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ABSTRACT Decision-theoretic rough set is a popular topic. However, such single-granulation rough set
model is not able to handle complex information well, such as multi-source, multi-scale and high dimensions
data. Therefore, the fusion of the ideas of Bayesian decision and multi-granulation may be an appealing
issue. In this article, a novel rough set model based on multi-granularity decision theory is proposed. The
discussed rough set model not only overcomes the shortcomings of optimistic and pessimistic rough sets, but
also gains high approximation quality and low decision cost at the same time with a satisfactory threshold.
In information granule reduction, heuristic and genetic algorithms are used to compute reducts based on three
different criteria, respectively. The experimental results express that decision preservation based reduction
may not suitable in such rough set models. Moreover, we also reveal that decision monotony and cost
minimum based reductions are able to be popular research topics in rough set model of multi-granulation
decision theory.

INDEX TERMS Decision cost, information granule reduction, multigranulation, optimization, rough set.

I. INTRODUCTION
Decision-theoretic Rough Set (DTRS), a special model of
the traditional rough set [16], was put forward by Yao in
the early 1990s. Different from classical rough set, DTRS
introduces loss function and Bayesian decision procedure
into rough set [13]. In DTRS, Yao used Bayesian theory to
compute thresholds α and β, which was applied to depict
error tolerance in probabilistic set by making the decision
costs to a minimum. Based on DTRS, Yao studied numerous
essential issues, which proposed an in-deep opinion of rough
set. For instance, in [34], Yao offered a soil basis to DTRS’s
further studying. Then, Yao further presented the notion of
three-way decisions and studied its superiority in practical
applications [35]. In [36], Yao examined two fundamental
semantics-related questions. Based on his seminal work, a lot
of theoretical and practical achievements connected with
DTRS have been obtained, see [2], [8]–[10], [23], [26], [28],
[38], [40] for more details.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hao Ji.

In the perspective of the Granular Computing (GrC) [31],
the set of data granules derived from one binary relation can
be referred to as the granular structure [15], [27]. Since one
binary relation can induce one granular structure in the uni-
verse, Yao’s DTRS can be considered as a single-granulation
rough set. Then it should be noted that Qian et al. argued that
in numerous practical applications, single granular structure
is not good enough for us to deal with complex data [14], [17],
[25]. In order to solve it, Qian et al. [19], [20] put forward an
innovative theory, which is named as the Multi-Granulation
Rough Set (MGRS). In MGRS, the target is approximated by
a multi-granulation structure. Presently, many of the positive
results about MGRS have been achieved, e.g. [5], [11], [12],
[14], [22], [24], [30].

With the rapid developments of decision-theoretic rough
set and multi-granulation rough set, how to fuse Bayesian
decision and multi-granulation ideas has become a valuable
problem. In numerous practical applications, it is necessary
to take different granulations into consideration when one
makes an important decision, such as multi-scale data analy-
sis, multi-source data analysis, face recognition. In this arti-
cle, we introduce following several instances to emphasize
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the incentive which inspire us to consider the Bayesian deci-
sion and multi-granulation simultaneously.

1) In the process of knowledge discovery, many types of
data sets are existed, including categorical information,
wording information, picture data, audio information,
and the like [12], [29]. For instance, identifying the
violence video from the Internet is one of the secu-
rity personnel’s major duties. A conventional video
should include frame information. During the course of
such decision making, the security person should make
judgements from those three aspects, respectively.

2) In many real-life applications, under a specific feature,
an object can be denoted as many values with respect
to different scales [31]. For example, students’ test
scores can be recorded as positive numbers from 0 to
100, and sometimes, for simplicity, the scores might
be divided into two values, ‘‘Pass’’ and ‘‘Fail’’. In this
case, the decision mechanisms will be different in dif-
ferent scales.

3) When encountering information with high dimensions,
many attributes lead to a challenge for decisionmaking.
For example, we note that, the data sets with high
dimensions, high noise or small sample are ubiqui-
tous in biomedicine field, especially some applica-
tions based on Omics data, DNA translation initiation
detection, activity prognosis using medicine molecules
information and so on [1]. In this case, if we granulate
the data using all attributes, it will resulted in time-
consuming.

From such point of view, Qian et al. [21] brought in
the multi-granulation idea into decision-theoretic rough set
model at first attempt, i.e., Multi-Granulation Decision-
Theoretic Rough Set (MG-DTRS). As we all know,
the defined MG-DTRS includes optimistic and pessimistic
forms, which are only two simple methods in information
fusion strategies [3] and lack flexibility while simulating the
brain’s intelligence in decision making. There is an example
can be presented to illustrate the limitations of optimistic and
pessimistic versions. The political subdivision of China has
many provinces. In order to show the economical develop-
ment status of China, the optimistic experts will focus on the
regions of Shanghai Provence or the others in Eastern China,
based on the GDP of these regions, the China can be regarded
as a developed country. The pessimistic experts will focus on
the regions, such as Gansu Province or the others in North-
west China, based on the GDP of these regions, the China can
be regarded as an impoverished nation. However, such two
conclusions both do not conform to China’s actual conditions.
Therefore, it is important to present a new model to extend
the optimistic and pessimistic versions. This is what will be
explored in this article.

