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ABSTRACT With the advent of the information age, excessive information collection leads to information
overload. Automatic text summarization technology has become an effective way to solve information
overload. This paper proposes an automatic text summarization model, which extends traditional sequence-
to-sequence (Seq2Seq) neural text summarization model by using a syntax-augmented encoder and a
headline-aware decoder. The encoder encodes both syntactic structure and word information of a sentence in
the sentence embedding. A hierarchical attention mechanism is proposed to pay attentions to syntactic units.
The decoder is improved by a headline attention mechanism and a Dual-memory-cell LSTM network to
achieve a higher quality of generated summaries. We designed experiments to compare the proposed method
with baseline models on the CNN/DM datasets. The experiment results show that the proposed method is
superior to abstractive baseline models in terms of the scores on ROUGE evaluation metrics, and achieve a
summary generation performance comparable to the extractive baselinemethod. Though qualitative analysis,
the summary quality of the propose method is more readable and less redundant, which agrees well with our
intuition.

INDEX TERMS Automatic text summarization, attention mechanism, Seq2Seq, syntactic parsing.

I. INTRODUCTION
Advancements in digital technologies have revolutionized the
way information is produced and delivered, and people are
confronted with overwhelming information every day, which
is far beyond the range that people can efficiently handle and
digest. This situation is called information overload. Effi-
ciently extracting and understanding valuable information
has become an urgent need, which bring into the birth of
automatic text summarization technology.

Automatic Text summarization is a process that takes
source texts as input and outputs the most important content
in a condensed form [1]. People may get the fist of texts
in a shorter time by only reading text summaries. In the
1950s, Luhn proposed the first automatic text summarization
system [2]. Limited by the computer performance at that
time, only statistical information such as word frequency is
used to extract sentences in the original text. From then on,
automatic text summarization began to attract attention of
researches [3].
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Automatic text summarization methods can be broadly
divided into extractive methods and abstractive methods.
Extraction methods directly extract sentences or segments
from the original text to form a summary, whereas abstractive
methods generate new sentences according to the semantic
information of original texts. With the development of neural
networks in recent years [4]–[7], the focus on abstractive
summarization methods has gradually surpassed extractive
methods [8].

Automatic text summarization also benefits from great
achievements made in other branches of natural language
processing (NLP) [9]. Among others, leaps were made
from statistical machine translation to neural machine
translation, from bag-of-words models to large pre-trained
context-sensitive deep neural language models. While the
achievements above have further promoted the development
and application of automatic text summarization technology,
how to further improve the generation quality of automatic
text summarizers remains a hot topic.

The vast majority of abstractive automatic text sum-
marization models based on deep neural networks adopt
sequence-to-sequence (Seq2Seq) frameworks [10]. Seq2Seq
frameworks consists of an encoder and a decoder.
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Compared to traditional neural networks for text summa-
rization, Seq2Seq frameworks go through a same proce-
dure as people are writing summaries, which contains two
steps, ‘‘reading comprehension’’ and ‘‘writing a summary’’.
The encoder encodes important information of an input
text sequence, which is called ‘‘reading comprehension’’
step. Then, the decoder decodes the important information
encoded in the output of encoder into a shorter text sequence,
which is the step of ‘‘writing a summary’’.

In the ‘‘reading comprehension’’ step, a recurrent neural
network (RNN) usually serves as the encoder. RNNs process
the input text sequentially. From a linguistic point of view,
however, each text has its syntactic structure and can be
seen as a whole of segments with different meanings formed
by a tree structure, where each segment has its own unique
attribute, such as attributive clause, noun phrase, etc. To the
best of our knowledge, there is no relevant research consider-
ing the whole syntactic structure of the input text in summary
generation.

In news summarization, a special but dominant appli-
cation scenario in automatic text summarization, the news
headline and category are usually provided along with the
news content. The headline contains salient information of
the news, but among existing applications of the CNN/DM
news dataset, there is no work on leveraging the headline
information to assist the summary generation.

In a text, some words/phrases convey more important
information and are more likely to appear in a summary
than their less important counterparts. To identify impor-
tant words/phrases, attention mechanism [11] is employed in
decoder. The attention mechanism, however, may focus too
much on some specific words/phrases and generate them in
the summary repeatedly, and incurs the redundancy problem.
This paper mainly studies abstractive text summarization

and proposes several improvements that address critical prob-
lems that are not adequately modeled by the basic Seq2Seq
framework. The main contributions are as follows.

First, we proposed a syntax-augmented encoder, which
leverages a Recursive Neural Network (ReNN) layer to
embed complete syntactic structure information of a sentence
and incorporates the structure embedding in the sentence
embedding. We also propose a syntactic unit attention mech-
anism that cooperates with the decoder at the decoding stage
to guide summary generation.

Second, for an input text with its headline available, e.g.
a news article, we propose headline-aware summary gener-
ation method which allows to obtain additional and precise
key information from the headline.

