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ABSTRACT Recently, the fine-grained geolocalization of user-generated short text (UGST), which can
benefit many location-based applications, has been attracting the attention of academica. The semantic
information in UGST is seldom introduced in most existing work, which reduces the effectiveness of
existing methods. To address this issue, we propose an entity-based fine-grained geolocalization of UGST,
which consists of following steps. (1) We employ location-based social network to model the coupling
between entities and locations, which can introduce much semantic information. (2) We extract entities
from non-geotagged UGST, and discards this UGST if it has not location-related entities. Otherwise, (3) we
utilize the built coupling model to rank the candidate locations for this UGST, and then select top n locations
as the result. The experiments demonstrate that our method shows marked improvement on Accuracy@1km
and average error distance compared to the state-of-the-art FRV, WMV and LW methods.

INDEX TERMS Entity-basedmethod, fine-grained location, geolocalization, location-based social network,
user generated short text.

I. INTRODUCTION
With the bloom of social sites, such as Twitter and WeChat,
millions of user-generated short texts (UGSTs) are appear-
ing every day. These UGSTs cover almost all aspects of
users, including daily routines, news stories, political opin-
ions [1], etc. The value of UGSTs has been attracting con-
siderable attention. Furthermore, UGSTs with fine-grained
geolocation [2] can benefit many location-based applications,
such as smart health [3], emergency analysis [4], [5], event
detection [6], and user identification [7]–[9].

Most operators of social sites have ascertained the value
of UGSTs with fine-grained location and provided the geo-
tagging function to their users. However, due to privacy or
other special reasons, few users have adopted the geotagging
feature. Existing work has illustrated that exceedingly few
UGSTs are geocoded with fine-grained location [9]–[12].
For example, of over 1 billion tweets, only 0.58% are
geocoded [12]. In this situation, it would be very difficult to
fully exploit the value of UGSTs and seize the business oppor-
tunities. Therefore, the geolocalization of UGSTs has become
a problem that needs to be addressed. We focus on this
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issue, which differs from existing methods of coarse-grained
geolocalization. Generally, these coarse-grained geolocaliza-
tion methods work by linking the UGSTs to city- or time
zone-level locations [10], [11], which are less useful for
applications than are fine-grained locations.

In existing fine-grained geolocalization work,
Kinsella et al. [13] created the language models of loca-
tions using coordinates extracted from geotagged tweets
and then employed the content similarity to geolocalize the
non-geotagged tweets. Paraskevopoulos and Palpanas [14]
considered the time-evolution characteristics to improve the
above method. Gonzalez Paule et al. [2] presented a solu-
tion for the fine-grained geolocalization of tweets, which
utilizes a ranking algorithm combined with majority vot-
ing of tweets weighted based on the source credibility.
Chong and Lim [10], [11] leveraged three types of informa-
tion from locations, users and peers to rank the fine-grained
geolocalization. Gao et al. [15] utilized the weight probability
model to geolocalize UGST.

Existing work heavily relied on the GPS/human-annotated
UGST. However, as mentioned above, when users are less
willing to actively geocode the UGSTs [12], fine-grained
geolocalization becomes a very challenging issue. To address
this problem, Lee et al. [12] introduced Foursquare as a
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source for building the probabilistic models for locations
using location-coupled words in tweets, and then proposed
a Filtering-Ranking-Validating method for tweet location
prediction. Intuitively, we believe that entity contains more
accurate location information thanword. We take the instance
shown in Figure 1 to illustrate this issue. In tweet Just a
southern gal living in the Big Apple, entity Big Apple clearly
refers to the location New York, and it contain more location
information than word big or apple.

FIGURE 1. An instance of tweet.

According to the above analysis, we propose an
entity-based Fine-grained Geolocalization of user-generated
Short Text based on a Location-based social network (LBSN),
which is abbreviated FGST-L. We first build the proba-
bility model for location using the location-coupled entity.
Based on the built model, we geolocalize the non-geotagged
UGST as the following steps. We identify the entities in the
non-geotagged UGST. For an UGST with location-related
information, we rank the candidate locations for it, and then
we select the top n (n ≥ 1) locations as the result. For an
UGST without any location-related information, we believe
that its location is unpredictable. Our contributions are sum-
marized as follows.

(1) We propose an entity-based solution for the
fine-grained geolocalization of UGST, which introduces
more semantic information to improve the method perfor-
mance.

(2) We employ the location-based social network to build
the coupled model of entity and location, which can introduce
more semantic information than existing work. To the best
of our knowledge, this is earlier work towards exploiting the
coupled relation between entity and location.