The rest of the paper is structured as below. Rudimentary
knowledge, like multi-granulation decision-theoretic rough
set, Yao’s DTRSwill be presented in Section II. In Section III,
we will propose a new multi-granulation decision-
theoretic rough set, which is called δ-Multi-granulation

Decision-theoretic Rough Set. In Section IV, multi-
granulation data reduction will be considered by three
criteria. Section V discusses the efficiency of proposed algo-
rithms. The paper ends up with conclusions in Section VI.

II. PRELIMINARY KNOWLEDGE
A. DECISION-THEORETIC ROUGH SET
In order to introduce the cost mechanism into rough set
model, Yao et al. proposed a neoteric rough set theory.
The new rough set is called as decision-theoretic rough set.
In DTRS, the decision process is described by two states
and three actions. With respect to a target X in the universe,
the two states is expressed by� = {X ,X c}. The set of actions
regarding the state X is given by T = {eP, eB, eN }, where eP,
eB, eN denote the actions in deciding an object into positive
region, boundary region and negative region, respectively.
The loss function with respect to the costs of different actions
can be presented as following matrix.

X (P) X c(N )
eP λPP λPN
eB λBP λBN
eN λNP λNN

According to the loss function, the expected losses for
distinctive actions are able to be represented as:

RP = R(eP|[x]A) = λPP · P(X |[x]A)+ λPN · P(X c|[x]A);

RB = R(eB|[x]A) = λBP · P(X |[x]A)+ λBN · P(X c|[x]A);

RN = R(eN |[x]A) = λNP · P(X |[x]A)+ λNN · P(X c|[x]A).

Furthermore, for the loss settings in loss function, excep-
tional circumstances are able to be proposed as below:

λPP ≤ λBP < λNP, λNN ≤ λBN < λPN

(λPN − λBN ) · (λNP − λBP) > (λBP − λPP) · (λBN − λNN )

Based on such circumstance, the rule of determining the
minimal danger is able to be expressed as:

(P) If P(X |[x]A) ≥ α, then decides positive region;
(B) If β < P(X |[x]A) < α, then decides boundary

region;
(N) If P(X |[x]A) ≤ β, then decides negative region;

where

α =
λPN − λBN

(λPN − λBN )+ (λBP − λPP)
;

β =
λBN − λNN

(λBN − λNN )+ (λNP − λBP)
;

with 0 ≤ β < α ≤ 1.
By operating three decision rules, the lower and upper

approximations of the DTRS are able to be gained, thus:

ADT (X ) = {x ∈ U : P(X |[x]A) ≥ α}; (1)

ADT (X ) = {x ∈ U : P(X |[x]A) > β}. (2)
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B. MULTI-GRANULATION DECISION-THEORETIC
ROUGH SET
Formally, a multi-granulation decision system (MDS) [14] is:
S =< U ,AT = {A1, . . . ,Am},D, {Va : a ∈ A1 ∪ A2 ∪ . . . ∪
Am ∪ D} >, in which

• Universe U is a finite set of objects;
• Ak (k = 1, 2, . . . ,m) is a set of the condition data, m is
a natural number;

• D is the set of the decision data;
• ∀a ∈ A1∪A2∪ . . .∪Am∪D, Va is the set of values for a.

Different from traditional decision system, ∀Ak ∈ AT , one
can obtain partition, i.e., information granulation and then
AT actually induces a multi-granulation information.
In multi-granulation decision system, Qian et al. have

developed a novel rough set model through fusing the idea of
multi-granulation and DTRS theory, i.e., MG-DTRS. In this
article, we use the assumption that every information granule
corresponding to an independent loss function. The loss func-
tion of the k−th data granulation is also given by the matrix
as follows:

X (P) X c(N )
eP λkPP λkPN

eB λkBP λkBN

eN λkNP λkNN

Based on the special kind of loss function, the decided
parameters for k−th data granulation are expressed by αk ,
βk , k ∈ {1, 2, . . . ,m}.
Definition 1: Let S be a MDS, ∀X ⊆ U , the opti-

mistic multigranulation decision-theoretic lower / upper
approximations are denoted by AT ODT (X ) and AT ODT (X ),
respectively,

AT ODT (X ) = {x ∈ U : P(X |[x]Ak ) ≥ α
k , ∃Ak ∈ AT }; (3)

AT ODT (X ) = {x ∈ U : P(X |[x]Ak ) > βk ,∀Ak ∈ AT }. (4)

Based on the lower approximation and upper approxima-
tion, the optimistic boundary region of X is presented as:

BNODT (X ) = AT ODT (X )−AT ODT (X ). (5)

Definition 2: Let S be a MDS, ∀X ⊆ U , the pessimistic
multi-granulation decision-theoretic lower/upper approxi-
mations are expressed by AT PDT (X ) and AT PDT (X ),
respectively,

AT PDT (X ) = {x ∈ U : P(X |[x]Ak ) ≥ α
k ,∀Ak ∈ AT }; (6)