Finally, to prevent repeatedly generating same
words/phrases, we proposed a Dual-memory-cell LSTM
network to record in the decoding stage both the already
generated summary and the content to be generated.

The rest of the paper is organized as follows. We describe
related work in Section II and explain the proposed method in
Section III. We conduct experiments in Section IV and then
add summary and discussion in Section V.

II. RELATED WORK
We survey here abstractive text summarizationmethods using
Seq2Seq frameworks, which are most relevant to our work.

In 2015, Rush et al. [12] first proposed to use a Seq2Seq
neural networks for generating text summaries, which cre-
ated an era of abstractive text summarization. From then on,
the vast majority of neural abstractive summarization models
adopt the Seq2Seq framework. In such models, an encoder
encodes the input text as a vector representation, which is
then fed into a decoder to obtain the summary. Encoder
determines how much relevant information is extracted, and
decoder determines howmuch the model can restore the most
important information. Therefore, the choice of encoder and
decoder directly determines the pros and cons of the text
summarization methods.

The first Seq2Seq text summarizer [12] employ a CNN
as the encoder and a feed-forward neural network as the
decoder. Subsequently, RNN was considered to be a more
suitable encoder choice because of its better ability to process
sequence input [13], [14]. To further enhance the model’s
ability to encode long sequences, RNN are replaced with
LSTM [15]–[19]. Cao et al. [20] used syntactic parsing
results to construct a binary tree, and encoded it with a ReNN
to obtain a vector representation for sentence extraction.
This method is similar to our proposed syntax-augmented
encoder, but only uses the traversal order of the binary tree
to represent the original word order, which lacks the power
of retaining the complete structural information of sentences.
In addition, no attention mechanism is used to assist the
summary generation. Song et al. proposed a LSTM variant
[21] and applied it to the generation model from AMR graph
to text, as traditional LSTM model will lose the structure
information when linearizing the AMR graph. The LSTM
variant directly encode the graph-level semantics. Our pro-
posed syntactic parsing tree encoder is partially inspired by
this idea.

The decoder also undergoes a process from feedforward
neural network, to deep feedforward neural network RNN,
and then to LSTM, with the depth of models gradually
deeper and the model structure more complicated. Recently,
Zhao et al. [22] propose a variational neural decoder (VND)
text summarization model. The model introduces a series of
implicit variables by combining variational RNN and varia-
tional autoencoder, which is used to capture complex seman-
tic representation at each step of decoding. The model can
better capture the complex semantics and the strong depen-
dence between the adjacent time steps when outputting the
summary, thereby improving the performance of generating
the summary.

There also have been efforts to improve the performance
of Seq2Seq text summarizers. Nallapati et al. [13] replicated
the success of the attention mechanism in machine trans-
lation [11], applied the Seq2Seq model and Soft Attention
mechanism to automatic text summarization, and achieved
remarkable performance improvements. To cope with the
problem of insufficient memory capacity of long text
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summaries in traditional RNN encoders, Celikililmaz pro-
posed a multi-agent method [23], where each agent is equiv-
alent to an independent encoder. The original text is divided
intomultiple parts, each of which uses an agent for processing
and multiple agents will pass information in deep layers.
In this way, the length of the sequence that RNN need to
process decreases, while the full text information is retained
as much as possible. This method uses a hierarchical atten-
tion mechanism in the decoder to calculate attention weights
for different encoders and different words in text sequences
processed by each encoder. Existing Seq2Seq models tend
to memorize words and patterns in training data sets, rather
than learning the meaning of words. Therefore, the generated
sentences are usually grammatically correct, but semantically
inappropriate. Ma et al. [24] introduced a novel Seq2Seq
model called word embedding attention network (WEAN).
The model generates words by querying the distributed word
representations (that is, neural word embeddings), i.e., using a
method similar to attention mechanism to select semantically
similar words in the vocabulary as outputs. Li et al. [25] pro-
pose a multi-head attention summarization (MHAS) model
to address the problems of duplicate and missing original
information. The MHAS model consider the previously pre-
dicted words when generating new words to avoid generating
a summary of redundant repetition words. And it can learn
the internal structure of the article by adding self-attention
layer to the traditional encoder and decoder and make the
model better preserve the original information. They also
integrate the multi-head attention distribution into pointer
network creatively to improve the performance of the model.
Song et al. [26] propose an LSTM-CNN based Abstractive
Text Summarization framework (ATSDL) that generate new
sentences by extracting and assembling semantic phrases
from the original text. They use sequential information of
phrases to alleviate the problem of rare words, whereas the
structural information of semantic units is utilized in our
method. Guo et al. [27] propose an MS-Pointer Network,
which employs the multi-head self-attention mechanism in
the encoder to extract more semantic features for the sum-
mary and a pointer network to solve the out of vocabulary
problem. Kouris et al. [28] propose a novel framework for
enhancing abstractive text summarization by combining a
traditional seq2seq model with semantic data transforma-
tions. The framework consists of three parts, a theoretical
model for producing semantic-based generalized summary,
and a methodology to transform the generalized summary
into human-readable form. The innovation of our method is
the improvement of the Seq2Seq framework, i.e., an encoder
that combines complete sentence grammatical structure infor-
mation, and a decoder with an attention on the headline of
a input text and a Dual-memory-cell LSTM network that
memorize both the already generated and to be generated
parts of a summary.

