risk as well as numerous
indicators used in the system assessment of a ship collision
risk model. Although traditional mathematical methods do
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account for the fuzziness of the relevant influencing factors,
they fail to consider the randomness of these influencing
factors and often rely excessively on subjective decisions
made by humans during the evaluation process. Furthermore,
considering the high complexity of the different factors
affecting the safety of ship navigation, neither qualitative nor
quantitative factors should be used alone to assess ship col-
lision risk. When addressing problems with high uncertainty,
the fuzzy comprehensive evaluation method is considered to
be an oversimplification owing to the strong limitations of the
algorithm itself. In contrast, the gray prediction model is very
simple to implement, but it ignores the correlation among
various factors [5] and relies heavily on historical data. Thus,
the gray prediction model may also yield huge errors during
risk assessment. In general, all the aforementioned methods
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have their own advantages and disadvantages for evaluating
and analyzing the safety of ship navigation. However, these
methods cannot combine qualitative and quantitative analyses
of the factors affecting ship navigation safety, which reduces
the accuracy of the evaluation results.

The cloud model theory, a method used for decision-
making, was first proposed by Deyi Li, an academician at
the Chinese Academy of Science, in 1995 [6]. The cloud
model theory offers many novel strategies for solving more
complex problems in the field of decision-making. It offers
an elegant approach to combine the advantages of fuzzy
mathematics and probability statistics while eliminating the
traditional concepts of membership functions. In addition, the
cloud model theory can adequately resolve the randomness
of factors, which cannot be achieved in fuzzy comprehensive
evaluation. In summary, the cloud model theory considers
both the fuzziness and the randomness of targeting entities,
which enables the combination and transformation of quali-
tative and quantitative descriptions [7]. Good quality must be
ensured during the conversion process between the qualitative
information and quantitative data to achieve a high degree of
consistency between the subjective and objective assessments
of the evaluation results.

The cloud model theory has been gradually applied to
many aspects of society since its inception. First, under the
influence of many intricate factors, the cloud model can
enable conversion between the qualitative concepts and the
quantitative data while simultaneously checking for loop-
holes in the traditional methods. Second, the cloud model
resolves the data collection issue during the evaluation pro-
cess. Specifically, by processing the data of a small sample in
the cloud model based on stochastic simulation calculation,
more accurate data support for the final evaluation results
can be obtained. Finally, the evaluation method based on
cloud model theory can transmit and retain the uncertainty
present in the evaluation process. Additionally, because the
number of calculations performed on cloud drops is directly
proportional to the accuracy of the evaluation results obtained
from the cloud model, the cloud model is superior to other
methods for use in evaluation. Considering these merits,
we propose a method to assess ship collision risk based on
cloud model theory.

II. MULTI-CONDITION-SINGLE-RULE CLOUD GENERATOR
AND ITS ALGORITHM
The cloud generator is the most important component for
the cloud model-based inference as well as the model to
realize conversion between quantitative values and qualita-
tive concepts. There are three types of cloud generators;
namely, forward, backward, and condition cloud generators.
Condition cloud generators can be further divided into two
categories: X-condition and Y-condition cloud generators.
The multi-condition-single-rule generator is composed of
multiple forward cloud generators and one backward cloud
generator. Such a structure can be represented by ‘‘If A1,
A2, . . ., An, then B.’’ According to the design requirements,

FIGURE 1. Double-condition-single-rule generator.

two influencing factors are required for the inference in
the model. Therefore, a double-condition-single-rule gen-
erator is described here. Fig. 1 shows the structure of the
double-condition-single-rule generator comprising two for-
ward cloud generators and one backward cloud generator.
This can be represented by ‘‘If A1 and A2, then B.’’ In
the figure, (ExA1,EnA1,HeA1,ExA2,EnA2,HeA2) represent
the membership cloud eigenvalues of the two-dimensional
qualitative concepts A1 and A2, (ExB,EnB,HeB) are the
membership cloud eigenvalues of the backward qualitative
concept B, CGA is the X-condition cloud generator, and CGB
is the Y-condition cloud generator. When the qualitative rule
forward cloud generator CGA is stimulated by the inputs xA1
and xA2, a random output (xA1, xA2, µ) will be generated and
used as the input for CGB. Subsequently, a random cloud drop
denoted as drop (xB, µ) will be generated by CGB.
In summary, the signal conversion process takes three

input conditions and generates one output condition. The
input conditions include the membership cloud eigenvalues
(ExA1,ExA2,EnA1,EnA2,HeA1,HeA2) and the quantitative
value (xA1, xA2) of the forward two-dimensional qualitative
concepts A1 and A2 as well as the membership cloud eigen-
values (ExB,EnB,HeB) of the backward qualitative con-
cept B. The output condition is the quantitative value xB of
the backward qualitative concept that satisfies the degree of
certainty µ[8].