AT PDT (X ) = {x ∈ U : P(X |[x]Ak ) > βk , ∃Ak ∈ AT }. (7)

Based on the lower approximation and upper approxima-
tion, the pessimistic boundary region of X is presented as:

BNPDT (X ) = AT PDT (X )−AT PDT (X ). (8)

III. δ-MULTI-GRANULATION DECISION-THEORETIC
ROUGH SET (δ-MGDTRS)
A. DEFINITION OF δ-MGDTRS
Definition 3: Let S be a MDS, then ∀x ∈ U and ∀X ⊆ U ,

for each k ∈ {1, 2, . . . ,m}, the characteristic functions are
defined as

f kX (x) =
{
1 : P(X |[x]Ak ) ≥ α

k

0 : otherwise

ψk
X (x) =

{
1 : P(X |[x]Ak ) > βk

0 : otherwise

f kX (x) andψ
k
X (x) judge whether the k−th information gran-

ulation meets the condition probability constraints ≥ αk

and > βk , respectively.
Definition 4: Let S be a MDS, f kX (x) and ψ

k
X (x) are the

supporting characteristic functions of each x in U , then the
lower approximation and upper approximation are expressed
by AT δDT (X ) and AT δDT (X ), respectively,

AT δDT (X ) = {x ∈ U :

∑m
k=1 f

k
X (x)

m
≥ δ}; (9)

AT δDT (X ) = {x ∈ U :

∑m
k=1 ψ

k
X (x)

m
> 1− δ}; (10)

where δ ∈ (0, 1].
The pair [AT δDT (X ),AT δDT (X )] is considered as a δ-

MGDTRS of X . According to Definition 4, one is able to
notice that objects which are located in lower approximation
if and only if the number of the conditional probability con-
straints (≥ αk ) is no less thanm×δ. Similarity, objects which
are located in upper approximation if and only if the number
of the conditional probability constraints (> βk ) is more than
m× (1− δ).
By AT δDT (X ) and AT δDT (X ), the three regions in

δ-multi-granulation decision-theoretic environment are
denoted as:

POSδ(AT ,X ) = AT δDT (X ); (11)

BNDδ(AT ,X ) = AT δDT (X )−AT δDT (X ); (12)

NEGδ(AT ,X ) = U − POSδ(AT ,X ) ∪ BNDδ(AT ,X )
= U −AT δDT (X ). (13)

Definition 5: Let S be a MDS, δ ∈ (0, 1], the approxima-
tion quality of D based on δ−MGDTRS is charactersized as
below:

γ (δ,D) =
|
⋃n

j=1AT δDT (Xj)|

|U |
. (14)

B. RELATED PROPERTIES
Proposition 1: Let S be a MDS, δ ∈ (0, 1], ∀X ⊆ U ,

we have

AT PDT (X ) ⊆ AT δDT (X ) ⊆ AT ODT (X ); (15)

AT ODT (X ) ⊆ AT δDT (X ) ⊆ AT PDT (X ). (16)
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Proposition 1 indicates that δ−multi-granulation decision-
theoretic lower approximation is equal to or greater
than pessimistic multi-granulation decision-theoretic lower
approximation, it is also not lager than optimistic
multi-granulation lower approximation of decision the-
ory, δ−multi-granulation upper approximation of decision
theory is not smaller than optimistic multi-granulation
decision-theoretic upper approximation, it is also not more
than pessimistic multi-granulation decision-theoretic upper
approximation.
Proposition 2: Let S be a MDS, if 0 < δ1 < δ2 ≤ 1, then
∀X ⊆ U , we have

AT δ2DT (X ) ⊆ AT δ1 DT (X ); (17)

AT δ1DT (X ) ⊆ AT δ2DT (X ). (18)

Proposition 2 tells us that with the expanding of the value
of δ, δ−multi-granulation decision-theoretic lower approx-
imation is decreasing while δ−multi-granulation decision-
theoretic upper approximation is increasing.

C. DECISION COST OF MULTI-GRANULATION
DECISION SYSTEM
Let U/IND(D) = {X1,X2, . . . ,Xn} become a division of
the universe induced by D. In multi-granulation decision
environment, ∀Xj ∈ U/IND(D), j = {1, 2, . . . , n}, similar to
the Yao’s DTRS, one is able to gain determination principle
tie-broke:

(δ-P) ∀x ∈ U , if

∑m
k=1 f

k
Xj
(x)

m ≥ δ, δ ∈ (0, 1], then decides
x ∈ POSδ(AT ,Xj);

(δ-N) ∀x ∈ U , if

∑m
k=1 ψ

k
Xj
(x)

m ≤ 1 − δ, δ ∈ (0, 1], then
decides x ∈ NEGδ(AT ,Xj);
(δ-B) Otherwise, then decides x ∈ BNDδ(AT ,Xj).
By using DTRS model, Yao discussed many significant

and essential measures so as to assess the performances
of classification rules. One of the important achievements
of Yao’s DTRS is introducing decision cost into rough set
model. Therefore, decision cost has been a most popular
measure to evaluate the decision rules’ performance. As a
generalization of Yao’s DTRS, decision cost plays a key role
in our δ-MGDTR as well.
Let S be a MDS, δ ∈ (0, 1], ∀Xj ∈ U/IND(D),

the Bayesian expected decision cost can be expressed as
below:

COSTPOS =
∑

Xj∈U/IND(D)

∑
x∈POSδ(Xj)

m∑
k=1

(
λkPP · P(Xj|[x]Ak )

+ λkPN · P(X
c
j |[x]Ak )

)
;

COSTNEG =
∑

Xj∈U/IND(D)

∑
x∈NEGδ(Xj)

m∑
k=1

(
λkNP · P(Xj|[x]Ak )

+ λkNN · P(X
c
j |[x]Ak )

)
;

COSTBND =
∑

Xj∈U/IND(D)

∑
x∈BNDδ(Xj)

m∑
k=1

(
λkBP · P(Xj|[x]Ak )

+ λkBN · P(X
c
j |[x]Ak )

)
.

The whole decision cost is:

COST (AT , δ) = COSTPOS + COSTNEG + COSTBND (19)

D. A NAIVE APPROACH TO LEARNING THRESHOLD
In our paper, a threshold δ is introduced to extend Qian et al.’s
MG-DTRS.With the value of δ changing, the newMG-DTRS
can be converted to Qian et al.’s MG-DTRS. Therefore,
the way to select a fitness threshold to construct a satisfactory
MG-DTRS model is an important issue. Firstly, one must
figure out what is the definition of satisfaction. Different
opinions can be obtained based on different considerations.
From the viewpoint of classification, the satisfactory result
is that one can improve the classification accuracy, whereas,
from the viewpoint of risk decision, the satisfactory result is
that one can reduce the decision cost. As far as MG-DTRS
is concerned, the approximation quality and decision cost are
two important aspects which should be seriously considered.
On the one hand, the concept of approximation quality not
only can be regarded as the probability of objects which
can be accurately divided into the set of lower approxi-
mation, but also is one quantitative descriptions of positive
decision rule. On the other hand, the effectiveness of risk
decision procedure is the reflection of the decision cost. From
this point of view, a satisfactory MG-DTRS model can be
defined with high approximation quality and low decision
cost.

To fill such gap, a fusion function for fusing the Approx-
imation Quality changing Ratio (AQR) with Decision Cost
changing Ratio (DCR) can be considered. AQR is the pro-
portion of the approximate quality obtained by the current
threshold to the largest approximate quality, which reflects
the influence of the current threshold on the approximate
quality. Similar toAQR,DCR is used tomeasure the impact of
current threshold on decision cost. The fusion function (ADR)
can be defined as:

ADR(δi) = w1 · AQR− w2 · DCR

= w1 ·
γ (δi,D)

max γ (δ,D)
− w2 ·

COST (AT , δi)
maxCOST (AT , δ)

(20)

in which δi is a arbitrary δ in (0,1], the weights w1 > 0,
w2 > 0. Setting these two weights need some technical
support. In this article, from a simple point of view, we can
make a hypothesis that AQR and DCR have equal statuses
and set as w1 = 1, w1 = 1.
In (20), one can observe that, for a certain data set, with

different values of δ, we can generate different MG-DTRS
models, each MG-DTRS model owns certain approxima-
tion quality and decision cost. Maximal values of approxi-
mation quality and decision cost can be obtained from the
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Algorithm 1 A Naive Threshold Learning Algorithm to
Learning Satisfactory MG-DTRS Model (NTLA)
Input:MDS S, step l;
Output: A satisfactory threshold δs.
Step 1: Compute U/IND(D);
Step 2: AT δDT (Xj) = ∅, AT δDT (Xj) = ∅, Xj ∈ U/IND(D);
δs = δ = 0.
Step 3: Generate the loss function and compute αk , βk , k =
{1, 2, . . . ,m};
Step 4: For each x ∈ U

For i = 1 to l
δ = δ+1/l;
For j = 1 to n

Compute f kXj (x), ψ
k
Xj (x), according to Definition 3,

k = 1, 2, . . . ,m;
If
∑m

k=1 f
k
Xj (x)/m ≥ δ

AT δDT (Xj) = AT δDT (Xj) ∪ {x};
End If
If
∑m

k=1 ψ
k
Xj (x)/m > 1− δ

AT δDT (Xj) = AT δDT (Xj) ∪ {x};
End If

End For
Compute γ (δ,D) and COST(AT , δ) ;

End For
End For

Step 5: For i = 1 to l
Find the maximum values of γ (δi,D) and

COST(AT , δi);
Compute ADR(δi);
End For

Step 6: Return the maximum value of ADR(δ) and the satis-
factory δs;

approximation quality set and decision cost set, respectively.
Therefore, with different values of δ, we can obtain different
ADR values. Furthermore, with the increasing of AQR and
decreasing of DCR, the evaluation criterion ADR will be
increasing. In light of the above discussions, the satisfac-
tory MG-DTRS model or satisfactory threshold is one which
holds a maximum value of ADR. Obviously, the obtained
δ is not a optimal value. However, considering the theory
of Ockahm’s razor, we endeavor to build a simple model
to balance the requirements of these two considerations and
simplicity.