Readers may refer to [9], [29], [30] for a comprehensive
discussion on abstractive text summarization.

III. SYNTAX-AUGMENTED AND HEADLINE-AWARE TEXT
SUMMARIZATION MODEL
In this section, we introduce an abstractive Seq2Seq sum-
marization model, which consists of a syntax-augmented
encoder and a headline-aware decoder. We first introduce the
architecture of the model, then the model structure of the
encoder and decoder.

A. MODEL ARCHITECTURE
The proposed summarization model is shown in Fig. 1, which
consists of an encoder and a decoder:
• In the encoder, for each sentence in an input text,
an embedding layer embeds both the sentence and the
syntactic parsing tree of the sentence itself into a sen-
tence embedding. All sentence embeddings are then
passed to a Bi-LSTM layer to produce an embedding of
the input text. In the meantime, a syntactic unit attention
mechanism is applied to compute attentions for each
syntactic unit in a syntactic parsing tree.

• In the decoder, we use an LDA model to encode the
headline of an input text into a headline vector, which
is used to calculate a joint attention with the syntactic
unit attention from the encoder part. Meanwhile, a Dual-
memory-cell LSTM network is used to alleviate the
redundancy problem while generating the summary.

We detail these two parts in the following.

B. ENCODER
The encoder consists of an embedding layer for both the sen-
tences and the syntactic parsing trees of sentences, a BiLSTM
layer for text encoding, and an attention layer for syntactic
units.

1) EMBEDDING LAYER
Suppose we have a set of input texts T = 〈t1, . . . , tm〉, where
tj denotes the j-th text in T , and m = |T | the number of
texts in T . Given a text t = 〈sent1, . . . , sentn〉 where senti
is the i-th sentence of text t , n represents the number of
sentences in t .
Syntactic parsing is one of the key underlying technologies

in natural language processing and its basic task is to deter-
mine the syntactic structure of sentences or the dependency
between words in sentences. Syntactic parsing tree is one of
the representations of the syntactic parsing result of a sen-
tence, which carries more semantic and syntactic information
compared with characters, words, or phrases. The syntactic
parsing tree of t is denoted as pt = 〈tree1, . . . , treen〉, where
treei denotes the syntactic parsing tree of senti. We use Stan-
ford CoreNLP [31] to obtain the syntactic parsing tree of a
sentence. Fig. 2 shows the syntactic parsing tree of a sentence
‘‘I love cats’’. In syntax, words, phrases and sentences are
called syntactic units, where the word is the smallest one, and
the sentence is the largest one.

In a syntactic parsing tree, each node has a data structure as
is shown in Table 1, which contains a syntactic tag, a pointer
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FIGURE 1. Architecture of syntax-augmented and headline-aware text summarization model.

FIGURE 2. An example of a syntactic parsing tree of a sentence.

to its parent node, a word in the sentence for a leaf node,
and a reference to each of its child node for a non-leaf node.
In Fig. 2, ROOT , S, NP and so on are syntactic tags.
Based on the analysis above, the representation of a text

should also retain its syntactic structure information besides
the representation of words in the text.

We employ embedding method to avoid the data dimen-
sion being too high and to preserve the semantic distri-
bution of the original data. We define three operations to
fulfil this task, as is shown in Fig. 3. A node embedding

operation embed the syntactic unit and the tag of a node
into vectors, a node mapping operation is used to com-
bine the syntactic unit embedding and the tag embedding,
and a node merging operation outputs the syntactic unit
embedding of a given node by accepting as input the results
of node mapping of node embeddings of its child nodes.
By recursively using the three operations from the ROOT
node of a syntactic parsing tree, we finally acquire the
node embedding of ROOT, which is also the embedding of
a sentence.
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TABLE 1. Data structures of nodes in a syntactic parsing tree.

FIGURE 3. An example of a node operations in the embedding layer.

a: NODE EMBEDDING
In Fig. 2, each node contains a syntactic tag to convey its
syntactic characteristics, and a syntactic parsing tree implies
the syntactic structure of a sentence. For example, a SINV
tag means that current node is an inverted sentence, a VP tag
means that current node is a verb phrase, and a S tag indicated
a sentence. As the number of tags in syntactic parsing trees
is much smaller than the number of words and they are
semantically different, we use two embedding matrices to
embed words and tags respectively.