(3) We present a novel entity-based method to filter out
UGST without any location-related information, which has
better filtering effect and eliminates interference in earlier
stage.

(4) We conduct the experiment on three ground-truth
datasets, and the results illustrate the superiority of FGST-L
over the state-of-the-art methods.

It should be mentioned that we had presented the main
idea of FGST-L at RecNLP 2019.1 According to the com-
ments from workshop attendees, we revised and extended
the presentation into the mature work, and wrote this paper.
The rest of this paper is organized as follows. We introduce
the related work in Section 2. Section 3 first describes the

1 RecNLP was a venue for discussion, and no official proceedings were
published. see http://recnlp2019.github.io/

preliminary concept, then provides the problem formulation
and details our proposed method. Section 4 then shows the
experiments on three ground-truth datasets and the result
analysis. In Section 5, we conclude this paper and discuss the
future work.

II. RELATED WORK
Recently, the geolocalization of UGST has been attracting
significant attention from many scholars. The related work
can be primarily categorized into two categories. One is
coarse-grained geolocalization, which focuses on predicting
the country, state, and city of eachUGST or its user. The other
is fine-grained geolocalization, which focuses on predicting
the street or place of interest of an UGST. In this section,
we discuss these two categories of related work.

A. COARSE-GRAINED GEOLOCALIZATION OF UGST
For these methods on coarse-grained geolocalization,
the basic idea is building probability models for each coun-
try, state or city using region-specific terms and then pre-
dicting the location of the UGST or its user according
to location-related words in UGST or UGSTs of a user.
Concretely, Cheng et al. [16] presented a solution for pre-
dicting the city of a Twitter user. After building the prob-
ability model for every city using tweets associated with
that city, the probabilities of a user being located in every
city are estimated and ranked, and then the city with the
highest probability is selected as the city of that user.
Hecht et al. [17] utilized the selected region-specific terms to
build the probability model and then employed a multinomial
naive Bayes model to predict the country and/or state of the
Twitter user. Mahmud et al. [18] built a set of classifiers
for predicting the home of a Twitter user and then created
an ensemble of these classifiers to improve the accuracy.
Huang and Carley [19] integrated the text and user profile
into a single model using a convolutional neural network to
predict a Twitter user’s country- or city-level location based
on the information in a single tweet. Kinsella et al. [13] used
the coordinates extracted from geotagged tweets to create
the probability models of locations at multiple granularities,
ranging from the zip code to the country level, and then
predicted the location of a single tweet. Ebrahimi et al. [20]
first proposed a solution for categorizing celebrities as local
or global and then used local celebrities as location indica-
tors. A label propagation algorithm was employed over the
social network for geolocalization at the city level. Finally,
a text-based method was integrated into the network-based
proposed approach to improve inference accuracy. The dif-
ference between our work and these coarse-grained geolocal-
ization methods is that we predict the fine-grained location of
a given UGST, such as a street or special restaurant.

B. FINE-GRAINED GEOLOCALIZATION OF UGST
Most existing work on fine-grained geolocalization focuses
on predicting the location of each UGST at the place of
interest-level. Similarly, their fundamental ideas also include
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building a probability model for each PoI using PoI-specific
terms and then predicting the location of the non-geotagged
UGST according to location-related words in the UGST.
Li et al. [21] predicted the PoI tag of a tweet based on
its textual content and time of posting. They considered
fine-grained geolocalization as a ranking problem and then
ranked a set of candidate PoIs by language and time models.
Kinsella et al. [13] also created the language models of loca-
tions using coordinates extracted from geotagged tweets and
then inferred the tweet locations based on content-similarity.
Paraskevopoulos and Palpanas [14] improved the method of
Kinsella et al. [13] by considering time-evolution character-
istics in the matching algorithm. Ikawa et al. [22] presented a
method to learn associations between a location and its rele-
vant keywords from past microblogs and inferred the location
where a microblog was generated by using its textual content.
Lee et al. [12] introduced Foursquare as a source for building
the probabilistic models for locations using location-coupled
words in tweets and then geocoded the non-geotagged tweets.
Li and Sun [23] extracted PoI-level locations mentioned in
tweets with temporal awareness. To formulate the PoIs’ for-
mal names and their informal abbreviations, they also intro-
duced the crowd wisdom of the Foursquare community into
the proposed method. Chong and Lim [10], [11] proposed
several models that leverage three types of signals from loca-
tions, users and peers to infer the locations of non-geotagged
tweets. Gonzalez Paule et al. [2] presented a ranking algo-
rithm combined with majority voting for tweets weighted
based on source credibility to predict the fine-grained loca-
tions of tweets. Whereas most relevant existing methods
are based on the probabilistic models for locations using
location-coupled words in UGSTs, our proposed method
attempts to build the probabilistic models for locations using
location-coupled entities in UGSTs because we intuitively
believe that entities contain more location information than
do words.