1. Based on the input eigenvalue for the cloud drop,
a random number En′i is generated from the normal
distribution with an expectation of En and a standard
deviation of He:

En′A1 = N (EnA1,HeA1) (1)

2. Based on the input eigenvalue of the cloud drop, a ran-
dom number En′A2 is generated from the normal dis-
tribution with an expectation of EnA2 and a standard
deviation of HeA2:

En′A2 = N (EnA2,HeA2) (2)

3. The degree of certainty µ is calculated as follows:

µ = µ_a∧(−
(xA2 − ExA2)2

2
(
En′A2

)2 )

µ_a = e
−
(xA1−ExA1)

2

2(En′A1)
2

(3)
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4. Based on the input eigenvalue of the cloud drop, a ran-
dom number En′B is generated from the normal dis-
tribution with an expectation of EnB and a standard
deviation of HeB:

En′B = N (EnB,HeB) (4)

5. If xA1 and xA2 each activate the rising edge of its cor-
responding cloud model, then the output value xB will
also activate the rising edge of the cloud model B. This
is expressed by the following equation:

If xA1 ≤ ExA1, xA2 ≤ ExA2,

then xB = ExB − En′B
√
−2 lnµ; (5)

6. If xA1 and xA2 each activate the falling edge of its
corresponding cloud model, then the output value xB
will also activate the falling edge of the cloud model B.
This is expressed by the following equation:

If xA1 > ExA1, xA2 > ExA2,

then xB = ExB + En′B
√
−2 lnµ; (6)

7. If xA1 activates the rising edge of cloud model A1 and
generates a degree of certainty of µ1, While xA2 acti-
vates the falling edge of cloud model A2 and generates
a degree of certainty ofµ2, then the output value xB will
be related to both µ1 and µ2, shown by the following
equation:

If xA1 ≤ ExA1, xA2 > ExA2,

then µ1 = e
−
(xA1−ExA1)

2

2(En′A1)
2
,

xB1 = ExB − En′B
√
−2 lnµ1

µ2 = e
−
(xA2−ExA2)

2

2(En′A2)
2
,

xB2 = ExB + En′B
√
−2 lnµ2,

xB = (xB1µ1 + xB2µ2) / (µ1 + µ2) (7)

8. If xA1 activates the rising edge of cloud model A1 and
generates a degree of certainty of µ1, While xA2 acti-
vates the falling edge of cloud model A2 and generates
a degree of certainty ofµ2, then the output value xB will
be related to both µ1 and µ2, shown by the following
equation:

If xA1 > ExA1, xA2 ≤ ExA2,

then µ1 = e
−
(xA1−ExA1)

2

2(En′A1)
2
,

xB1 = ExB + En′B
√
−2 lnµ1,

µ2 = e
−
(xA2−ExA2)

2

2(En′A2)
2
,

xB2 = ExB − En′B
√
−2 lnµ2,

xB = (xB1µ1 + xB2µ2) / (µ1 + µ2). (8)

FIGURE 2. Model of DCPA and TCPA before collision avoidance.

III. CONSTRUCTION OF SHIP COLLISION RISK CLOUD
MODEL
When a ship encounters multiple vessels in a complex marine
environment, the maritime pilot must make a series of deci-
sions instantaneously to determine whether the ship needs
to avoid collisions, which ship should be the key collision
avoidance target, and what is the correct operating sequence.
However, owing to the uncertain and random nature of both
the ship’s navigation environment and human behavior, ship
collision risk can vary with high uncertainty. Therefore,
a two-dimensional mufti-rule cloud model is constructed
based on distance of closest point of approach (DCPA) and
time to the closest point of approach (TCPA) in this paper
for determining the ship collision risk [9]. DCPA and TCPA
can reflect the relative distance (d), azimuth (c), and speed
ratio (k) of the two ships, which are commonly used in the
calculation of ship collision risk [19].

DCPA is the distance of the closest point of approach
between two vessels. In the relative motion radar, the size of
the DCPA is the vertical dimension from the center of the
circle to the relative movement line of the target ship, whose
unit is the sea mile (n mile), in which the CAP is the closest
point of the approach that represents the foot of a perpendicu-
lar [10]. The DCPA and TCPAmodels in Fig. 1 are built based
on the known information, such as the location information,
the navigation speed, and the heading. The implementation
process of the DCPA and TCPA is shown in Fig. 2.

The process is as follows. Set own vessel at initial posi-
tion (x0, y0), speed V0, heading 1ϕ, and collision avoidance
angle1ϕ. Set the target ship at (xt , yt), speed Vt , and head-
ing ϕt . Subsequently, the following equations can be derived:
1) The heading cross angle of the target vessel and own

ship is given by (9):

Ct = ϕt − ϕ0 (9)

2) The components of the own vessel’s speed in the x-axis
and the y-axis directions are given by (10):{

v′x0 = v0 · sin(ϕ0 + ϕ)
v′y0 = v0 · cos(ϕ0 + ϕ)

(10)

3) The components of the target vessel speed in the x-axis
and the y-axis directions are given by (11):{

vxt = vt · sin(ϕt )
vyt = vt · cos(ϕt )

(11)
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4) The speeds at which the target vessel is moving in the
x-axis and the y-axis directions of the own vessel is
given by (12): {

v′xr = vxt − v′x0
v′yr = vyt − v′y0

(12)

5) The size of the relative movement speed of the target
vessel is given by (13):

v′r =
√
v′2xr + v

′2
yr (13)

6) The direction of the relative movement speed of the
target vessel is given by (14):

ϕ′r = arctan
v′xr
v′yr
+ α

α =


0◦ vxr ≥ 0, vyr ≥ 0
180◦ vxr < 0, vyr < 0
180◦ vxr ≥ 0, vyr < 0
360◦ vxr < 0, vyr ≥ 0

(14)

7) The distance between the own vessel and the target
vessel is given by (15):

D =
√
(xt − x0)2 + (yt − y0)2 (15)

8) The azimuth angle for the target vessel relative to the
own vessel is given by (16):

αt = arctan
xt − x0
yt − y0

+ β

β =


0◦ xt − x0 ≥ 0, yt − y0 ≥ 0
180◦ xt − x0 < 0, yt − y0 < 0
180◦ xt − x0 ≥ 0, yt − y0 < 0
360◦ xt − x0 < 0, yt − y0 ≥ 0

(16)

9) The distance of the closest point of approach (DCPA)
is as follows:

DCPA′ = D · sin
(
ϕ′r − αt − π

)
(17)

10) The time of closest point of approach (TCPA) is as
follows:

TCPA′ = D · cos
(
ϕ′r − αt − π

)
/v′r (18)

DCPA and TCPA are the main factors affecting the colli-
sion risk of cloud model ships, and TCPA is also determined
by DCPA. Therefore, it can be stated that DCPA is the main
sensitive factor and determines the magnitude of the collision
risk.