Assume that Tvt×dt is the embedding matrix for tags, vt
is the number of tags, and dt is the dimension of a tag
embedding. Assume that Eve×de is the embedding matrix for
words, and ve is the number of words, de is the dimension of
a word embedding. The tag embedding and word embedding
of leaf node i in a syntactic parsing tree are respectively vtagi
and vwordi :

vtagi = T [tagi] (1)

vwordi = E[wordi] (2)

Using the above equations, tags and words of leaf nodes
in the tree are embedded into vectors. Since embeddings
of syntactic units in non-leaf nodes are calculated by the
node merging operation (as we will see afterwards) on their
child nodes, only embeddings of tags in none-leaf nodes are
calculated using (1). To compare with baseline methods in
Section IV, instead of using pre-trained word embeddings,

we jointly train the embedding layer with the rest layers in
our model.

b: NODE MAPPING
In order to retain syntactic structure information for summa-
rization, we combine each syntactic unit with its correspond-
ing tag with the node mapping operation. The syntactic unit
embedding and the tag embedding are used as input, and the
output is transferred to the node merging operation as input.
The output of the ROOT node is used as the representation
of the syntactic parsing tree of the sentence. The calculation
equation is as follows.

vnode = tanh(Dense([vtag; vsu])) (3)

where [; ] denotes concatenation of vectors, vsu is the syntac-
tic unit embedding of current node, and vnode is the result of
the node mapping operation and we call it the node represen-
tation or node vector. We use a tanh activation function to fit
the non-linear relation between the syntactic unit embedding
and the tag embedding.

There is still a problem to be solved. The syntactic parsing
tree for a complex sentence may have a large depth. When
using backpropagation to train parameters of this model, too
deep the tree structure makes it hard for the loss to propagate
to the deeper part of the parsing tree. We thus add the average
value of node representations of its children, as is shown
below.

vm = vm + sum([v1, . . . , vn]) (4)

where vi represents the node representation of the i-th child
of current node.

c: NODE MERGING
For a node in a syntactic parsing tree, the syntactic unit in
it is composed of syntactic units in its child nodes, down to
the words of leaf nodes. To get the embedding of a syntactic
unit, we need to process each syntactic unit composing it
in sequence, and thus use a LSTM layer which is more
suitable for processing such sequence information. As the
node merging operation is same for all syntactic units, a same
LSTM is used with shared weights.

Suppose that a node in a parsing tree contains a sequence
of child nodes with 〈v1, . . . , vn〉 their node representations,
then its syntactic unit embedding is calculated as

hout = LSTM (〈v1, . . . , vn〉, h0) (5)

where the initial state h0 of the LSTM network is set to zero.
A sentence embedding thus can be obtained by recursively

performing the above three node operations on the parsing
tree of the sentences in the input text, starting from the root
node. Syntactic parsing trees cannot be handled by ordinary
neural networks.We therefore use ReNN to map the syntactic
parsing tree of a sentence to a sentence embedding.

The node representations and sentence embedding are
passed to the decoder for calculating the attention weights in
the decoding stage.
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2) BiLSTM LAYER
After obtaining embeddings of sentences in a text t , we use a
BiLSTM (Bidirectional Long Short Term Memory) layer to
calculate the semantic representation of the text t . BiLSTM
is a variant of LSTM that has been shown to perform well
on various sequential input tasks. BiLSTM maintains two
separate states that are generated by two different LSTMs
by feeding in inputs forwardly and backwardly. The idea
behind bi-directional network is to capture information of
contextual information. In comparison to LSTM, BLSTMhas
two networks and run inputs in two ways, one from past to
future and another from future to past, whereas LSTM has
one network which processes inputs forwardly only.

3) ALGORITHM OF ENCODER
The algorithm of syntax-augmented encoder is shown in
Algorithm 1.

Algorithm 1 Syntax-Augmented Encoder Algorithm
Input: Syntactic parsing trees pt = 〈tree1, . . . , treen〉 of

the input text t = 〈sent1, . . . , sentn〉, each with a
root node rooti

Output: vector of doc, hidden of sentence
1 for each treei ∈ t do
2 node_vecsi = ∅;
3 sent_veci, node_vecsi = GetVec(rooti);
4 end
5 t_vec = Bi-LSTM ({sent_veci});
6 return t_vec, {node_vecsi};

In line (2), we define, for each syntactic parsing tree treei,
an empty vector list nodes_veci for accommodating vectors of
nodes in treei. Then, in line (3), by using a recursive function
GetVec (see Algorithm 2), we obtain the representation of
treei as well as node vectors. In line 5, we use BiLSTM
on all sentence vectors to obtain the representation t_vec
of the text t . The obtained node vectors and the text vector
are passed to the decoder as parameters in attention weight
calculation.

Line (3) and (4) are the process of Node Merging, line (7)
corresponds Node Embedding, Whereas line (9) is Node
Mapping operation.

4) HIERARCHICAL ATTENTION MECHANISM
We have incorporated the structural information of the input
text in the encoder. In fact, this structural information can
also be used in the decoder. We propose a syntactic unit
attention mechanism, which provides attention on nodes in a
syntactic parse tree and is beneficial to obtain richer semantic
information in the decoding stage. It is different from tra-
ditional attention mechanism that only provide attention on
words [11], [32].