In addition, Ghaffari et al. [24] develop a deep-learning
solution for fine-grained home location prediction.
Xu et al. [25] proposed a deep-learning method for
fine-grained location recognition. These two methods have
the different goals from our work. Besides, other methods
focused on inferring the geographical origins of online con-
tents [12] such as photographs [26], web pages [27] and web
search query logs [28].

III. FINE-GRAINED GEOLOCALIZATION OF USER
GENERATED SHORT TEXT
We first list some notations which are used in this paper
in Table 1, and then formulate the problem of fine-grained
geolocalization of user-generated short text. Finally, we detail
the proposed approach.

A. PROBLEM FORMULATION
Intuitively, in an UGST, the word group Big Apple contains
more semantic information of location than does the single
word big or apple. Such word group would be more helpful

TABLE 1. Definitions of Notations.

for the geolocalization of UGST. In FGST-L, we focus more
on word group than on word. For convenience, we call such
a word group an entity.
Definition 1: Entity. An entity is defined as a set of words

which represents the name of a subject or object. An entity is
further formalized as e = {w1,w2, . . . ,wn}, where wi is the
ith word of the name.
An UGST t is further denoted by t = {e1, e2, . . . , em},

where ei is the ith entity in t. Our goal is to exclusively
geolocalize the UGST t in a fine-grained manner based on
the entities contained in t .

Problem Formulation 1: Fine-Grained Geolocalization
of UGST. Suppose we are given an UGST t and a set of
fine-grained candidate locations L = {l1, l2, . . . , lk}. The
task of FGST-L is to select n(n ≥ 1) locations from L as the
geolocation of UGST t.

The key issue of the problem 1 is to calculate the proba-
bility, p(li|t),∀li ∈ L, that the geolocation of t is li. After we
calculate the probability p(l|t) for each candidate location,
we rank these locations according to their probabilities, and
then select the top n locations as our results.Wewill detail this
key issue in the following subsection. Clearly, this problem
is easily generalized to the coarse-grained geolocalization
of UGST.

B. OVERVIEW OF FGST-L
Figure 2 shows the framework of FGST-L, which consists of
four key components.
1) Building the coupled probability model of entity

and location: we employ LBSN, such as Foursquare,
as source to build the coupled relationship between enti-
ties and locations, which allows us to introduce more
semantic information.

2) Extracting entities in UGST: we extract the entities
in UGST t .

3) Filtering the UGSTs: we filter UGSTs without any
location-related entities, which are considered as the
unpredictable UGSTs.

4) Ranking the candidate locations: given an predictable
UGST t , we calculate the probability p(l|t) for each
candidate location, rank these candidate locations, and
select the top n(n ≥ 1) locations for t .

We detail four components as follows.

C. BUILDING COUPLED PROBABILITY MODEL OF ENTITY
AND LOCATION
Foursquare contains numerous Points of Interest (PoI) and
a large amount of tips,2 which makes it is very helpful for

2In Foursquare, a tip is an UGST tied to a PoI.
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FIGURE 2. Framework of FGST-L. FGST-L includes two stages. One is the
stage of pre-training where we employ LBSN to model the coupling
between locations and entities. The other is the stage of entity-based
geolocalization. The latter consists of three parts: 1) extracting entities in
UGST; 2) filtering the UGSTs without any location-related entities; 3) for
the remaining UGST, computing the probability of candidate locations
based on the built coupling model, and ranking the candidate locations.

building high-quality probability models of locations and
entities [12].

We denote the PoIs in Foursquare as L = {l1, l2, . . . , lk}.
To express the coupling of entities and locations, we build
the conditional probability model for every PoI based on its
related tips. We assume that the set of tips tied to li is T (li) =
{t1, t2, . . . , tm}. Actually, a popular PoI contains more tips,
and thus, its model is of higher quality. We assume that entity
e occurs tf (e, t) times in UGST t , and c(e, l) times in T (li).
We compute the probability of entity e occurring in PoI l by
the technique of maximum likelihood estimation, as shown
in Eq.(1).

p(e|l) =
c(e, l)∑

ek∈E(l) c(ek , l)

c(e, l) =
∑
t∈T (l)

tf (e, t)