The qualitative linguistic variables used to describe the ship
collision risk can be transformed into quantitative knowledge
expressed by the cloud object via the inference mechanism
embedded in the cloud model. This quantitative knowledge
can be further mapped to specific expressions by the pre-
constructed mufti-rule cloud generator. In other words, after
processing the input variable by multiple forward cloud gen-
erators, a ship collision risk value will be output finally by the

backward cloud generator. These mufti-rule cloud generators
together form the inference engine system of the mufti-rule
cloud model. By using the cloud model as the analysis tool,
this inference engine can convert the qualitative concepts
into quantitative values. In this study, two input variables are
required for the cloud model of ship collision risk. However,
different combinations of the two input variables would yield
different ship collision risks. Therefore, we adapted the the-
ories associated with the double-condition-multi-rule cloud
generators and established the inference mechanism of the
ship collision risk cloud model, as shown in Fig. 3.

FIGURE 3. Cloud model theory-based inference for the ship collision risk
cloud model.

In the model, the DCPA is expressed by M , the TCPA is
expressed byN , the collision risk index (CRI) is expressed by
Q, CG-A represents the two-dimensional X-condition cloud
generator associated with DCPA and TCPAwith membership
cloud eigenvalues of (ExM ,EnM ,HeM ,ExN ,EnN ,HeN ), and
CG-B represents the one-dimensional Y-condition cloud gen-
erator associated with CRI with membership cloud eigenval-
ues of

(
ExQ,EnQ,HeQ

)
.

The input variables of the ship collision risk cloud model
are DCPA M and TCPA N , whereas the output variable is
the ship collision risk Q. After studying the ‘‘rules,’’ the
thinking modes of the ship pilot, i.e., the concepts associated
with natural language, will be classified by the cloud model
based on the navigation density, closeness to the shore, and
openness of the sea. These criteria are the three numeric input
and output variables of the cloud model. Afterwards, we also
classify the input and output variables of the CRI cloud
model by using different concepts. Specifically, we construct
m inference rules in the CRI cloud model and generate the
uncertainty inference rule library. The collision risk inference
mechanism of the CRI cloud model is given by

8(M ,N )→ Q (19)

where 8 represents the inference mechanism of the cloud
model, M and N are the input variables, and Q is the output
variable.
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When a specific set of DCPA and TCPA (i.e., (M ,N ))
are input to the cloud model, the corresponding forward
generators with different rules will be stimulated to yield a
set of certainty values µi randomly. These values will reflect
the extent to which the relevant qualitative rules are activated.
µi will stimulate CG-B to generate a set of cloud drops
drop (Qi, µi) randomly. These cloud drops indicate that the
magnitude of the ship collision risk is Qi when the degree
of certainty is µi. Finally, these cloud drops will be merged
together into a single cloud drop via geometric calculation
as the output Q associated with this pair of (M ,N ). This
model reflects the relationship between the ship collision
risk and DCPA as well as TCPA. It can accurately describe
the uncertainty of the ship collision risk during the ship’s
navigation process. Therefore, under different potential col-
lision conditions, the variation in the ship collision risk can
be reflected by simply changing the heading parameters of
our ship and the target ships input to the cloud model. This
entire mechanism demonstrates the process of transferring
the uncertainty from input variables to output variables and
therefore enables the modeling of ship collision risk based on
the uncertainty and fuzziness of cloud model theory.

IV. INFERENCE MODEL REALIZATION IN THE SHIP
COLLISION RISK CLOUD MODEL
A. CONCEPT CLASSIFICATION FOR PARAMETERS USED IN
SHIP COLLISION RISK CLOUD MODEL
After examining the collision avoidance behavior and the
international collision avoidance rules at sea, we classify
DCPA, TCPA, and CRI into {small, relatively small, medium,
relatively large, large} via natural language concepts accord-
ing to the navigation density of the sea, as discussed in the
literature [11], [12]. The subsets of the concepts associated
with these three parameters are shown in Table 1.

TABLE 1. Subsets of concepts associated with parameters used in the
ship collision risk cloud model.

Assuming that the levels used to describe DCPA, TCPA,
and CRI are N , M, and Q, respectively, the subsets of
the aforementioned concepts and the numerical charac-
teristics of the associated cloud models are as shown in
Tables 2, 3, and 4. The cloud diagrams of the concepts asso-
ciated with each parameter are shown in Figs. 4, 5, and 6.

Taking the concept of DCPA = M3 (i.e., a medium DCPA)
as an example, we first select all the data (i.e., the cloud
drops) showing DCPA = M3 in the cloud model database
of DCPA to form the database of the thinking mode (i.e.,
natural language) of the ship pilot. Next, we determine the

TABLE 2. Rating table for DCPA.

