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ABSTRACT Coded caching schemes with low subpacketization and small transmission rate are desirable in
practice due to the requirement of low implementation complexity and efficiency of transmission. Placement
delivery arrays (PDA in short) can be used to generate coded caching schemes. However, many known coded
caching schemes, which have low subpacketizations, realized by PDAs do not fully use the users’ caching
content to create multicasting opportunities. So we propose a method to overcome this drawback. As an
application, we obtain a new scheme, which has significantly advantages on the tradeoff between memory
ratio and transmission rate.

INDEX TERMS Coded caching scheme, placement delivery array, memory ratio, subpacketization.

I. INTRODUCTION
The wireless networks have been imposed tremendous pres-
sure on the data transmission during the peak traffic times
due to the explosive increasing of mobile services, especially
the video streaming. A coded caching scheme, which has
been recognized as an efficient solution to reduce this tremen-
dous pressure, was proposed in [1] and has been rapidly
used to in various settings such as cache-aided combination
networks [2], D2D networks [3], hierarchical networks [4],
insecure channel [5], among others.

A. SYSTEMS MODEL
In a centralized (K ,M ,N ) coded caching system
(see Figure 1), a single server containing N independent files
with the same length connects to K users over a shared link
and each user has a cache memory of size M files, N ≥ K .
Denote the N files byW = {W0, . . . ,WN−1} and K users by
K = {0, . . . ,K−1}. An F-division (K ,M ,N ) coded caching
scheme consists of two phases as follows [1]:

The associate editor coordinating the review of this manuscript and
approving it for publication was Xijun Wang.

• Placement phase: During the off peak traffic
times, each file is divided into F equal packets,
i.e., Wi = {Wi,j : j = 0, 1, . . . ,F − 1}. Then each user
caches some packets (or linear combinations of packets)
from the server. If packets are cached directly, it is called
uncoded placement; if linear combinations of packets
are cached, we call it coded placement. Denote Zk the
contents cached by user k . In this phase we assume
that the server does not know the users’ requests in the
following phase.

• Delivery phase: During the peak traffic times, each
user randomly requests one file from the files set
W independently. The request vector is denoted by
d = (d0, · · · , dK−1), i.e., user k requests the dk -th file
Wdk , where dk ∈ {0, 1, . . . ,N − 1} and k ∈ K. The
server broadcasts a coded signal (XOR of some required
packets) of size Sd packets to users such that each user
is able to recover its requested file with the help of its
caching contents.

In this article, we focus on the worst-case scenario, i.e., all
the users require different files. In this case, the transmission
rate of a coded caching scheme is defined as the maximal
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FIGURE 1. (K , M, N) coded caching system.

normalized transmission amount among all the requests in the
delivery phase, i.e.

R = max
d∈{0,...,N−1}K

{
Sd
F

}
.

Since the implementation complexity of a coded caching
scheme increases along with its subpacketization level, it is
desirable to design a scheme with the transmission rate and
the subpacketization as small as possible.

B. PRIOR WORK
Maddah-Ali and Niesen [1] introduced the first determin-
istic F-division (K ,M ,N ) coded caching scheme with
F =

( K
KM/N

)
when KM/N is an integer. Obviously, the sub-

packetization F =
( K
KM/N

)
increases rapidly as K increases,

which makes this scheme impractical when K is large. It is
well known that there exists a tradeoff between the transmis-
sion rate and the subpacketization for a fixed number of users
and a fixed memory ratio. Indeed, there are many research
papers focus on constructing the coded caching schemes with
lower subpacketization while sacrificing some transmission
rate, such as [6]–[14], [17], etc.