According to these discussions, we can design a naive
threshold learning algorithm as follows:

IV. MULTI-GRANULATION INFORMATION REDUCTION
A. DECISION BASED INFORMATION
GRANULE REDUCTION
Definition 6: Let S be a MDS, δ ∈ (0, 1], for B ⊆ AT ,

B is called a Decision Preservation (DP) reduction when and
only when

1) B is a decision preservation consistent set in S, i.e.
AT δDT (Xj) = BδDT (Xj), Xj ∈ U/IND(D);

2) For each B′ ⊂ B, B′δDT (Xj) 6= BδDT (Xj), Xj ∈
U/IND(D).

In Definition 6, it can be observed that the decision preser-
vation(DP) reduct in S is the smallest subset of AT , it keeps
the δ−multi-granulation decision-theoretic lower approxima-
tions of the whole decision classes stable as well. In addi-
tion, note that positive determination principles are supported
by targets in positive region (lower approximation), then
from Definition 6, decision preservation (DP) reduct will not
change the numbers of positive decision principles. In other
words, the decision rules derived from the decision preser-
vation consistent set B are compatible with the ones derived
from AT .
Definition 7: Let S be a MDS, δ ∈ (0, 1], for each B ⊆

AT , B is called a Decision Monotonicity (DM) reduct when
and only when

1) B is a decision monotonicity consistent set in S, i.e.
AT δDT (Xj) ⊆ BδDT (Xj), Xj ∈ U/IND(D);

2) For each B′ ⊂ B, B′δDT (Xj) + BδDT (Xj), Xj ∈
U/IND(D).

According to the decision monotonicity (DM) reduct,
condition (1) can be seen as a sufficient situation while
condition (2) can be regarded as a necessary situation. The
sufficient condition illustrates that not only does decision
monotonicity based reduct keep the original positive rules
stable, but increase the number of positive rules as more as
possible.
Proposition 3: Let S be a MDS, for each B ⊆ AT , if B is

a decision preservation consistent set in S, then B ⊆ AT is a
decision monotonicity consistent set in S.

B. COST BASED INFORMATION GRANULE REDUCTION
Risk cost is a typical and important feature in the multi-
granulation decision framework. In above Subsection, one
have discussed the cost issue of our MG-DTRS. However,
in the reduction process, it must be noticed that there are
more than one reduct in real world applications. From the
perspective of minimum-risk, one may want to minimize cost
for a maximized reduct. The cost based information granule
reduction can be seen as below.
Definition 8: Let S be a MDS, δ ∈ (0, 1], for each B ⊆

AT , B is referred to as a Cost Minimum (CM) reduct when
and only when

1) B is a cost minimum consistent set in S, i.e.
COST(B, δ) ≤ COST(AT , δ);

2) For each B′ ⊂ B, COST(B′, δ) > COST(B, δ).
In definition 8, condition (1) and condition (2) are able to

be separately considered as sufficient condition and necessary
condition. From the perspective of optimization, the mini-
mum decision cost is able to be expressed [4]:

minCOST (B, δ). (21)
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C. HEURISTIC AND OPTIMIZATION INFORMATION
GRANULE REDUCTION ALGORITHMS
1) HEURISTIC INFORMATION GRANULE
REDUCTION ALGORITHMS
We should take three important problems into consideration
about heuristic algorithm based information granule reduc-
tion, [18], i.e., importance measures of information granula-
tion, search strategy and termination criterion. In rough set
theory, the definition of significance of information granule
plays a crucial role for the successful information granule
reduction. As a result, in the forward greedy search approach,
heuristic functions use two significant information granule’s
measures to support efficient information granule reduction,
which are also separately named as inner importance measure
and outer importance measure. As is shown, three types of
significance will be presented to measure the importance of
information granule.
Definition 9: Let S be aMDS, δ ∈ (0, 1], B ⊆ AT , ∀Ak ∈

B, the decision preservation based significance of Ak inB can
be defined as follows:

Siginner1 (Ak ,B,D) =
∑n

j=1{|BδDT (Xj)⊕ B−{Ak}δDT (Xj)|}
|U |

;

(22)

where X ⊕Y expresses the symmetric difference of X and Y .
Definition 10: Let S be a MDS, δ ∈ (0, 1], B ⊆ AT ,
∀Ak ∈ AT −B, the decision preservation based significance
of Ak which is out of B can be defined as shown:

Sigouter1 (Ak ,B,D)=
∑n

j=1{|BδDT (Xj)⊕ B ∪ {Ak}δDT (Xj)|}
|U |

.

(23)

Siginner1 (Ak ,B,D) is the decision preservation based sig-
nificance of Ak in B connected with decision D. Obvi-
ously, Siginner1 (Ak ,B,D) ≥ 0 and Sigouter1 (Ak ,B,D) ≥
0 hold. At the same time, the greater the value is,
the more important information granule Ak is. Furthermore,
if Siginner1 (Ak ,B,D) > 0, then Ak is a core information
granule of S [18].
Remark 1: It should be noticed that our MG-DTRS is

not monotonic variation with monotonic variation of gran-
ular structures. Therefore, we used symmetric difference to
describe the variation of approximations. This is different
from the previous measure of significance [6].