TABLE 3. Rating table for TCPA.

TABLE 4. Rating table for CRI.

number of data N (i = 1, 2, · · ·,N ) in the database with
a medium DCPA and use the inverse cloud algorithm to
calculate the cloud eigenvalues (ExM3,EnM3,HeM3) of con-
cept M3 (medium DCPA) as (1.5, 0.25, 0.01). The concept
of the membership cloud representing a medium DCPA is
shown in Fig. 7. ADCPA of 1.5 nmile between the target ship
and our ship is equivalent to the ‘‘medium’’ expectation by the
ship pilot. The cloud models associated with other concept
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FIGURE 4. Cloud diagram of concept associated with DCPA.

FIGURE 5. Cloud diagram of concept associated with TCPA.

FIGURE 6. Cloud diagram of concept associated with CRI.

FIGURE 7. Concept diagram of membership cloud with a medium DCPA.

sets can all be calculated using a similar method to the one
discussed here.

B. ESTABLISHMENT OF RULE LIBRARY FOR SHIP
COLLISION RISK CLOUD MODEL
The results are classified according to the concepts of the
ship collision risk. The two input variables are DCPA and
TCPA. The concepts associated with these two parameters

are divided into five layers. Combining different layers of
these two input variables yields 25 different qualitative rules
associated with DCPA, TCPA, and CRI. These qualitative
inference rules are presented in detail in Table 5. The shortest
encounter time is medium or large, which will not affect
the magnitude of the ship collision risk, in which case the
collision risk is relatively small. In the calculation process of
ship collision risk, TCPA can only affect the size of the ship
collision risk if DCPA is less than a certain threshold.

TABLE 5. Classification of the rules for the ship collision risk cloud model.

We use one example to clarify the CRI inference rule. The
rule represented by ‘‘if M2, N2, then Q3’’ implies the follow-
ing: if DCPA is ‘‘relatively small’’ and TCPA is ‘‘relatively
small,’’ then CRI is ‘‘medium.’’

C. IMPLEMENTATION OF SHIP COLLISION RISK
ASSESSMENT BASED ON THE CLOUD MODEL
The cloud model-based inference mechanism is established
based on the concepts of DCPA, TCPA, and CRI. The qualita-
tive concepts are obtained from the constructed ship collision
risk database. The rule generators are constructed based on
the X-condition and Y-condition cloud generators. These
steps enable us to establish an inference rule library from
the 25 qualitative rules discussed earlier. When a certain set
of values is input to the model, the transitivity of the cloud
model-based inferencemechanism allows the uncertainty and
fuzziness of the input variables to be transferred to the output
variables. The cloud model-based inference diagram of ship
collision risk is shown in Fig. 8.

Owing to the uncertainty involved in the inference pro-
cess, the same set of data inputs may yield different outputs.
As shown in Fig. 7, when given a set of precise input values
(M ,N ) for DCPA and TCPA, these input values can be used
to activate the qualitative concepts of the corresponding for-
ward cloud rule. An activation level of µi corresponds to the
clouds exhibiting the largest and the second largest degrees of
certainty. Because we have two input variables, four clouds
are generated during this process. Next, we calculate the
joint degree of certainty based on these four clouds and
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FIGURE 8. Cloud model-based inference diagram of ship collision risk.

select the largest and second largest joint degrees of certainty
(µ1, µ2). These values activate two qualitative rules and drive
the backward cloud generators to produce four cloud drops.
Next, we select the two outermost cloud drops, (Q1, µ1)
and (Q2, µ2) , and calculate the ship collision risk Q via the
geometric method. The expression for calculating the output
Q is given by (20):

Q =
Q1
√
−2 ln (µ2)+ Q2

√
−2 ln (µ1)

√
−2 ln (µ1)+

√
−2 ln (µ2)

(20)

The calculation process described above only yields a
single calculation result. Because the cloud model-based
inference process involves the generation of multiple random
numbers, using the same input will yield a slightly different
result for every new round of inference. This also represents
the uncertainty of the cloud model. To resolve this, we can
perform a finite number of iterative inferences in a practical
calculation and use the average of the calculated results as the
final CRI output for ship collision risk.

V. SIMULATION ANALYSIS OF SHIP COLLISION RISK BY
THE CLOUD MODEL
A. PROGRAM PERFORMANCE ANALYSIS
The actual scenario encountered by a ship is classified by
the azimuth angle. Scenarios where multiple ships encounter
each other in the sea can be classified into the following three
circumstances by the ‘‘rule’’: head on situation, cross situa-
tion, and overtake situation. In a head on situation, the target
ship is sailing toward our ship with an azimuth angle of 180◦.
In a cross situation, the target ship is sailing toward our
ship with an azimuth angle of 5◦ to 112.5◦. In other words,
the target ship is traveling on the left front side or the right

front side of our ship. In an overtake situation, the target ship
is sailing toward our ship with an azimuth angle in the range
112.5◦ to 247.5◦, i.e., the target ship is following our ship
from the rear with an angle exceeding 22.5◦ [13], [14].
To validate the applicability of the program, different ship

encounter scenarios are discussed in the following sections.
Specifically, we simulate cases where the target ship encoun-
ters our ship at sea with the same navigation parameters but
different azimuth angles B. The change in the ship collision
risk is determined according to the output of the program. The
navigation parameters of our ship and multiple target ships
are given as follows. First, we assume that the velocities of our
ship, ship No.1, ship No.2, ship No.3, and ship No.4 are 14, 7,
14, 21, and 28 kn, respectively. When analyzing the collision
risks under different situations, the relationship between ship
collision risk and distance is given by the following:

(1) In a head on situation, the relationship between ship
collision risk and distance is as shown in Table 6.