The first scheme with lower subpacketization compared
with the MN scheme was proposed by Shanmugam et al.
in [15] by grouping method. Yan et al. [6] proposed an F×K
combinatoric structure, which is called a placement delivery
array (PDA), to generate an F-division (K ,M ,N ) coded
caching scheme. Consequently, the MN scheme is equivalent
a special PDA. Furthermore, for any positive integer q > 1,
the schemes with M

N =
1
q and 1 − 1

q respectively were
obtained by constructing PDAs. It is worth noting that the
F and R of the scheme with M

N =
1
q achieves the tradeoff

proposed in [15]. It implies that this scheme maybe the best
and the tradeoff is tight for some parameters. There are
many other constructions focusing on further reducing the
subpacketization by increasing the transmission rate, such
as by the special (6, 3)-free hypergraphs [12], the resolvable
combinatorial design and linear block codes [14], the (r, t)
Ruzsa-Szeméredi graphs [7], [13], the strong edge coloring
of bipartite graphs [9], projective space [16], etc. In [7],
Shanmugam et al. discovered that all deterministicF-division
coded caching schemes can be recasted into a PDA when
K ≤ N . By means of PDA, Cheng et al. [17] showed that the

MN PDA has the minimum subpacketization with minimum
transmission rate among PDAs. There are also many other
results on PDA such as [8], [9], [17]. Very recently there are
several schemes with low subpacketization such as [10], [11],
which can be represented by PDAs.

In fact, a scheme realized by a PDA has uncoded placement
phase, which implies that any two packets cached by a user
are independent. As a result, many cached packets are not
fully used in some well known coded caching schemes real-
ized by PDAs, i.e., do not generate multicasting opportunities
in the delivery phase. Intuitively, for a scheme realized by a
PDA, when the subpacketization F is reduced, this drawback
always exists.

C. CONTRIBUTIONS AND ORGANIZATIONS
In this article, the main idea of the proposed scheme is as
follows. On the observation that some cached contents of
each user are not leveraged in the existing PDA schemes,
we propose to use Minimum Distance Separable (MDS)
code in the cache placement phase such that each user does
not cache these unused cached contents. As a result, the
needed memory ratio is reduced. A similar idea to reduce the
cache redundancy by using MDS coded cache placement was
originally proposed in [2] for the cache-aided combination
network problem.

In order to verify the effectiveness of our method, we take
the strong edge coloring based scheme in [9] as an example,
and obtain a new scheme, which has smaller subpacketization
andmemory ratio than the original scheme in [9]. Simulations
show that under the same memory ratio, the new scheme
has smaller transmission rate and more flexible memory ratio
than the original scheme in [9].

The rest of this article is organized as follows. The relation-
ship between a PDA and a coded caching scheme is explained
in Section II. In Section III we introduce our research motiva-
tion and present the main method. As an application, we con-
struct a new scheme in Section IV. Finally, we conclude the
paper in Section V.

II. CODED CACHING SCHEMES REALIZED BY PDAs
In this article, we use the following notations unless otherwise
stated. We use bold capital letters and curlicue letters to
denote arrays and sets respectively. For any positive integers
m and t with t < m, let [0,m) = {0, . . . ,m − 1} and([0,m)

t

)
= {T | T ⊆ [0,m), |T | = t}, i.e.,

([0,m)
t

)
is the

collection of all t-sized subsets of [0,m).
Next we will give the definition of a PDA, and demon-

strate the relationship between a PDA and a coded caching
scheme.
Definition 1 [6]: For positive integers K ,F,Z and S,

an F × K array P = (pj,k ), j ∈ [0,F), k ∈ [0,K ), composed
of a specific symbol ‘‘∗’’ and S integers in [0, S), is called a
(K ,F,Z , S) placement delivery array (PDA) if it satisfies the
following conditions:

C1. The symbol ‘‘∗’’ appears Z times in each column;
C2. Each integer in [0, S) occurs at least once in the array;
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C3. For any two distinct entries pj1,k1 and pj2,k2 , pj1,k1 =
pj2,k2 = s is an integer only if
a. j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and

distinct columns; and
b. pj1,k2 = pj2,k1 = ∗, i.e., the corresponding 2 × 2

subarray formed by rows j1, j2 and columns k1, k2
must be of the following form(

s ∗

∗ s

)
or
(
∗ s
s ∗

)
.