In a typical syntactic parsing tree, most non-leaf nodes are
phrases, whereas leaf nodes are individual words. In order to

Algorithm 2 GetVec Function
Input: A node node of a syntactic parsing tree
Output: The representation of the node and its subnodes

1 sub_nodes = ∅;
2 if node has children then
3 sub_nodes = [GetVec(child) for child in

node.children];
4 sub_node_vecs = LSTM (sub_nodes);
5 end
6 else
7 sub_node_vecs = Embedding(node.word);
8 end
9 node_vec = MLP(sub_node_vecs)+
sum(sub_nodes)/|node.children|;

10 node_vecs.append(node_vec);
11 return node_vecs;

obtain phrase information in decoding stage, node representa-
tions are used for attention calculation in the decoding stage.

Considering texts in CNN/DM dataset are all news articles,
which are of a longer length and contain more sentences than
regular texts, we employ a hierarchical attention mechanism.
The first layer calculates attention weights on sentences, and
the second layer calculates attention weights on syntactic
units in each sentence. For example, for a common RNN
decoder, the attention calculation for the time step in the
decoder is as follows.

eij = vT1 tanh
(
W1si−1 +W2nodej

)
(6)

sentij = vT1 tanh
(
W3si−1 +W4outputj

)
(7)

node_wtij =
exp

(
eij
)∑Ni

k=1 exp (eik)
(8)

sent_wti =
exp

(
senttj

)∑n
k=1 exp (senttk)

(9)

sent_ctxi =
Ni∑
j=1

node_wtij × nodeij (10)

ctx_vect =
n∑
i=1

sent_wti × sent_ctxi (11)

where si−1 is the output of the i− 1 time step of the decoder,
nodeij represents the j-th node in the syntactic parsing tree of
the i-th sentence, and outputj represents the output state of
the j-th sentence. Finally, the output of the next time step is
predicted by using the syntactic unit attention mechanism in
the decoder.

st = Decoder(st−1, context_vectort ) (12)

After calculating the attention weight on each sentence and
the attention weight on each syntactic unit within each sen-
tence, the two are weighted and summed to get the attention
vector of syntactic units related to the original text.
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C. HEADLINE-AWARE DECODER
In automatic text summarization, how to determine the impor-
tant information in the input text is an important issue. In the
field of news summarization, where automatic text summa-
rization technologies are widely used, a news article often
has amanually-written headline, which generally contains the
central idea of the text. We thus propose a headline-aware
decoder that uses headline information during the decoding
stage to generate a summary that is closer to the important
information of the input text.

When generating text summaries, as important information
is assigned greater attention weights, the generated summary
always has repetitive content. The use of headline-aware
method will aggravate this situation. We propose a Dual-
memory-cell LSTM to alleviate the redundancy in sum-
maries. The decoder part in Fig. 1 shows the headline-aware
method and the improved LSTM.

1) HEADLINE EMBEDDINGS
We first use an LDA topic model [33] to transform the
headline into a topic vector, through which we can generate
summary content closer to the topic in the decoding stage.
LDA is a generative probability model of a corpus. It assumes
each textw in a corpus is generated by the following process:

1) Choose N ∼ Poisson(ξ ), i.e., choose the length N of w
from a Poisson distribution with parameter ξ .

2) Choose θ ∼ Dir(α), i.e., choose a parameter θ from a
Dirichlet distribution with parameter α.

3) For each word wn in w, a
a) Choose a topic zn ∼ Multinomial(θ ), i.e., choose

a topic from a multinomial distribution with
parameter θ .

b) Choose a word wn from p(wn|zn, β), a multino-
mial probability conditioned on the topic zn.

LDA topic model assumes the relationship between each
text and multiple topics is a multinomial distribution, which
is denoted as Multinomial(θ ). The relationship between each
topic and the thesaurus is also a multinomial distribution
conditioned on the topic, which is denoted as p(wn|zn, β).
By training these two distributions on headline-topic pairs in
the training data, we obtain the topic distribution vectors for
all headlines.

2) HEADLINE-AWARE ATTENTION MECHANISM
The topic distribution vector of a headline is then added to
the summarization model. In the decoding stage, the decoder
calculate attention not only on the output of previous step,
but also on the headline at current step, and the concatenation
of the two attention results serve as part of the input of
next step.