TABLE 6. Numerical values of ship collision risk in a head on situation.

Using the data shown in Table 6, we can plot the change
in the ship collision risk as a function of the distance between
the two ships with the relative distance D as the x-axis and
the CRI as the y-axis, as shown in Fig. 9.

FIGURE 9. Change in the ship collision risk as a function of the distance
between the two ships.

(2) When the azimuth angle is 30◦, the change in the ship
collision risk with increasing distance is as shown in Table 7.
Using the data shown in Table 7, we can plot the change in the
ship collision risk as a function of the distance between the

221168 VOLUME 8, 2020



H. Liu et al.: Modeling of Ship Collision Risk Based on Cloud Model

TABLE 7. Numerical values of ship collision risk with an azimuth angle
of 30◦.

two ships with the relative distance D as the x-axis and the
CRI as the y-axis, as shown in Fig. 10.

FIGURE 10. Change in ship collision risk as a function of the distance
between the two ships with an azimuth angle of 30◦.

(3) When the azimuth angle is 60◦, the change in the ship
collision risk with increasing distance is as shown in Table 8.
Using the data shown in Table 8, we can plot the change
in the ship collision risk as a function of the distance between
the two ships with the relative distance D as the x-axis and
the CRI as the y-axis, as shown in Fig. 11.

FIGURE 11. Change in ship collision risk as a function of the distance
between the two ships with an azimuth angle of 60◦.

(4) When the azimuth angle is 330◦, the change in the ship
collision risk with increasing distance as is shown in Table 9.

Using the data shown in Table 9, we can plot the change in
the ship collision risk as a function of the distance between

TABLE 8. Numerical values of ship collision risk with an azimuth angle
of 60◦.

TABLE 9. Numerical values of ship collision risk with an azimuth angle
of 330◦.

the two ships with the relative distance D as the x-axis and
the CRI as the y-axis, as shown in Table 10.

TABLE 10. Numerical values of ship collision risk calculated by cloud
model mathematical method.

Based on the above four data sets, we plotted the variation
in the ship collision risk for varying inter-ship distances; the
x-axis denotes the relative distance D, and the y-axis denotes
the CRI under different encounter situations. From the ship
collision risk model established based on the cloud model
theory in this paper, we can infer that (1) the CRI model
developed in this study can reflect the real situation where
multiple ships encounter each other at sea. Themodel can also
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demonstrate the risk level of our ship with respect to different
target ships; (2) when two ships are sailing with a constant
relative distance D and azimuth angle B, the ship collision
risk increases with the velocity of the target ship. This trend
is in accordance with the actual navigation characteristic at
sea. Therefore, the results confirm that the ship collision
risk model developed in this study is applicable. In addition,
the proposed model also provides a priority sequence of the
target ships as well as the key target ship to be avoided during
the navigation. This information will allow the pilot to make
accurate collision avoidance decisions promptly.

B. SIMULATION RESULTS AND COMPARATIVE ANALYSIS
Case I: Assume that our ship is traveling with a velocity

of ct = 240◦ V = 10 kn and a course of C0 = 0◦. Further,
assume that the total number of target ships is five. A multi-
ship encounter scenario is subsequently established in this
case study that includes the velocity V , azimuth angle B,
course angle C , and the relative distance with our ship D for
all the target ships. The detailed modeling process and results
are shown in Fig. 12.

FIGURE 12. Change in ship collision risk as a function of the distance
between the two ships with an azimuth angle of 330◦.

The traditional mathematical algorithm introduced in the
previous section was also used to calculate the value of the
ship collision risk. The results are summarized in Table 11.
The values calculated by the traditional methods are used here
as reference for the comparative analysis [15].

TABLE 11. Numerical values of ship collision risk calculated by the
traditional mathematical method.

Table 11 also indicates that the results obtained using
the cloud model theory are extremely close to the values

calculated using the traditional mathematical methods. In par-
ticular, both approaches yield a similar level of collision risk
for ships No. 1, No. 3, and No. 5 with respect to our ship and
CRI2 < CRI4. Because the collision risks of the simulated
ships in this group are all smaller than the ship collision risk
threshold of 0.6, but remain at the medium level, the pilot
should remain cautious and be alert for potential dangers.

For the target ship with DCPA of 2.05 and TCPA of 17.17,
the collision risk is 0.5613. For the target ship with DCPA
of 3.21 and TCPA of 7.38 the collision risk is 0.5166, which
is lower. As the DCPA plays an important role in the collision
risk index, the distance between the two vessels puts them in a
dangerous situation. Collision will occur with the own vessel
when the DCPA is less than the safe distance, and the TCPA
is used to express the urgency degree of the two vessels;
therefore, the TCPA determines whether or not a collision risk
exists when the DCPA is unchanged.

Two sets of multi-ship encountering scenarios were estab-
lished in this study. We modeled and calculated the ship
collision risk for each scenario using the cloud model theory
and compared the results with the values obtained using the
traditional mathematical models.
Case II: Assume that our ship is traveling with a velocity

of ct = 240◦ = 14 kn and a course of C0 = 60◦.
Assume that the total number of target ships is five. A multi-
ship encountering scenario is subsequently established in this
case study that includes velocity V , azimuth angle B, course
angleC , and relative distance with our shipD for all the target
ships. The detailed modeling process and results are shown in
Table 12.