Theorem 1 [6]: Using Algorithm 1, an F-division
(K ,M ,N ) coded caching scheme with memory ratio M

N =
Z
F

and transmission rate R =
S
F can be realized by a

(K ,F,Z , S) PDA.

Algorithm 1 Caching Scheme Based on PDA in [6]
1: procedure PLACEMENT(P,W)
2: Split each file Wi ∈ W into F packets, i.e., Wn =

{Wn,j | j ∈ [0,F)}.
3: for k ∈ K do
4: Zk ← {Wn,j | pj,k = ∗,∀ n ∈ [0,N )}
5: end for
6: end procedure
7: procedure DELIVERY(P,W, d)
8: for s = 0, 1, · · · , S − 1 do
9: Server sends

⊕
pj,k=s,j∈[0,F),k∈[0,K )Wdk ,j.

10: end for
11: end procedure

Example 1: It is easy to verify that the following array is
a (6, 6, 2, 12) PDA.

P =


∗ 0 1 2 3 ∗

0 ∗ 4 5 ∗ 6
1 4 ∗ ∗ 7 8
2 5 ∗ ∗ 9 10
3 ∗ 7 9 ∗ 11
∗ 6 8 10 11 ∗

 (1)

Using Algorithm 1, we can obtain a 6-division (6, 2, 6) coded
caching scheme in the following way.
• Placement Phase: From Line 2 in Algorithm 1, we have
Wn = {Wn,0,Wn,1,Wn,2,Wn,3,Wn,4,Wn,5}, n ∈ [0, 6).
Then by Lines 3-5, the contents cached by users are

Z0 = Z5 = {Wn,0,Wn,5 | n ∈ [0, 6)},

Z1 = Z4 = {Wn,1,Wn,4 | n ∈ [0, 6)},

Z2 = Z3 = {Wn,2,Wn,3 | n ∈ [0, 6)}.

• Delivery Phase: Assume that the request vector is
d = (0, 1, 2, 3, 4, 5). By Lines 8-10, the server sends
the coded signals in Table 1 at time slots 0− 11.

Remark 1: In a (K ,F,Z , S) PDA P = (pj,k ), j ∈ [0,F),
k ∈ [0,K ), each column represents one user’s caching con-
tents, i.e., if pj,k = ∗, then user k has cached the j-th packet
of all the files. Clearly, it belongs to uncoded placement. The
property C1 of Definition 1 implies that all the users have the

TABLE 1. Delivery steps in Example 1.

samememory size and the memory ratio is MN =
Z
F . If pj,k = s

is an integer, it means that the j-th packet of all the files is
not stored by user k. Then the XOR of the requested packets
indicated by s is broadcasted by the server at time slot s. The
property C2 of Definition 1 implies that the number of signals
transmitted by the server is exactly S, so the transmission rate
is R = S

F . And the property C3 of Definition 1 guarantees that
each user can get the requested packet, since it has cached all
the other packets in the signal except its requested one.

III. NEW SCHEMES FROM PDAs
In this section, based on an appropriate PDA, an improved
scheme with coded placement is proposed.

A. RESEARCH MOTIVATIONS
Let P be a (K ,F,Z , S) PDA. For any integer s ∈ [0, S),
assume that the occurrence number of s is rs, say pju,ku = s,
u ∈ [0, rs), ju ∈ [0,F) and ku ∈ [0,K ). Consider the subarray
formed by rows j0, · · · , jrs−1 and columns k0, · · · , krs−1,
which is of order rs × rs since we have ju 6= jv and ku 6= kv
for all 0 ≤ u 6= v < rs from the property C3 of Definition 1.
Furthermore, we have pju,kv = ∗ for all 0 ≤ u 6= v < rs
from the property C3. Then this subarray is equivalent to the
following rs × rs array

P(s)
=


s ∗ · · · ∗ ∗

∗ s · · · ∗ ∗

...
...