Just as usually happens in regular attention mechanism,
adding attention on headlines may lead to repetitive gen-
eration of headline content in the summary. To avoid this,
we need to leverage already generated information. There-
fore, different from the regular attention mechanism, we use

hidden states of previous time step of the decoder when
calculating attention on the headline as follows.

vh = LDA(headline_text) (13)

d = vTa tanh
(
W1vh +W2st−1

)
(14)

βj =
exp

(
dst−1j

)
∑m

k=1 exp
(
dst−1k

) (15)

ct =
m∑
j=1

βjst−1 (16)

wherem represents the size of decoder memory cell, st−1 rep-
resents the memory information output of previous step. This
attentionmechanism calculates the headline’s attention on the
memory information. We combining the headline attention
with regular attention as follows.

s′t = Attention ([xt ; st ; ct ] , encoder_states) (17)

ht = Decoder
(
xt , s′t

)
(18)

3) DUAL-MEMORY-CELL LSTM
When applying Seq2Seq framework in generation tasks, such
as text summarization and machine translation, we usually
use LSTM as decoder with attention mechanism to obtain the
weighted averaged attention of the output of encoder. How-
ever, this kind of network is prone to generate duplicate text,
which makes the generated summary highly redundant. In the
headline-aware decoder, the headline contains highly central
information, which will aggravate duplicate output of salient
contents in the original text. We propose a Dual-memory-cell
LSTM to alleviate the problem of output redundancy. The
network structure of it is shown in Fig. 4.

When people write summaries, they often first read for
understanding the article, and then write the summary based
on their understanding. During the writing process, they com-
pare the full text with the content they write to determine the
content to write subsequently. However, traditional LSTM
network cannot simultaneously memorize the output of the
previous time step and global information.

In a text summarization decoder using traditional LSTM,
the input of the memory cell in the first time step is from
the last state of the memory cell of the encoder, which can
be regarded as containing full semantic information of the
original text. With the decoding proceeding, the memory
cell of each time step contains the residual information of
the original text (to be generated). However, the decoder is
unable to associate the already generated information with
information to be generated.

We thus propose a Dual-memory-cell LSTM network.
Compared with the traditional LSTM network, the input gate,
forget gate and output gate of the improved LSTM network
remain unchanged. The forget, input and output vectors are
calculated by using the hidden state output of previous time
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FIGURE 4. Dual-memory-cell LSTM.

step and the input of current time step as follows.

Ft = σ
(
Wf Xt + UfHt−1 + bf

)
(19)

It = σ (WiXt + UiHt−1 + bi) (20)

Ot = σ (WoXt + UoHt−1 + bo) (21)

In the network (see Fig. 4), the memory cell C memorizes
the content to be generated. The state update of memory cell
C remains the same as regular forget method, whereas its
input changes from the original addition by elements to the
subtraction by elements.

Ct = Ft ◦ Ct−1 − It ◦ tanh (WcXt + UcHt−1 + bc) (22)

The newly introduced memory cell S is used to memorize
the already generated content. In contrast to memory cell
C , in the forget gate, the content forgotten by C should be
retained. Therefore, we use 1 subtract by elements the forget
gate output Ft to obtain the forgotten content opposite to C .
In addition, to memorize all the output, it is necessary to keep
in S the subtracted content from C .

St = (1− Ft) ◦ St−1 + It ◦ tanh (WcXt + UcHt−1 + bc)

(23)

Combining the memories of two memory cells, the output of
current time step is calculated as follows.

Ht = Ot ◦ tanh ([Ct : St ]) (24)

The Dual-memory-cell LSTM network use two memory
cells to respectively transmit and process the information to
be generated and already generated in a certain time step.
By avoiding generating redundant information, it generates
other important information. Furthermore, combining with

TABLE 2. CNN/DM dataset.

the headline-aware attention, more accurate attention calcu-
lation results for the full-text information are obtained.

IV. EXPERIMENTS
We introduce our setups of the CNN/DM dataset, present the
baseline methods, and finally analyze experimental results.
The model is implemented with MXNet [34] and the source
code is available at: https://github.com/theDoctor2013/
SA-HA-Sum.

A. DATASET AND EXPERIMENT SETUP
1) DATASETS
The CNN/DM dataset [35] is one of most common datasets
for abstractive text summarization task, which collects
100000 news data fromCNNwebsite and about 200000 news
data from Daily Mail website. The dataset scale and division
quantity are shown in Table 2.

2) MODEL SETUPS
We adopt a general sequence loss function which is the
average of the vocabulary losses in the actual summary. The
vocabulary loss of i-th word is the cross-entropy loss over
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TABLE 3. Hyperparameters of syntax-augmented encoder.

vocabulary.

pi = Softmax (predi) (25)

loss = −
1
L

L∑
i=1

labeli log (pi) (26)

where predi is the i-th step output of text summarization
model, and labeli is the embedding of i-th word in the ref-
erence summary, L is the length of the reference summary.

The hyperparameters used in the model are shown in
the following two tables, where Table 3 contains hyper-
parameters for the syntax-augmented encoder, and Table 4
contains hyperparameters for the headline-aware decoder.
In our experiments, we choose not to use pre-trained word
embeddings, but use the word_emb_size hyperparameter
in Table 3 (Table 4) to construct a embedding layer in
the encoder (decoder) and train the parameters jointly with
other layers. The hyperparameters are self-explained by their
names. For example, su_attn_units stands for syntactic unit
attention unit size.