E(l) = {e|e ∈ t, t ∈ T (l)} (1)

From Eq.(1), we can easily find that a zero-probability
problem, p(e|l) = 0, occurs when c(e, l) = 0. To address
this issue, we further define p(e|l) by the Laplace smoothing
method as follows.

p(e|l) =
c(e, l)+ 1∑

ek∈E(l) (c(ek , l)+ 1)
(2)

Furthermore, in UGST t , some entities maybe have com-
mon word(s), which creates difficulties to compute the prob-
ability of UGST t being tied to PoI l. Generally, because an
UGST is very short, it is relatively rare for words to be shared
between entities.We assume that entities in t are independent,
and approximate p(t|l) as follows.

p(t|l) ≈
∏
ei∈t

p(ei|l)

=

∏
ei∈t

c(ei, l)+ 1∑
ek∈E(l) (c(ek , l)+ 1)

(3)

D. EXTRACTING ENTITIES IN UGST
In FGST-L, we break each UGST into words, stem them, and
remove stop words. After that, an UGST t is denoted by a set
of words, t = {w1,w2, . . . ,wi, . . . ,wn}.

We utilize the Stanford NLP tool [29] to find all pos-
sible entities in t based on Microsoft Probase [30]. As a
result, we obtain t = {e1, e2, . . . , em}, where ei =
{wk ,wk+1, . . . ,wl |1 ≤ k ≤ l ≤ n}. The extracted entities are
restricted to the repository we selected. We selected Probase
for extracting entities because it includes tremendous concept
space and concept clusters.

E. FILTERING UGSTs
Geolocalization of UGST heavily depends on the location
information it contains. For example, it is very difficult to
geolocalize UGST It is a good day. Before predicting the
geolocation of an UGST, we first determine whether this
UGST contains location-related information. We filter the
UGSTs without any location indication.

In some situations, the location-related information explic-
itly occurs in the UGST. For instance, the entityNorthwestern
Polytechnical University is an explicit location indication in
the UGST I am at Northwestern Polytechnical University
now. To express these cases clearly, we define the indicator
function Iex for entity ei ∈ t .

Iex(ei,L) =
{
1, ei ∈ L
0, otherwise

(4)

We further express whether UGST t contains explicit
location-related entities by Eq.(5).

I1(t,L) =
∨
ei∈t

Iex(ei,L) (5)

In other situations, the location-related information
appears implicitly. For instance, the entity Big Apple can
implicitly represent the location New York in UGSTs.
To express these cases, we employ the idea of TFIDF to
identify local words [12] and define the following equation.

ftfidf (e, l) =
c(e, l)+ 1∑

ek∈E(l) (c(ek , l)+ 1)
×

[
ln

|L|
df (e)+ 1

+ 1
]
(6)

where df (e) is the number of locations with entity e.
We consider that entity e is l-related when ftfidf (e, l) ≥ θ ,

where θ is a given threshold. Clearly, if we set θ with a greater
value, the number of local entities would become smaller.
The indicator function of implicit location-related entities is
defined over ftfidf (e, l) as shown in Eq.(7).

Iim(ei, l) =
{
1, ftfidf (ei, l) ≥ θ
0, otherwise

(7)

We can depict whether UGST t contains implicit
location-related entities by Eq.(8).

I2(t,L) =
∨
l∈L

∨
ei∈t

Iim(ei, l) (8)

An indicator function I(t,L) is defined to indicate whether
or not t contains location-related entities.

I(t,L) = I1(t,L)
∨

I2(t,L) (9)
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If I(t,L) = 1, t is considered to contain location-related
information. Otherwise, it is filtered out.

F. RANKING CANDIDATE LOCATIONS
We rank the PoIs for each remaining UGST. Given UGST t =
{e1, e2, . . . , em} and the candidate PoIs L = {l1, l2, . . . , lk},
we rank the candidate PoIs based on the naive Bayes model.
Therefore, the probability that the location of t is l is shown
by Eq.(10).

p(l|t) ∝ p(t|l)× p(l) ≈

(∏
ei∈t

p(ei|l)

)
× p(l)

p(l) =
N (l)∑
li∈L N (li)

(10)

where N (l) indicates the occurrences of l. Eq.(10) is further
defined as Eq.(11)

ln p(l|t) ∝
∑
ei∈t

ln p(ei|l)+ ln p(l) (11)