TABLE 12. Numerical values of ship collision risk calculated by cloud
model mathematical method.

The traditional mathematical algorithm introduced in the
previous section was also used to calculate the ship collision
risk. The results are summarized in Table 13. The values
calculated by the fuzzy methods are used as reference for the
comparative analysis.

Table 12 also indicates that the results obtained using
the cloud model theory are extremely close to the values
calculated using the traditional mathematical methods. The
order of ship collision risk of the five target ships calcu-
lated using the traditional mathematical method is CRI1 <
CRI2 < CRI3 < CRI4 < CRI5. However, the ship collision
risks of the five target ships calculated based on the cloud
model theory are 0.5025, 0.5448, 0.5473, 0.7447, and 0.7343;
further, the order of ship collision risk follows CRI1 <

CRI2 < CRI3 < CRI5 < CRI4. Table 10 indicates that the
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TABLE 13. Numerical values of ship collision risk calculated by the fuzzy
mathematical method.

calculation differences in the collision risk for each ship with
respect to our ship are 0.0576, 0.0059, 0.1082, and 0.0005;
these values are not large. The calculation differences based
on the cloud model in the collision risk for each ship with
respect to our ship are 0.0422, 0.0025, 0.1974, and -0.0103.
Because the collision risks of ships No. 4 and No. 5 with
respect to our ship are similar and both greater than the ship
collision risk threshold of 0.6, these two ships are the key
targets to avoid in a potential collision.

The comparison of the above two groups demonstrate that
the results calculated based on the cloud model theory are
extremely close to those calculated using the fuzzy mathe-
matical method. Because the calculation process of the cloud
model theory involves the generation of multiple random
numbers, the fuzziness and uncertain nature of the input
data are preserved during the calculation process and well
transmitted to the output data. Repeating the calculation with
a finite number of cycles and estimating the average value can
improve the accuracy of the data. Therefore, the cloud model
theory-based method can replace the fuzzy mathematical
algorithm as it exhibits better accuracy.

In other words, the algorithm relies too heavily on the
subjective decision of human beings that prevents using the
results calculated using the traditional mathematical algo-
rithm in a real scenario.

Because the cloud model theory exhibits a certain level of
randomness and fuzziness, it conforms to the human mindset
and is easy to comprehend. After the qualitative and quantita-
tive processing of the data based on the cloud model, a set of
precise values can be input to the model to activate the largest
and second largest degrees of certainty. The virtual cloud
is then generated using the geometric relationship. Finally,
the calculation process can be repeated for a finite number of
cycles and the average output value can be used as the final
CRI result. Because the value is calculated on the basis of
the uncertainty transmission, the proposed method can more
accurately reflect the collision risk when encountering other
ships. Therefore, the results calculated based on the cloud
model theory is more consistent with the actual scenario.

Because the ship collision risk model established based
on the cloud model theory can calculate the exact value of

ship collision risk, it is suitable for determining both the
ship collision risk when the two ships meet and the priority
sequence of the target ships to be avoided when multiple
ships encounter each other. Because considering too many
factors will yield logic issues, the uncertainty and fuzziness
are incorporated in the model solely considering the two
influencing factors including DCPA and TCPA. This strategy
leads to a clear logic, light computation task, high calculation
speed, and high accuracy of the proposed method.

VI. ANALYSIS AND RESEARCH OF SHIP COLLISION RISK
BASED ON GLOBAL SENSITIVITY AND UNCERTAINTY
The establishment of ship collision risk is a crucial prereq-
uisite for intelligent ship collision avoidance. To improve
the effectiveness and superiority of the model, sensitivity
analysis and uncertainty analysis are applied to the key links
of ship collision prediction and avoidance. This can improve
the accuracy and reliability of the calculation model of ship
collision risk based on model of cloud, providing reason-
able theoretical guidance for ship navigation safety in the
future [16].

A. GLOBAL SENSITIVITY ANALYSIS OF SHIP COLLISION
RISK BASED ON MORRIS SCREENING METHOD
Morris screening method is a widely used global sensitivity
analysis method and belongs to the one-time one-variable
method [17]. Specifically, a variable in the model is selected
while the other parameters are fixed; Then, the variable ran-
domly changes within its value range; Next, the value of
the objective function is obtained by entering the variable
and run the model; afterward, the influence value is used to
judge the degree of influence of the parameter change on
the output value. The process of global sensitivity analysis
of the overall ship collision risk is described as follows. First,
the various factors affecting the risk of ship collision and
the parameter value range corresponding to each factor are
determined; second, select any factor and divide the range
of disturbance within its value range, such as 2 changes:
+5% and−5%, respectively; on this basis, the corresponding
value of the parameter is input into the model to obtain the
corresponding model output value (the value of the collision
risk (CRI) of the ship at this time); next, the parameter value
after the disturbance change is input into the model calcula-
tion again to obtain the model output value result under the
disturbance; afterward, the calculation of the sensitivity to the
hazard of ship collision when the parameter changes is com-
pleted using the given calculation formula; then, the single
parameter sensitivity calculation has been completed. Next,
whether all the analysis processes of the required parameters
are completed under the expected conditions is considered.
If it is not completed, return to the foregoing process and
re-use the same method to calculate the sensitivity of differ-
ent parameters until all required parameters are calculated.
Finally, theoretical analysis of the results is performed, such
as the numerical division of the degree of influence of the
judgment and the sensitivity ranking of different parameters.
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TABLE 14. The numerical influence of five major variables on the degree
of collision risk

B. SIMULATION ANALYSIS OF GLOBAL SENSITIVITY TO
CLOUD MODEL SHIP COLLISION RISK
Global sensitivity analysis of ship collision risk is performed
based on the Morris screening method for quantifiable and
input able parameters. Five factors, DCPA, TCPA, the relative
distance between the two ships D, the relative azimuth B,
and the ship speed ratio K (the speed ratio of the target ship
to our ship), are selected as the research objects. Combined
with the established cloud model for calculating the collision
risk of ships, the basic Morris screening method is used as a
research method to identify the degree of influence of various
parameters on the collision risk of ships.