For decision monotonicity based information granule
reduction, Proposition 3 illustrates a relationship between
decision preservation consistent set and decision monotonic-
ity consistent set. For example, for each B ⊆ AT , if B is a
decision preservation consistent set in S, then B ⊆ AT is
a decision monotonicity consistent set in S. The only differ-
ence is that the decision monotonicity consistent set needs
to increase the decision region monotonously on the basis
of decision preservation criterion. In other words, from the
viewpoint of heuristic algorithm, it may have some difference
in the outer significance measure applied to a forward infor-
mation granule reduction. Meanwhile, the inner important

measure holds the same function. It means that the core
information granule does not change. In the following, a new
measure will be put forward.
Definition 11: Let S be a MDS, δ ∈ (0, 1], B ⊆ AT ,
∀Ak ∈ AT −B, the decision monotonicity based significance
of Ak which is out of B can be defined as follows:

Sigouter2 (Ak ,B,D) =
∑n

j=1
(
BδDT (Xj)� B ∪ {Ak}δDT (Xj)

)
|U |

.

(24)

where X � Y is an operation such that:

X � Y =
{
|Y − X | X ⊆ Y
−∞ otherwise

By means of the operation ‘‘�’’, the decision monotonic-
ity based on significance can be obtained. The value of
Sigouter2 (Ak ,B,D) may be no less than zero or minus infin-
ity. Sigouter2 (Ak ,B,D) indicates the decision monotonicity
based on significance of Ak , which is introduced into the
set B.

For decision cost based information granule reduction,
the main idea is to decrease the decision cost to the lowest.
Following the mechanism of heuristic algorithm, we make
a new definition of the inner importance measure and outer
importance measure as shown.
Definition 12: Let S be a MDS, δ ∈ (0, 1], B ⊆ AT ,
∀Ak ∈ B, the cost minimum based significance of Ak in B
is able to be expressed as shown:

Siginner3 (Ak ,B,D) =
COST(B − {Ak}, δ)− COST (B, δ)

COST(B, δ)
;

(25)

Definition 13: Let S be a MDS, δ ∈ (0, 1], B ⊆ AT ,
∀Ak ∈ AT − B, the cost minimum based significance of Ak
in B can be defined as shown:

Sigouter3 (Ak ,B,D) =
COST(B, δ)− COST(B ∪ {Ak}, δ)

COST(B, δ)
.

(26)

Siginner3 (Ak ,B,D) and Sigouter3 (Ak ,B,D) are the deci-
sion cost based significance measures. The value of
Siginner3 (Ak ,B,D) shows that the decision cost change when
we delete an information granule from the current set.
Siginner3 (Ak ,B,D) > 0 means that the decision cost has been
increased, which indicates that Ak should not be deleted.
From the perspective of decision cost,Ak can also be regarded
as a core information granule of S. Siginner3 (Ak ,B,D) = 0
illustrates that the decision cost remains unchanged when Ak
is deleted from B. As a result, Ak is an irrelevant information
granule and should be removed. From the discussion above,
one can observe the greater the value is, the more significant
information granule Ak is. Accordingly, similar explanation
of Sigouter3 (Ak ,B,D) can be obtained, it also shows that the
greater the value of Sigouter3 (Ak ,B,D) is, the more significant
information granule Ak is.
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Algorithm 2 Heuristic Algorithm for Information Granule
Reduct (HAIGR)
Input:MDS S, threshold δ;
Output: A reduct red .
Step 1: ∀Xj ∈ U/IND(D), compute AT δDT (Xj);
Step 2: B← ∅;
Step 3: Compute the significance for each Ak ∈ AT with
Siginner• (Ak ,AT ,D);
Step 4: B ← Aj where Siginner• (Aj,AT ,D) =

max{Siginner• (Ak ,AT ,D) : Ak ∈ AT };
Step 5:
Do
∀Ak ∈ AT − B, compute Sigouter• (Ak ,AT ,D);
If Sigouter• (Aj,AT ,D) = max{Sigouter• (Ak ,AT ,D) :

∀Ak ∈ AT − B}
B = B ∪ {Aj};
End
Until B is a decision preservation (decision monotonic-

ity, cost minimum) consistent set in S;
Step 6: ∀Ak ∈ B
If B−Ak is decision preservation (decision monotonicity,

cost minimum) consistent set
B = B − {Ak};
End

Step 7: red = B;

As far as search strategy is concerned, in each information
granule reduction approach, the information granule with
the maximal inner importance will be selected preferentially,
then in each loop, the information granule with maximal
outer significance will be brought into the information gran-
ule subset until it satisfies the stopping criterion. Formally,
a heuristic information granule reduct algorithm is able to be
expressed as shown.