After calculating the probability p(li|t),∀li ∈ L, we rank
the candidate locations {li|1 ≤ i ≤ k} according to their
probabilities and obtain a ranking list {lr1 , lr2 , . . . , lrk }. The
top n(1 ≤ n ≤ k) locations, {lr1 , lr2 , . . . , lrn}, are selected as
the possible geolocations of UGST t .
The overall proposed method can be summarized in two

stages. One is the stage of building coupled model of entity
and location, as shown in Algorithm 1. The other is the
stage of entity-based geolocalization of UGST, as shown
in Algorithm 2. The first stage is a pre-training process.
We introduce the UGSTs and locations in LBSN to build the
coupled model. Obviously, the time complexity depends on
|L|, |T (l)| and the number of entities in UGST. In the datasets
we obtained from real social sites, The vast majority of |T (l)|
is less than 50, and almost all the number of entities in UGST
is less than 10. In other words, the running time of the first
stage mainly depends on the number of locations, |L|. From
Algorithm 2, we easily reach its time complexity is O(|L|).
The state-of-the-art method, FRV [12] has similar idea with
FGST-L, and its performance is closest to that of FGST-L.
Its computational complexity also depends on |L|, |T (l)| and
the number of words in UGST. Due to the number of words
and the number of entities in UGST having the same order of
magnitude, FRV and FGST-L have the same time complexity.
In a word, the running time of FGST-L and FRV depends
heavily on the number of candidate locations.

IV. EXPERIMENTS
A. DATASETS
We collected the PoIs of New York City and the related tips
from Foursquare and obtained 74,942 PoIs and 498,722 tips.
For convenience, we call this dataset TrainingTips. The num-
ber of tips is unevenly distributed over all PoIs, as shown
in Table 2. The numbers of tips for approximately 87.7%
[= (1 − 9208

74942 ) × 100%] of PoIs are less than 10. Only
3,790 PoIs contain more than 30 tips.

Algorithm 1: Outline of Building Coupled Model of
Entity and Location
Input: L, location set of LBSN; T , UGST set of LBSN
Output: P , model set of entity and location

1 P ⇐ ∅;
2 for each l ∈ L do
3 T (l)⇐ UGSTs tied to l in T ;
4 for each t ∈ T (l) do
5 extract entities from t ;
6 p(t|l) = 0 ;
7 for each e ∈ t do
8 compute p(e|l);

9 compute p(t|l);
10 P ⇐ P ∪ {p(t|l)};

11 return P;

Algorithm 2:Outline of Entity-Based Geolocalization of
UGST
Input: P , model set of entity and location; L, candidate

locations; t , a non-geotagged UGST
Output: Lt , locations of t

1 Lt ⇐ ∅;
2 extract entities from t , t = {e1, e2, . . . , em};
3 compute Iex and I1(t,L) ;
4 compute Iim and I2(t,L) ;
5 I(t,L) = I1(t,L)

∨
I2(t,L);

6 if I(t,L) = 1 then
7 for each l ∈ L do
8 compute ln p(l|t) ;

9 rank locations based on {ln p(l|t),∀l ∈ L};
10 Lt ⇐ Lt ∪ {top n ranked locations};

11 return Lt ;

TABLE 2. The cumulative number of tips in TrainingTips over PoIs.

To illustrate the generalization of FGST-L, we also col-
lected the UGSTs generated in New York City from Twitter
and Facebook, and ultimately obtained 19,231 tweets and
6,699 posts. In total, 32.4% of tweets and 16.7% of posts
are geocoded by the PoI-level location. In addition to the
tips in TrainingTips, we obtained additional tips and their
PoIs from Foursquare for evaluation and manually selected
12,000 tips, of which 6,000 tips contain hints about locations
and 6,000 tips do not contain any hints about locations. The
three datasets are named TW, FB, and FS, respectively.

B. EXPERIMENTAL SETTINGS
In FGST-L, there are three key parameters: the predefined
threshold θ , the number of ranked locations selected for t , and
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the number of tips used for building probability model. For
convenience, we denote three parameters by θ , ntop, and ntip,
respectively. We will discuss the effects of three parameters.

We compare FGST-L with the following similar methods.

- FRV [12]: a filtering-ranking-validating technique for
the fine-grained geolocalization of tweets, which is
a very similar method to FGST-L. FGST-L is an
entity-based method, while FRV is a word-based
method.

- LW [10], [11]: a location-indicative weighting scheme
for the fine-grained geolocalization of tweets, which
assigns more weight to location-indicative words.

- WMV [2]: a weighted majority voting algorithm for the
fine-grained geolocalization of tweets, which estimates
the location of a tweet by collecting the votes of the
geotagged tweets that are similar with that tweet on
content.