As the structure of the syntactic parsing tree of each
sentence varies, it is impossible to process multiple sen-
tences at the same time. We thus specify batch_size =
1 when training the Syntax-augmented encoder. The
batch_size for Headline-aware decoder is specified accord-
ing to model complexity and the memory size of
GPU. The epoch_num is determined when the validation
log-likelihhood does not improve for an epoch. We choose
optimal learning_rate with the Adam initial learning rate in
{0.1, 0.07, 0.02, 0.01, 0.005, 0.002, 0.001}. We choose opti-
mal BiLSTM_dim and decoder_lstm from {128, 256, 512}
and optimal merging_LSTM_dim, sent_attn_units and
su_atten_units from {64, 128, 256}.

Other hyperparameters are determined based on experi-
ence. For example, the vocab_size is set to 20k, which covers
most commonly used words; topic_num is set to 64 based
on the number of categories in most news datasets. The
beam size is set to 64 by considering the balance between
performance and training time.

3) BASELINE METHODS
In order to verify the validity of proposed model, we compare
with three classic baseline methods.

• A summarization model proposed by Rush et al. [12]
with an attention-based encoder.

TABLE 4. Hyperparameters of headline-aware decoder.

• The Seq2Seq summarization model proposed by Nalla-
pati et al. [13], where the encoder uses a bidirectional
GRU and the decoder performs attention calculation on
all hidden states of the encoder. The reason we select this
model for comparison is that the Seq2Seq framework
used in this model has no additional structure, and can
be compared with the proposed model.

• Lead-3 [36] is an extractive method which directly
extract the first three sentences of the input text as the
summary. Using this method as a baseline is to compare
models with the simplest extraction method to the per-
formance of our abstractive summarization method.

4) EVALUATION METRICS
We use one of the most popular text summary evaluation
methods ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) [37]. This method discriminates the qual-
ity of computer-generated summaries by comparing word
sequences that occur simultaneously in a computer-generated
summary and human-written reference summaries. It con-
tains multiple evaluation strategies, ROUGE-N, ROUGE-L,
ROUGE-W, and ROUGE-S. We use ROUGE-N and
ROUGE-L in our experiments.

ROUGE-N is computed as follows:

ROUGE-N =

∑
S∈RS

∑
gramn∈S Countmatch(gramn)∑

S∈RS
∑

gramn∈S Count(gramn)
(27)

where the denominator is the sum of the number of N-grams
occurring in the reference summaries, and the numerator is
the number of N-grams shared by a computer-generated sum-
mary and reference summaries. Commonly used ROUGE-N
are ROUGE-1 and ROUGE-2. ROUGE-L is a metrics of
Longest Common Subsequence (LCS). ROUGE-L is calcu-
lated as follows:

Rlcs =
LCS(X ,Y )

m
(28)

Plcs =
LCS(X ,Y )

n
(29)

Flcs =

(
1+ β2

)
RlcsPlcs

Rlcs + β2Plcs
(30)

where LCS(X ,Y ) is the length of a longest common subse-
quence of X and Y , and m and n are the length of X and Y .

B. EXPERIMENT RESULT ANALYSIS
We conduct four different types of experiments.
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First, we conduct an ablation experiment to show the effect
of different modules in our model, i.e., SA which indicates
the model uses a Syntax-augmented encoder, HA which
stands for the Headline-Aware attention, and DLSTM which
indicates the Dual-memory-cell LSTM is used. HA-DLSTM,
SA-DLSTM and SA-HA-LSTMS are combinations of two or
three above modules. The experimental results on CNN/DM
dataset are shown in Table 5, which are F1 values. The upper
three rows are results of baseline models.

TABLE 5. Comparison of rouge scores on CNN/DM dataset.

We can see from Table 5 that, by introducing Syntax-
augmented encoder (SA), our model achieves much better
ROUGE scores than abstractive baseline models [12], [13].
Our model with SA and DLSTM improves the ROUGE
scores further. Our best model (SA-HA-DLSTM) surpasses
baseline models more than 3 points in average.

As is shown in Table 5, Our best model (SA-HA-DLSTM)
achieves higher score than the extractive baseline Lead-
3 on ROUGE-L metrics and achieves comparable scores
on ROUGE-1 and ROUGE-2 scores. Maybe it is because
abstractive models predict the output words according to the
word vector distribution, though similar to in semantics, but
fails to generate the original words. Another possible reason
is not dealing with OOVwords. Therefore, compared with the
Lead-3 method, the short segments (1-gram or 2-gram) gen-
erated by our models are often different from those in the ref-
erence summaries, which may affect the generation accuracy
of the segments evaluated by ROUGE-1 and ROUGE-2 to a
certain extent. In addition, due to the writing habits of news
articles, which often summarize the full text at the beginning,
Lead-3 achieves higher scores on CNN/DM dataset.