The position of our ship is taken as the origin of the
coordinate system, which is the reference position. The speed
V of our ship is initially set to 10kn, and the heading angle
C0 of our ship is set to 0◦; then, set the number of target
ships and the motion parameters of the target ship: target ship
speedV, azimuth angle B, heading angle C, and the distanceD
between own ship and target ship. Afterward, these parame-
ters are input into the calculation model to acquire the output
value. After changing the input parameters, the value of the
ship collision risk after the change is obtained. The output
results of case 1 are presented in Table .

The corresponding curves of the data in the above table
are exhibited in figures13. Among them, the abscissa is the
degree of change of the variable; the change of different
parameters reflects the different degree of change in the
numerical calculation results of the ship collision risk. The
abscissa is the degree of change of the variable; for example,
1 denotes +20%, 3 represents the reference value 0%, and
4 refers to -10%.

It is worth noting that the slope of the curve in the figure
does not directly correspond to the rate of change of ship
collision risk while it is obtained after dividing by the prod-
uct of the reference parameter value and the percentage of
change. The benchmark values of the five parameters are
1.000, 3.496, 10, 20, and 1, respectively, and each change
of the parameter is 10%. Finally, through the calculation of
the average rate of change of its various parameters, the val-
ues corresponding to the five parameters are 0.301, 0.145,
0.072, 0.040, 0.034. Therefore, the different sensitivity results

FIGURE 13. Trend chart of collision risk.

corresponding to the five parameters can be judged according
to the content of the Morris screening method as DCPA >

TCPA>D> B>K. Global sensitivity analysis is conducted
using the most basic Morris screening. For the change of
model output value caused by the change of a variable within
its value range, the rate of change ei reflects the degree of
sensitivity.

With the help of cloud model related algorithms, a com-
plete cloud model reasoning system is established. On this
basis, the global sensitivity analysis by Morris screening
method is used to obtain the sensitivity ranking corresponding
to various influencing factors. This analysis result can be used
to improve the cloud model establishment process to improve
the emphasis of the cloud model on parameter variables.

C. UNCERTAINTY ANALYSIS OF SHIP COLLISION RISK
BASED ON INFORMATION ENTROPY THEORY
Under the constraints of different ship environments and
encounter situations, the uncertainty of specific conditions
is expressed by transforming qualitative concepts into quan-
titative values based on the theoretical basis of information
entropy. It provides a ready-made scientific foundation for
the selection of collision avoidance decisions in the future
navigation field. The choice of ship avoidance method is
affected by the environment and the actor, and the con-
cept of ‘‘entropy’’ can be used for quantitative analysis and
research [18].

When analyzing ship avoidance actions, it is assumed that
all possible states in the decision of ship avoidance actions
are X ={X1,X2,X3, . . . ,Xn}, and the corresponding prob-
ability of each state is p = {p1, p2, p3....pn}. Then, the cor-
responding relationship S of the information structure of the
target ship can be obtained as:[

x1 x2 x3 ... xn
p1 p2 p3 ... pn

]
(21)

In the process of ship avoidance action, the uncertainty
can be expressed by the value of the average amount of
information ‘‘entropy (E).’’

E = −
∑n

i=i
pi ln pi (22)
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TABLE 15. Probabilities of various avoidance methods and
corresponding entropy values(2 left)

The greater the calculated entropy value, the greater the
uncertainty represented, and the greater the randomness of
the choice of avoidance action. Studying the uncertainty of
collision avoidance behavior is helpful for direct ships to
understand the uncertainties of multiple collision avoidance
behaviors when two ships are at different distances, different
DCPA and TCPA. Therefore, collision avoidance actions can
be taken calmly to avoid various collision accidents. The
encounter situation in the confrontation situation is selected,
and different action distance settings are set based on it,
helping us understand the entropy value of the encounter
in various situations and obtain scientific and reasonable
analysis results. The entropy values corresponding to the
various types of situation and distance encountered are listed
as follows, as well as the different types of ship avoidance
methods. Encounter situation: straight ahead, cross at a small
angle ahead, cross straight, near the cross, chasing, and being
chased; Action distance taken: 4-3, 3-2, 2-1, 1-0(n mile);

The modes of ship avoidance actions are: turn left, turn
right, slow down, turn left to slow down, turn right to slow
down, and keep speed and direction. In the above statistical
results, the avoidance method when the distance of action
taken is about 2 nmile is selected separately, and the selection
probability is provided as following.

Statistics obtained by the above form, corresponding to the
same kind of encounter situation, different ways of collision
avoidancemakes the final calculation of the selection of prob-
ability entropy results vary, reflecting the different between
the driver for the uncertainty of collision avoidance mode
selection, high uncertainty, as a result of human factors we
should take various measures to try to reduce or even avoid,
so as to ensure the safety of ship sailing has higher degrees.