In experiments, we first use the PoIs and tips in Train-
ingTips to model the coupling between entities and locations.
Then, we use Algorithm 2 to geolocalize each t in TW,
FS and FB, respectively. Based on the geolocalization results,
we employ the widely used Accuracy@1km and average
error distance (km) [2] to evaluate all algorithms.
Average Error Distance (km): we only consider the UGSTs

that have not been filtered out and compute the distance on
Earth between the predicted location and the real coordinates
of the UGST.
Accuracy@1km: After filtering, all UGSTs are divided into

two categories: UGSTs that have been filtered out andUGSTs
that have not been filtered out. We assume that the number
of UGSTs that have been filtered out correctly is n11km. For
UGSTs that have not been filtered out, the number of UGSTs
whose predicted location lies within a radius of 1 km from the
real location is denoted by n21Km. Accuracy@1km is measured
as follows.

Accuracy@1km =
n11Km + n

2
1Km

nT
(12)

where nT is the number of all UGSTs for testing.

C. PERFORMANCE OF FGST-L W.r.t θ

Given UGST t, it would be filtered out if ftfidf (e, l) < θ,

∀e ∈ t . In other words, the value of θ determines whether
t is filtered out. Therefore, the number of UGSTs that are not
filtered out will vary with the value of θ , as shown in Table 3.
As the value of θ becomes larger, more UGSTs are filtered
out. The UGSTs that are not filtered out are considered
predictable.

TABLE 3. Number of UGSTs that are not filtered out w.r.t. θ .

Naturally, the threshold, θ , exerts a strong influence on the
results. We conduct the experiments with the different values
of θ to study its effect on the results, where we set ntop = 1
and ntip = 20. The results are shown in Figure 3.

FIGURE 3. Results of FGST-L w.r.t. θ .

Figure 3(a) shows the Accuracy@1km w.r.t. θ . For FS and
TW, the accuracy of FGST-L first rises and then declines
with the increase in θ . Its accuracy exhibits the best per-
formance when 0.3 < θ < 0.4. Generally, many UGSTs
do not contain location-related information. When θ takes a
small value, many UGSTs without location-related entities
are mistaken for UGSTs with location information. This
reduces the accuracy of FGST-L. Similarly, when θ takes a
large value, FGST-L incorrectly filters out the UGSTs with
location-related information, which also reduces the accu-
racy. However, the accuracy curve exhibits a different trend
for dataset FB. The curve first rises quickly and then increases
only slightly. Because most UGSTs in FB are location-free,
an increasing number of location-free UGSTs are correctly
filtered out with the increase in θ at the beginning. However,
after θ > 0.4, most location-free UGSTs have been filtered
out, which slows the increasing trend. The accuracy for the
FB dataset always continues to increase, which is primarily
due to its severe data skew. When θ = 0.7, FGST-L filters
most UGSTs, and its accuracy reaches 83.3%.

The average error distance with θ is shown in Figure 3(b).
When 0.3 < θ < 0.4, this metric is optimal. Although it
obtains a minimum value when θ > 0.6, most UGSTs are
filtered out in this case, which is not our expectation.

The above results shows that FGST-L has the optimal
performance when 0.3 < θ < 0.4. Therefore, we can set
the value for parameter θ in the interval [0.3, 0.4].

To clearly show the effect of filtering, we illustrate the
comparison between the unfiltered results (θ = 0.0) and
filtered results (θ = 0.35) in Figure 3(c) and Figure 3(d),
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respectively.Whether for accuracy or average error distance,
the filtered results are significantly better than the unfiltered
results. This finding demonstrates that filtering is an essential
step of FGST-L.

D. PERFORMANCE OF FGST-L W.r.t ntip
Intuitively, if a PoI is tied to more tips, the probability model
built for this PoI is of higher quality. Therefore, we conduct
experiments to study the effect of ntip, where ntop = 1 and
θ = 0.35. Figure 4 shows the experimental results.

FIGURE 4. Results of FGST-L w.r.t. ntip.

We find that the accuracy of FGST-L rises slightly as ntip
increases, while the average error distance first rises and
then declines before ntip ≤ 20. In other words, the number
of tips has some impact on the coupling model, but it is
not very significant before ntip ≤ 20. This result is not in
accordance with our intuition. In particular, when ntip > 20,
it exerts little effect on the probability model. The reasons
for this result are as follows: 1) in the experimental datasets,
many UGSTs are location-free, which interferes with our
prediction, and 2) for the UGSTs tied to a PoI, the entities
in 20 UGSTs cover most entities in all UGSTs. As a result,
we can build the accurate coupled of entities and PoI with
only approximately 20 UGSTs. This could reduce the need
for computing resources and help us obtain a much more
accurate probability model. Therefore, we recommend that
ntip is set to the number of UGSTs covering most entities.
In our experiments, we set ntip = 20.