To the best of our knowledge, most up-to-date abstractive
methods fail to outperform extractive methods on CNN/DM
dataset [26], [27]. In addition, See et al. [15] also offered
two explanations for these observations. Firstly, news arti-
cles tend to place important information at the beginning,
which partially explains the strength of the lead-3 baseline.
Secondly, the nature of the task and the ROUGE metric
make extractive approaches and the lead-3 baseline difficult
to beat.

The second experiment compares the summary redun-
dancy generated by traditional LSTM and our proposed
Dual-memory-cell LSTM. The redundant text problem has
always been a hard-to-crack issue in neural-network-based
text summarization model, that is, there are repetitive con-
tent in the generated summary. This is because the atten-
tion weight and generation operation in complex networks

always incline to focus only on important information in
the original text, which lead to repetitively generating same
important contents.

We compare the proportions of the duplicate segments
in the output summaries of traditional LSTM decoder and
our proposed Dual-memory-cell LSTM as decoder, and the
reference summaries, as is shown in Fig. 5.

FIGURE 5. Comparison of summary redundancy.

We compare repetitions of five segment lengths, namely,
1-gram, 2-gram, 3-gram, 4-gram and whole sentence rep-
etition. The model using traditional LSTM decoder has
the highest repetition rate. When using Dual-memory-cell
LSTM, the repetition rates of all segment lengths drop signifi-
cantly, which proves its effectiveness. The Dual-memory-cell
LSTM, by recording the output history of the decoder with a
newly introduced memory cell, retains the history informa-
tion of already generated summary and deletes the informa-
tion from memory cell of to be generated.

The third experiment is a qualitative analysis of gener-
ated summaries. We select several news articles from CNN
test set to evaluate if the proposed methods have achieved
improvement in the quality of summaries. We compared the
reference summary with summaries generated by a baseline
method and our proposed methods. One of the results is
shown in Table 6. The news describes a total eclipse that
occurred at 4:58 a.m. pacific time on the news day. However,
in the baseline model, the generated summary fails to gen-
erate the exact time the total lunar eclipse occurred. In our
proposed model, the time of the total lunar eclipse is correctly
generated. At the same time, since the ‘‘shortest total lunar
eclipse’’ is mentioned in the headline, the summary generated
by the headline-aware decoder extracts descriptions about
‘‘the shortest total lunar eclipse of the century’’. In addition,
from Table 6, in the summary generated by the baseline
model, the sentence ‘‘a total lunar eclipse for nearly five
minutes.’’ is repeatedly generated, whereas there is no serious
redundancy in our methods.

The fourth experiment is the human evaluation of the read-
ability, relevance, and grammatical correctness. We invite
5 students in our lab to serve as human evaluators. To per-
form this evaluation, we randomly sampled 100 examples
from the CNN/DM dataset, each contains the original article,
the reference summary as well as summaries generated by
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TABLE 6. Comparison of summaries by different models.

TABLE 7. Comparison of the human readability, relevance, and
grammatical correctness on a random subset of the CNN/DM
dataset.

our proposed models. Human evaluators are not informed
which summaries come from which model or which one
is the reference summary. Each human evaluator assigns
for each summary three scores between 1 to 10 to indicate
its readability (how well-written the summary is), relevance
(how well does the summary capture the important parts
of the article), and grammatical correctness, respectively.
For the grammatical correctness metrics, a summary with
no grammatical error is scored 10. Each time an error is
found, the score is reduced by 1, and the minimum score
is 0. Our human evaluation results are shown in Table 7.
The results are averaged across all examples and human
evaluators.

The summary generated by our best model (SA-HA-
DLSTM) achieves the best score and outperforms the ref-
erence summary on readability. The main reason maybe the
length of the summary. As is shown in the example of Table 5,
the reference summary consists of short and truncated sen-
tences, whereas generated summaries by our models tend to
contain more long sentences. On the other hand, by intro-
ducing Headline-Aware attention (HA), the relevance score
improves 0.54 point and is comparable to that of the reference
summary. The most common grammatical error is tense error.
There is no significant difference in grammatical correctness
for generated summaries.

V. CONCLUSION AND FUTURE WORK
We propose several improvements that address critical prob-
lems in summarization that are not adequatelymodeled by the
basic Seq2Seq framework. We propose a syntax-augmented
encoder and a headline-aware decoder. In the encoding stage,
the syntactic structure information is incorporated in sen-
tence embeddings, and the attention on syntactic units are
combined with the attention on sentences to guide the sum-
mary generation. In the decoding stage, we propose a head-
line attention mechanism to focus on salient information in
the headline. In addition, by employing Dual-memory-cell
LSTM layer in the decoder, both the already generated part of
summary and the content to be generated are memorized to
avoid redundant content generation. The experiment results
agree well with our design intention of the framework.

Future directions include designing a flexible data structure
to accommodate syntactic parsing trees with different struc-
tures to enable batch training, and integrating the syntactic
parsing model and text summarization model to achieve joint
training.
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