. . .
...

...

∗ ∗ · · · s ∗

∗ ∗ · · · ∗ s

 (2)

with respect to row/column permutation. According to Line
9 in Algorithm 1, the signal

⊕
u∈[0,rs)Wdku ,ju is transmitted

by the server at time slot s, which is simultaneously useful
for rs users. So the occurrence number rs is called the coded
caching gain at time slot s. Clearly we prefer to design a
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scheme with the coded caching gain at each time slot as large
as possible. Furthermore, the stars in P(s) guarantee that each
user can recover its requested packet from the transmitted
signal, so they are useful for generating the coded caching
gain. In other words, for each star in P(s), say pju,kv = ∗where
0 ≤ u 6= v < rs, the packetWdku ,ju , which is cached by user kv
and simultaneously requested by user ku, is helpful for user
kv to recover its requested packet Wdkv ,jv , so it generates a
multicasting opportunity. Therefore, for a star entry pj,k = ∗,
we call it useful if it occurs in P(s) for some integer s ∈ [0, S),
otherwise we call it useless.

In fact, given a PDA, if there exist some useless stars,
we can delete these useless stars and then further reduce
the subpacketization and the memory ratio without reduc-
ing the coded caching gain at each time slot. Now let us see
the array P in (1) again. It is easy to check that the stars at
pj,5−j (j ∈ [0, 6)) of P are useless. We delete all the useless
stars and obtain the following array.

P′ =



∗ 0 1 2 3
0 ∗ 4 5 6
1 4 ∗ 7 8
2 5 ∗ 9 10
3 7 9 ∗ 11

6 8 10 11 ∗

 (3)

According to P′ in (3), we can modify the scheme in
Example 1 as follows.
• Placement Phase: Each file Wn, n ∈ [0, 6), is divided
into 5 packets, say (Wn,0, Wn,1, Wn,2, Wn,3, Wn,4). Let

Wn,5 = Wn,0 +Wn,1 +Wn,2 +Wn,3 +Wn,4.

Using the caching strategy in Lines 3-5 in Algorithm 1,
all the users cache the following contents.

Z0 = {Wn,0 | n ∈ [0, 6)}

Z1 = {Wn,1 | n ∈ [0, 6)}

Z2 = {Wn,2 | n ∈ [0, 6)}

Z3 = {Wn,3 | n ∈ [0, 6)}

Z4 = {Wn,4 | n ∈ [0, 6)}

Z5 = {Wn,5 | n ∈ [0, 6)}

Clearly the memory ratio of each user is 1
5 , which is

smaller than the memory ratio 2
6 in Example 1.

• Delivery Phase: We also assume that the request vector
is d = (0, 1, 2, 3, 4, 5). By Lines 8-10, the server also
sends the coded signals listed in Table 1. Then each user
can decode its requested file since each file Wn can be
recovered by any 5 packets out of {Wn,j|j ∈ [0, 6)}. The
coded caching gain at each time slot is the same as that
of the original scheme in Example 1. For instance, user
1 first decodes the required packetsW1,0,W1,5,W1,2 and
W1,3 from W0,1 ⊕W1,0, W1,5 ⊕W5,1, W1,2 ⊕W2,1 and
W1,3⊕W3,1 respectively. Then it can getW1,4 = W1,5−

W1,0 −W1,1 −W1,2 −W1,3.

B. NEW SCHEMES
Following the proposal in subsection III-A, the following
result can be obtained.
Theorem 2: For any (K ,F,Z , S) PDA P, if there exist

Z ′ useless stars in each column, then we can obtain an
(F − Z ′)-division (K ,M ,N ) coded caching scheme with
memory ratio M

N =
Z−Z ′
F−Z ′ and transmission rate R =

S
F−Z ′ ,

in which the coded caching gain at each time slot is the same
as the original scheme realized by P and Algorithm 1.