In Algorithm 2, if • = 1 and the stopping criterion is
selected as ‘‘decision preservation’’, then the HAIGR is used
to compute the decision preservation based reduct, which can
be expressed as DP-HAIGR. Similarity, if • = 2 and the
stopping criterion is selected as ‘‘decision monotonicity’’,
then the HAIGR is used to compute the decision preservation
based reduct, which can be expressed as DM-HAIGR; if • =
3 and the stopping criterion is selected as ‘‘cost minimum’’,
then the HAIGR is used to compute the decision preservation
grounded reduct, which can be expressed as CM-HAIGR.

From the above points, decision monotonicity based reduct
and cost minimum based reduct are optimization problems.
We use genetic algorithm reduction to achieve the purpose
of optimization. Here, we introduce the fitness function for
decision monotonicity based reduct and cost minimum based
reduct.
Definition 14: Let S be a MDS, δ ∈ (0, 1], ∀B ⊆ AT ,

based on the determination monotonicity and cost minimal
principle, the fitness function is able to expressed as below.

f DM =

∑n
j=1

(
AT δDT (Xj)� BδDT (Xj)

)
|U |

; (27)

TABLE 1. Data sets description.

f CM =
COST (B, δ)
COST (AT , δ)

. (28)

In terms of decision-monotonicity criterion, it is easy to
find that f DM ∈ (−∞, 1). f DM > 0 indicates that the
subset B obtains more positive decision rules than original
information granule setAT . f DM = 0 shows that the positive
determination principles induced by subset B are equal to the
original; f DM < 0 indicates the monotonicity has been lost
between the two sets. What’s more, in terms of cost minimum
criterion, one is able to observe that f CM ∈ [0, 1], and the
major purpose of cost minimal principle is to reduce the value
of f CM .
Genetic algorithm is a kind of evolutionary algorithm, and

the pseudo-code can be described in [7]. In the algorithm,
if the fitness function is chosen as ‘‘f DM ", then the genetic
algorithm is applied to discover the best reduct based on
decisionmonotonicity, namelyDM-GAIGR. Similarity, if fit-
ness function is selected as ‘‘f CM ", then genetic algorithm
is applied to discover an optimal decision cost based reduct,
namely CM-GAIGR.

V. EXPERIMENTAL ANALYSIS
In the part, effectiveness of discussed algorithms is shown by
some experimentation. The data sets appeared are outlined
in Table 1. Each attribute in a information set is applied to
establish a part, i.e., information granule.

A. MG-DTRS MODELS’ COMPARISONS
Firstly, in this subsection, the contrast among OMG-DTRS,
PMG-DTRS and MGDTRS will be compared. Table 2 indi-
cates approximation properties (i.e., AQ) of OMG-DTRS,
PMG-DTRS and δ-MGDTRS in such eight data sets, respec-
tively. Since δ-MGDTRS proposed in Definition 4 is limited
by threshold δ, in order to defeat the shortcomings of empiri-
cism, some different values of δ are selected. By Table 2,
we can acquire two remarks.
1) Contrasted with these three MG-DTRS models,

OMG- DTRS is able to acquire the max value of AQ
and PMG-DTRS is able to acquire min value. The
values of AQ based on δ-MGDTRS are between these
of OMG-DTRS and PMG-DTRS.

2) In terms of variation of δ, it’s easy to note that, with an
increase in δ, the value of AQ based on δ-MGDTRS is
decreasing. Such an experimental results demonstrate
the theoretical ones shown in Proposition2.
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TABLE 2. Approximation qualities based on three MG-DTRS models.

FIGURE 1. Learned threshold by naive approach on several data sets.

B. EXPERIMENTAL ANALYSIS OF THRESHOLD
LEARNING ALGORITHM
In this part, the efficiency of the naive approach to learning
threshold δ will be presented. In this experiment, a hun-
dred values of δ have already been chosen from 0.01 to 1,
meanwhile, for a certain δ and a certain information granule,
we generate 100 groups of loss functions in order to calculate
thresholds α and β. Learned results by naive approach on
8 data sets are summarized in Fig. 1. Through Fig. 1, we are
able to observe:
• Roughly, with the expanding of δ, the values of AQR are
diminish. Different from the performance of AQR, with
the increasing of δ, the values ofDCR are decrease firstly
and then increase when it reached a special point.

• The values of ADR in all data sets are regularly change.
with the expanding of δ, the values of ADR expand
firstly, after reached the peak, the values of ADR are
decrease.

Based on the results in Fig. 1, one can obtain the satisfac-
tory δ of all data sets, it can be concluded in Table 3. In Fig. 1,
we can note that the satisfactory δ is not only the one in some
data sets. For example, in Dermatology, the values of δ from
0.12 to 0.23 all hold the satisfactory δ. In this case, we select
an average value of such interval.

C. EXPERIMENTAL ANALYSIS OF INFORMATION
GRANULE REDUCTIONS
In the section, several significant kinds of decision rules
have been researched. Decision rule figure of reduct is able

to be viewed as an evaluation index of data granulation
reduct.

Let S be a MDS, δ ∈ (0, 1], suppose that B ⊆ AT is a
reduct of S, then the difference of several decision rules is
able to be expressed as below.