The selection probability of various collision avoidance
modes is different at different operating distances. The rele-
vant data of the incoming ship on the left side and the incom-
ing ship on the right side are shown in the tables below. The
entropy data is not completely symmetrical and has certain

TABLE 16. Probabilities of various avoidance methods and
corresponding entropy values(2 right)

TABLE 17. Entropy analysis under different encounter situations and
different distances(left)

TABLE 18. Entropy analysis under different encounter situations and
different distances(right)

deviation.We can compare the data of incoming ships on both
sides.

The change rule of entropy value can be clearly observed,
and the avoidance characteristics of different situations can be
summarized accordingly, as well as the reasons for the differ-
ence of uncertainty. The curves are shown in Figure 14 below.
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FIGURE 14. Graph of entropy change with distance of action (right).

The abscissa is divided into five values: 1, 2, 3, 4, and 5;
they represent the distance between ships as 4-3 n mile, 3-2 n
mile, 2-1 n mile, 1-0 n mile, and the mean entropy of different
action distances in the same encounter situation, respectively;
the ordinate represents the results of different entropy values.
In the figures, different signs are used to distinguish different
encounter situations.

It can be observed through the above analysis that in most
cases, the decrease in the distance brings about an increase in
entropy, reflecting the increase in the uncertainty of collision
risk at different distances. Second, under different encounter
situations, the uncertainties reflected by the entropy results
are different from each other. For example, the front curve is
quite different from other curves when the ship arrives on the
left. Overall, there is less uncertainty in the encounter time
directly ahead; the degree of uncertainty is roughly the same
in other cases; the average uncertainty when the ship comes
on the right is greater; the entropy value is higher; the curve
is denser. Finally, in most cases, the degree of uncertainty
increases as the distance decreases. This is because when
the distance between ships is large, the ship’s pilot is calmer
about the situation. The selection of avoidance methods can
be conducted according to the elements such as "Rules",
and the decrease in the distance makes the driver’s judgment
and choice add more human factors. The short decision time
brings about an increase in the possibility of avoiding options,
leading to an increase in entropy. Nevertheless, the entropy
value decreases when it approaches 1 n mile. According to
the understanding of actual navigation conditions, when the
ship is very close, the singularity of the situation results in
the singularity of the driver’s choice of avoidance methods,
allowing most people to choose the same avoidance method,
reducing the entropy value.

It can be observed through the above analysis that in most
cases, the decrease in the distance brings about an increase in
entropy, reflecting the increase in the uncertainty of collision

risk at different distances. Second, under different encounter
situations, the uncertainties reflected by the entropy results
are different from each other. For example, the front curve is
quite different from other curves when the ship arrives on the
left. Overall, there is less uncertainty in the encounter time
directly ahead; the degree of uncertainty is roughly the same
in other cases; the average uncertainty when the ship comes
on the right is greater; the entropy value is higher; the curve
is denser. Finally, in most cases, the degree of uncertainty
increases as the distance decreases. This is because when
the distance between ships is large, the ship’s pilot is calmer
about the situation. The selection of avoidance methods can
be conducted according to the elements such as "Rules",
and the decrease in the distance makes the driver’s judgment
and choice add more human factors. The short decision time
brings about an increase in the possibility of avoiding options,
leading to an increase in entropy. Nevertheless, the entropy
value decreases when it approaches 1 n mile. According to
the understanding of actual navigation conditions, when the
ship is very close, the singularity of the situation results in
the singularity of the driver’s choice of avoidance methods,
allowing most people to choose the same avoidance method,
reducing the entropy value.

Considering from the perspective of the uncertainty of
avoidance actions, the workers should observe various infor-
mation between ships and make scientific judgments as soon
as possible, and then propose reasonable collision avoidance
measures. This is the key to preventing or avoiding ship
collision accidents and the best way to ensure the safety of
people and property.

VII. CONCLUSION
In this paper, we combined the fuzziness and uncertainty fea-
ture of a cloud model to establish a ship collision risk model
based on the cloud model theory. This model can provide
a ship collision risk order when multiple ships are present
at sea, which reduces the time required to determine the
key ships to avoid during navigation as well as the collision
avoidance sequence.

Sensitivity and uncertainty analysis for ship collision risk
cloudmodel is progammed. It can reflect the importance of its
influencing parameters, the emphasis on different parameters,
and the advantages of the established cloud model in variable
selection. Based on the content of the "Rules", the uncertain
results in the calculation of the degree of danger are avoided,
and some reasonable suggestions for real navigation safety
are proposed.

Therefore, the proposed method can alleviate or prevent
potential accidents from the source by helping the pilot of the
ship make correct decisions promptly. The proposed design
will effectively improve the ship collision avoidance system,
reduce ship collision accidents caused by human factors, and
further promote the development of a more intelligent and
automated ship collision avoidance system.

However, the errors of DCPA and TCPA are not currently
considered in the cloud model, which decreases the accuracy
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of the collision risk. In further work, we will solve this
problem. Furthermore, the simulation is a study of the risk
analysis of ship collision under the condition of one encounter
with multiple ships. However, after the ship completes a
risk analysis of collision avoidance and takes the collision
avoidance action, a new risk situation will be generated based
on the action. Therefore, in the process of collision risk
analysis, all risks should be predicted to obtain a total risk
assessment. Therefore, it should involve the selection of all
ship collision avoidance actions, on the basis of which the
overall risk assessment is completed. This will be dealt with
in follow-up research.
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