E. PERFORMANCE OF FGST-L W.r.t ntop
From the above experimental results, we easily find that the
best accuracy is approximately 80%, as shown in Figure 3 and
Figure 4. This could be caused by selecting the top-ranked
location as the location of UGST t . Instead, in many cases,
the ground-truth location of t is on the k th(k ≥ 2) place of
the ranking list, not the top-ranked place. Intuitively, if we
select the top ntop locations as the possible locations of t ,
the accuracy should improve. We conduct experiments to
demonstrate the effect of ntop, where ntip = 20 and θ = 0.35.
The results are shown in Figure 5.

From Figure 5(a), we can easily observe that accuracy has
improved significantly. The detailed percentage of accuracy
improvement (= Acc@Topntop−Acc@Top1

Acc@Top1 × 100%) is shown
in Table 4. With the increase in ntop, Accuracy is gradually
improving, but the acceleration of the percentage gradually

FIGURE 5. Results of FGST-L w.r.t. ntop.

TABLE 4. Percentage of Accuracy improvement w.r.t. ntop.

decreases. Before ntop = 8, the improvement is relatively
large. These results meet our expectations.

Among the datasets, the percentage of accuracy improve-
ment on FS is the highest, while the percentage on TW is
the lowest. We have conducted further analysis and found
reasonable explanations for these results. 1) The locations in
TW are much more coarse. When ntop = 1, its accuracy is
relatively high, as shown in Figure 3(a). As ntop increases,
the change in the percentage is not obvious. 2) The location
granularity of FS is the finest. The candidate locations close to
the ground-truth location of t readily interfere with our infer-
ence results. Figure 3(a) supports this statement. Obviously,
when we select the top ntop locations, the accuracy for FS
improves remarkably. 3) For the FB dataset, only 16.7% of
posts are geocoded with fine-grained location. Similar to the
reason for TW, the change in the percentage is not apparent
after ntop > 3. In future work, we will extend the datasets
and study the relationship between the number of the UGSTs
with the fine-grained locations and the accuracy of FGST-L.

Figure 5(b) illustrates the remarkable change in average
error distance. The percentages of average error distance

improvement (= AveErrDist@Top1−AveErrDist@Topntop
AveErrDist@Top1 × 100%)

with ntop are detailed in Table 5. When selecting the top ntop
locations, we take the location closest to the real location
as the predicted location. Clearly, as ntop gradually becomes
larger, the value of average error distance becomes smaller.
The average error distance improves remarkably for the three
datasets, particularly before ntop = 10. As mentioned above,
the ratio of postswithout location information is significantly
larger than the ratio of tips or tweets, so the percentage
of average error distance improvement for FB is relatively
small.

TABLE 5. Percentage of averageerrordistance improvement w.r.t. ntop.
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TABLE 6. Performance of FGST-L with ntop = 1.

TABLE 7. Performance of FGST-L with ntop = 5.

In summary, we present the comprehensive FGST-L exper-
imental results with ntop = 1 and ntop = 5, as shown
in Table 6 and Table 7, respectively. Whether ntop = 1
or ntop = 5, we easily reach the conclusion that FGST-L
performs well when 20 < ntip < 30 and 0.3 < θ < 0.4.
When ntop takes other values, the performance of FGST-L
exhibits a similar pattern.

As ntop gets bigger, FGST-L gets better. However, the num-
ber of possible locations for t has also become larger, which
makes it more difficult for the user to choose one. Therefore,
we set ntop ≤ 5.

F. PERFORMANCE OF FGST-L UNDER RELAXED
CONDITIONS
In the above experiments, we use the metric Accuracy@1km
to evaluate the accuracy of FGST-L. If the radius error
of the predicted location and the real location is less
than 1 km, the inference result is considered correct. Intu-
itively, the radius error should have a significant impact on the
accuracy of FGST-L. We relax the conditions for calculating
the metrics of FGST-L to study this issue. Due to limited
space, we only demonstrate the results of FSw.r.t. radius error
and ntop, as shown in Figure 6.

FIGURE 6. Results of FGST-L on FS under relaxed conditions.