PDC =

∑n
i=1

(
|POSδ(B,Xi)| − |POSδ(AT ,Xi)|

)
|U |

; (29)

BDC =

∑n
i=1

(
|BNDδ(B,Xi)| − |BNDδ(AT ,Xi)|

)
|U |

; (30)

NDC =

∑n
i=1

(
|NEGδ(B,Xi)| − |NEGδ(AT ,Xi)|

)
|U |

. (31)

And then, the values of δ in each data set are selected
according to the results in Table 3. The specific experimental
consequences are given in Tables 4-9.

Tables 4 to 6 show the decision comparisons among these
reducts. In Table 4, the AQ is the approximation quality of
original data set. By an investigation of these tables, several
conclusions can be obtained.

• Considering the alteration of decision rules, it can be
found that the PDC and NDC values based on DM
reduct are positive. The BDC value based on DM reduc-
tion is negative. The results indicate the reduct based
on data mining can increase the number of deterministic
rules and reduce the number of vague rules.

• From the viewpoint of reduction algorithms, the function
of genetic algorithm is greater than that of heuristic
algorithm. For example, in Abalone data set, the PDC
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TABLE 3. The satisfactory thresholds of all data sets.

TABLE 4. The PDC comparisons of reducts.

TABLE 5. The BDC comparisons of reducts.

TABLE 6. The NDC comparisons of reducts.

TABLE 7. The DCE comparisons of reducts.

value of DM-HAIGR is 0.0081, meanwhile, the PDC
value of DM-GAIGR is 0.0311, which is much lager
than 0.0081.

Table 7 shows the decision cost comparisons among these
reducts. Through an investigation of Table 7, we can observe
that:
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TABLE 8. The IGLF comparisons of reducts.

TABLE 9. The running time comparisons of reducts (s).

• Comparing with the raw costs, the decision cost of all
reduct have been reduced. In terms of the performances
of different reducts, we can note that CM based reduct
can acquire the min decision costs.

• By comparing the performances of these two reduction
approach performs better than genetic approach in sev-
eral data sets, such as ‘‘Wdbc’’ data set, in some data
sets, the genetic approach performs better than heuristic
approach, such as ‘‘Zoo’’ data set.

The information granule length factor is a variable to mea-
sure the number of information granule elements. If B ⊆ AT
is the reduct of S, so information granule length factor is able
to be expressed as:

IGLF = |B|. (32)

Table 8 shows the information granule length comparisons
among different reducts. By a further investigation of Table 8,
it is easy to draw the following remarks:
• In Table 8, one can see very clear that the reduct obtained
by CM-HAIGR holds only one information granule.
This is because in the process of CM-HAIGR, we put the
fittest information granule into the reduct in step 4, it is
hard to introduce another information granule into the
reduct so that the total decision cost can be decreased.

• By comparing different reduction criteria, the DP-
HAIGR based reducts hold the most information gran-
ule. In other words, in order to maintain the original
decision,one needs to hold more information granules,
which also indicates the shortage of decision preserva-
tion based reduction in MG-DTRS from the perspective
of experiments.

• By comparing the performances of these two reduction
algorithms, one can observe that the reducts of genetic
approach hold more information granules than the ones
of heuristic approach.

Finally, Table 9 shows the running time comparisons
among these reducts. It is simple to discover that heuristic
methods are always faster than genetic methods.

To sum up:
• Decision preservation based reduction may not suitable
in such rough set model. Although it can preserve the
positive decision rule unchanged, it has several shortages
from two points. (1) The original data set does not hold
the maximal number of positive decision rules, hence,
the reduct which preserves the positive decision rule
unchanged would become meaningless. (2) Comparing
with the other two reduction criteria, the reduct based on
DP criterion needs more decision cost and information.

• The reduct based on DM criterion or CM criterion per-
forms better in such rough set model. On the one hand,
the reduct based on DM criterion not only increases
the certainty decision with low decision cost, but also
decreases the uncertainty comes from border area; the
reduct based on CM criterion obtains minimal decision
cost.

VI. CONCLUSION
In this article, a novel and generalized framework of
MG-DTRS has been studied, which is referred to as
δ-MGDTRSmodel. Different from the traditionalMG-DTRS
models, a parameterized operator is used to construct
the rough approximation. Optimistic and pessimistic
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MG-DTRSs are only special cases of our δ-MGDTRS. Fur-
thermore, a satisfactory MG-DTRS model has been defined
with high approximation quality and low decision cost,
a naive approach is proposed to learn the satisfactory δ.
As far as information granule reduction is concerned,

we have discussed the information granule reductions with
three different criteria. In order to compute the reducts,
heuristic and genetic approaches have been employed for
different requirements respectively. The experimental results
mainly indicate that the DP based reduction may not suitable
in such DTRS models. On the contrary, the DM and CM
based reductions can be the popular researches in MG-DTRS
model.

The further research is to set the weight ofAQR andDCR of
the fusion function during the method of obtaining satisfac-
tory threshold. By further optimizing the weight, the model
is further improved and applied to more complex practical
problems.
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