Proof: Assume that P is a (K ,F,Z , S) PDA where each
column has Z ′ useless stars. Deleting the Z ′ useless stars in
each column, we obtain a new array P′ = (p′j,k ), j ∈ [0,F),
k ∈ [0,K ). Clearly each column of P′ has Z ′ blanks, Z − Z ′

stars and F − Z integers.
Based on P′, we modify the placement strategy in Algo-

rithm 1 as follows: The server divides each file into
F − Z ′ equal-sized packets and then encodes them using
an (F,F − Z ′) maximum distance separable (MDS) code in
an appropriate operation field [18]. Let the resulting encoded
packets be denoted by Wn,0, Wn,1, . . ., Wn,F−1 for each file
Wn, n ∈ [0,N ). Using the caching strategy in Lines 3-5 in
Algorithm 1, each user k caches Zk = {Wn,j | p′j,k = ∗, j ∈
[0,F), n ∈ [0,N )}. Clearly the memory ratio of each user is
M
N =

Z−Z ′
F−Z ′ .

In the delivery phase, we also use the delivery strategy
in Algorithm 1 as follows: For any request vector d , using
Lines 7-11 of Algorithm 1, each user can get exactly F − Z ′

required coded packets by the property C3 of Definition 1 and
Remark 1. From the property of an (F,F − Z ′) MDS code,
each user can recover its requested file. So the transmission
rate is R = S

F−Z ′ . Furthermore, the coded caching gain at
each time slot is the same as that of the original scheme
realized by P since the occurrence number of each integer is
unchanged.
Given an appropriate PDA P, using Theorem 2, we can

obtain a new scheme which has lower subpacketization and
memory ratio while keeping the coded caching gain at each
time slot unchanged.

IV. NEW SCHEMES BASED ON THE PDAs IN [9]
In this section, we take the strong edge coloring based
scheme in [9], [19] as an example. From the results on opti-
mality in [20], one can check that the scheme in [9] has the
smallest transmission rate among all the schemes with the
same placement strategy. However, we will show that there
are useless stars in the PDA corresponding to the scheme
in [9], and use Theorem 2 to obtain an improved scheme.

A. CONSTRUCTIONS FROM [9], [19]
For the readers’ convenience, the construction of the PDA
corresponding to the strong edge coloring based scheme
in [19] is given here.
Construction 1 ( [9], [19]): For any positive integers H,

b, r, λ satisfying 0 < r, b < H, λ < min{r, b} and r + b ≤
H + λ, let F =

([0,H )
b

)
, K =

([0,H )
r

)
and I =

([0,H )
λ

)
. There

exist
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• an
((H

r

)
,
(H
b

)
,
(H
b

)
−
(r
λ

)(H−r
b−λ

)
,
( H
r+b−2λ

)(H−r−b+2λ
λ

))
PDA P = (pB,A), B ∈ F , A ∈ K, where

pB,A =

{
((A ∪ B)− I , I ) if A ∩ B = I ∈ I
∗ otherwise

(4)

and
• an

((H
r

)
,
(H
b

)
,
(H
b

)
−
(r
λ

)(H−r
b−λ

)
,
( H
r+b−2λ

)(r+b−2λ
r−λ

))
PDA

P′ = (p′B,A), B ∈ F , A ∈ K, where

p′B,A =

{
((A∪B)−I ,A−B) if A∩B= I ∈I
∗ otherwise

(5)

Example 2: When H = 4, r = 2, b = 2, λ = 1, we have

F = K = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}},
I = {{0}, {1}, {2}, {3}}.

The following array P can be obtained by (4).