From the results, we find that the accuracy of FGST-L
increases slightly as the radius error becomes larger when ntop
is given. Similarly, the accuracy of FGST-L also increases
with the increase in ntop when the radius error is given.
However, the increase in the latter case is significantly greater
than the increase in the former case. This illustrates that the
location predicted by FGST-L is fine-grained. To increase the
feasibility of FGST-L, we recommend selecting the top ntop
locations as locations of UGST t .

G. COMPARISON WITH EXISTING WORK
Figure 7 shows the comparison between FGST-L and existing
work.
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FIGURE 7. Results of FGST-L for FS, FB and TW datasets.

The results demonstrate the effectiveness of FGST-L due to
its superiority over the other baseline methods. These results
stem from the fact that we 1) build the probability models
with entities instead of words, where entities contain more
semantic information than do words, and 2) filter out the
UGSTs without location-related entities.

FRV exhibits better results than the other baselinemethods,
WMV and LW, which further indicates that filtering the
location-free UGSTs is an effective step that reduces noise
interference.

Both FGST-L and FRV exhibit better results on the FB
dataset than on the FS and TW datasets. As analyzed above,
approximately 83.3% of UGSTs contain few location-related
entities in FB. FGST-L and FRV filter them out, which
increases the accuracies. This result further demonstrates that
determining whether an UGST includes location-related enti-
ties is easier than geocoding its PoI. In addition, all methods
exhibit inferior accuracies on FS than on FB and TW. This is
because FS has more fine-grained location.

We perform a t-test on the results of FGST-L and FRV,
and find that there is not significant difference at significance
level 0.05. A reasonable explanation is that FRV employ the
n-gram model to extract the words, which include most of
entities. However, some words that are not entities may be
noisy to geolocalization of UGST.

To further validate our method, we remove all location-free
UGSTs from three datasets, and rerun four methods. The
results are shown in Table 8, where ntop = 5, ntip = 20 and
θ = 0.35. Compared with Fig. 7, both FGST-L and FRV
also show better accuracy, but their advantages reduce sig-
nificantly. Four methods show much similar results because
they rely on the similar information, location-indicative
words/entities. However, in FGST-L or FRV, n-gram model
or entity is more location-indicative, so its performance is
better. The results on average error distance (km) change very
slightly.

We present some examples to show the effects of using
FGST-L. Table 9 displays three tweets posting at Joe’s

TABLE 8. Results of FGST-L after removing the location-free UGSTs.

TABLE 9. Three sample tweets posting at Joe’s Shanghai, New York.

Shanghai, New York. Within each tweet, the entities are
italicized. For instance, FGST-L easily recognizes the entity
joe’s shanghai from tweet t1, and this entity is the name of a
Chinese restaurant. Therefore, FGST-L easily geolocalizes t1.
For tweet t3, FGST-L can not distinguish any entity, and
consider t3 as a location-free tweet. However, for t2, it is
more difficult for FGST-L to geolocalize. Our method can
recognizes the entity soup dumplings, which is a representa-
tive food in Chinese restaurants. In this case, FGST-L will
incorrectly geolocalize t3 with high probability. Similarly,
the other three methods are also helpless for tweet t3.

V. CONCLUSION AND FUTURE WORK
Recently, the value of a tremendous amount of UGSTs
in social networks, particularly the UGSTs tagged with
fine-grained locations, has been recognized by increasingly
numerous business organizations. However, due to privacy
issues or special purposes, most users seldom adopt the geo-
tagging functions provided by social sites. To fully exploit the
value of UGSTs, the fine-grained geolocalization of UGSTs
has been receiving great attention from academia. Most
existing methods are word-based and thus rarely utilize the
semantic information about a location. This will degrade the
performances of existing approaches. To address this prob-
lem, we present an entity-based fine-grained geolocalization
of UGST based on LBSN. We introduce LBSNs, such as
Foursquare, as sources to tightly couple entities and locations,
which capture more semantic information of locations than
the word-based methods do. After filtering out the UGSTs
without any location-related entities, we rank the candidate
locations for each remaining UGST based on the coupling
model and then select the top n(n ≥ 1) locations as results.
The experiments on three ground-truth datasets validate the
effectiveness of the proposed method.

Tomore accurately geolocalize UGSTs, we will extend our
method by incorporating more information sources in future
work. One extension could be the introduction of UGSTs
posted by a user in a LBSN to predict the locations of UGSTs
posted by the same user on other social sites. For example, if a
user visits one shopping mall at 12 o’clock and simultane-
ously posts two similar UGSTs on Foursquare and Twitter,
then we can accurately predict the location of the UGST
on Twitter with the help of the PoI on Foursquare. Another
possible extension could be to introduce the location history
of a user, which could reduce the search space of candidate
locations.
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