01 02 03 12 13 23
01 ∗ (12, 0) (13, 0) (02, 1) (03, 1) ∗

02 (12, 0) ∗ (23, 0) (01, 2) ∗ (03, 2)
03 (13, 0) (23, 0) ∗ ∗ (01, 3) (02, 3)
12 (02, 1) (01, 2) ∗ ∗ (23, 1) (13, 2)
13 (03, 1) ∗ (01, 3) (23, 1) ∗ (12, 3)
23 ∗ (03, 2) (02, 3) (13, 2) (12, 3) ∗

(6)

Here we represent each subset as a string for short. Replac-
ing the entries (12, 0), (13, 0), (02, 1), (03, 1), (23, 0), (01, 2),
(03, 2), (01, 3), (02, 3), (23, 1), (13, 2), (12, 3) of P in (6) by
0, 1, . . . , 11 respectively, the array in (1) is obtained.
Lemma 1 ( [9], [19]): For any positive integers H, b, r,

λ satisfying 0 < r, b < H, λ < min{r, b} and r + b ≤
H+λ, there exists an

(H
b

)
-division (

(H
r

)
, M ,N ) coded caching

scheme with memory ratio and transmission rate as follows:

M
N
= 1−

(r
λ

)(H−r
b−λ

)(H
b

)
R =

( H
r+b−2λ

)(H
b

) min
{(

H − (r + b− 2λ)
λ

)
,

(
r + b− 2λ
r − λ

)}
B. NEW SCHEMES FROM THE PDA IN [9]
In the following we will show that the PDA in [9] satisfies
Theorem 2 with Z ′ > 1 for some parameters and obtain the
following result.
Theorem 3: For any positive integers H, b, r, λ satisfying

0 < r, b < H, λ < min{r, b} and r + b ≤ H + λ,, there
exists an (

(H
b

)
−
∑λ−1

i=0

(r
i

)(H−r
b−i

)
)-division (

(H
r

)
, M ,N ) coded

caching scheme with memory ratio and transmission rate as
follows:

M
N
= 1−

(r
λ

)(H−r
b−λ

)
(H
b

)
−

λ−1∑
i=0

(r
i

)(H−r
b−i

)
R =

( H
r+b−2λ

)
(H
b

)
−

λ−1∑
i=0

(r
i

)(H−r
b−i

)
(
H − (r + b− 2λ)

λ

)

Proof: Let P be the PDA generated by (4). From The-
orem 2, we only need to count the number of useless stars
in each column of P. For any A ∈ K =

([0,H )
r

)
and B ∈

F =
([0,H )

b

)
satisfying |A ∩ B| < λ, we have pB,A = ∗

since A ∩ B /∈ I =
([0,H )

λ

)
. Moreover, if |A ∩ B| < λ,

the star at pB,A is useless. Otherwise if pB,A = ∗ is useful,
which means that it occurs in a subarray P(C,I ) for some
C ∈

( [0,H )
r+b−2λ

)
and I ∈

([0,H )
λ

)
. Then there must exist two

subsets, say A′ ∈ K \ {A} and B′ ∈ F \ {B}, such that

pB′,A = ((A ∪ B′)− (A ∩ B′),A ∩ B′) = pB,A′

= ((A′ ∪ B)− (A′ ∩ B),A′ ∩ B) = (C, I ).

Then we have A ∩ B′ = A′ ∩ B = I . So we have I ⊆ A ∩ B,
which contradicts with |A ∩ B| < λ since |I | = λ.

Since for each A ∈ K there are exactly
∑λ−1

i=0

(r
i

)(H−r
b−i

)
subsets B ∈ F satisfying |A ∩ B| < λ. So each column
has Z ′ =

∑λ−1
i=0

(r
i

)(H−r
b−i

)
useless stars. Based on the PDA

P generated by (4) and using Theorem 2, our statement
holds.
Theorem 4: For any positive integers H, r, b, λ satisfying

0 < r, b < H, λ < min{r, b} and r+b ≤ H +λ, there exists
an (

(H
b

)
−
∑min{r,b}

i=λ+1

(r
i

)(H−r
b−i

)
)-division (

(H
r

)
, M ,N ) coded

caching scheme with memory ratio and transmission rate as
follows:

M
N
= 1−

(r
λ

)(H−r
b−λ

)
(H
b

)
−

min{r,b}∑
i=λ+1

(r
i

)(H−r
b−i

)
R =

( H
r+b−2λ

)
(H
b

)
−

min{r,b}∑
i=λ+1

(r
i

)(H−r
b−i

)
(
r + b− 2λ
r − λ

)

Proof: Let P′ be the PDA generated by (5). For any
A ∈ K =

([0,H )
r

)
and B ∈ F =

([0,H )
b

)
with |A ∩ B| > λ,

we have p′B,A = ∗ since A ∩ B /∈ I =
([0,H )

λ

)
. We claim

that such p′B,A = ∗ is useless. Otherwise if the star at p
′
B,A is

useful, then there must exist two subsets, say A′ ∈ K \ {A}
and B′ ∈ F \ {B} satisfying |A ∩ B′| = λ and |A′ ∩ B| = λ,
such that

p′B′,A = ((A ∪ B′)− (A ∩ B′),A− B′) = p′B,A′

= ((A′ ∪ B)− (A′ ∩ B),A′ − B).

Then we have A− B′ = A′ − B. So we have (A− B′) ∩ B =
(A′ − B) ∩ B = ∅. On the other hand, since |A ∩ B| > λ

and |A ∩ B′| = λ, there exists some x ∈ [0,H ) satisfying
x ∈ A ∩ B and x /∈ A ∩ B′. Consequently we have x ∈ A,
x ∈ B and x /∈ B′. So we have x ∈ (A − B′) ∩ B, which
contradicts with (A− B′) ∩ B = ∅.

Since for each A ∈ K there are exactly
∑min{r,b}

i=λ+1

(r
i

)(H−r
b−i

)
subsets B ∈ F satisfying |A ∩ B| > λ. So each column of
P′ has Z ′ =

∑min{r,b}
i=λ+1

(r
i

)(H−r
b−i

)
useless stars. Based on the

PDA P′ generated by (5) and using Theorem 2, our statement
holds.
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C. PERFORMANCE ANALYSES
In this section, we assume the parameters H and r are fixed.
The scheme fromLemma 1 is denoted by the original scheme,
and the scheme with smaller transmission rate among the
schemes from Theorem 3 and Theorem 4 is denoted by the
new scheme. Since it is hard to propose a theoretic com-
parison between the original scheme and the new scheme,
the trade off between the transmission rate and the memory
ratio is shown in Figure 2 and Figure 3 forH = 10, r = 5 and
H = 15, r = 6 respectively. From Figure 2 and Figure 3, it is
easy to see that the transmission rate of the original scheme
is much larger than that of the new scheme when the memory
ratio is small. Moreover, the new scheme has more flexible
memory ratio than the original scheme.

FIGURE 2. The transmission rate versus the memory ratio for the original
scheme from Lemma 1, the new scheme from Theorem 3 and Theorem 4,
the Ali-Niesen scheme in [1] when H = 10, r = 5 and K =

(H
r
)

= 252.

FIGURE 3. The transmission rate versus the memory ratio for the original
scheme from Lemma 1, the new scheme from Theorem 3 and Theorem 4,
the Ali-Niesen scheme in [1] when H = 15, r = 6 and K =

(H
r
)

= 5005.

V. CONCLUSION
In this article, we focused on coded caching schemes with
low subpacketizations. After we observed that there are some

cached packets not fully used in some well known coded
caching schemes, i.e., do not generate multicasting opportu-
nities in the delivery phase, we modified the uncoded place-
ment of the scheme realized by an appropriate PDA to coded
placement to overcome this drawback. Finally based on the
scheme in [9], we obtain a new scheme which has smaller
transmission rate and more flexible memory ratio than the
original scheme in [9].
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