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ABSTRACT Monitoring train operation status is one of the most important tasks for ensuring rail operation
safety. Pantograph and catenary (PAC) are collecting systems of the electric current from traction power
supply system, and the stability of the contact between pantograph and catenary guarantees the stable
power. However, most existing contact point (CPT) detection methods are always difficult to achieve
precise positioning results, especially in complicated background. This article proposes a novel fast and
accurate contact point detection method based on multiple strategies, which combine three modules. First,
an improved kernelized correlation filter model in real-time tracking module was adopted to track the contact
region. Then the pixel-level detection module was used to detect contact point in contact region via the
proposed contact point regression residual network (CPRR-Net). Finally, a filter-based optimization module
was added to correct the contact position using the Kalman filter. This work additionally employed a new
rail dataset PAC-TPL2020 to prove the effectiveness and feasibility of the proposed multiple strategies in
real-world scenarios, and the experimental results demonstrated the robustness and high accuracy (97.07%
within 3 pixels and 99.97% within 5 pixels) of our model. It is noteworthy that our mothed runs at 65 frames
per second for monitoring PAC contact points.

INDEX TERMS Condition monitoring, contact point, deep convolutional neural network, image processing,
pantograph and catenary system.

I. INTRODUCTION
In recent years, with the rapid development of high-speed rail-
way systems, condition monitoring and health management
became increasingly necessary and important for guarantee-
ing daily operations. The system supplying and collecting the
electric current is the key part for the operation of electrified
railways. The stable transmission of electric power guaran-
tees normal railway operations. Consequently, monitoring the
operation of the current supplying-collecting system is a key
requirement for train operation in railway industry.

Pantograph and catenary (PAC) system [see Fig. 1] is
the most used sustained and stable way for modern trains
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to receive electricity. The operation environment of PAC
system is complicated and the parts suffer from mechanical
and electrical impact. With the improving speed and long-
term operation, there are increasing numbers of accidents
occurring in PAC systems, such as arcing, droppers fall-off,
abnormal wear of the pantograph strip, even more seriously
breakdown of pantograph and contact line fall-off, which
cause serious damages to operation companies, even endan-
gering passengers [1]. Therefore, a PAC monitoring system
is crucial to ensure the long-term and stable operation of
electrified railways.

Contact point (CPT) monitoring is a key part in the whole
monitoring system, by which we can calculate the height of
operating pantograph and the zig-zag. Moreover, the high-
accuracy CPT position can be utilized for the calculation of
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FIGURE 1. The structure of PAC system.

contact force between pantograph and catenary [2]. Hence,
CPT detection has become an indispensable part in modern
monitoring systems to evaluate the performance of PAC sys-
tems. The monitoring of the CPT is the present problematic
of current collection in electrical railways.

Traditional CPT detection was based on the detection of
pantograph and catenary separately and the CPTwas obtained
by calculating the intersection point of two lines. The con-
tact line was usually detected in vertical direction and the
surface of the pantograph head was detected as the top line
by applying the Hough Transform and the Radon Trans-
form [3]–[5]. For the detection of contact line, the mean-
shift algorithm [6] and the particle swarm algorithm [7] were
applied in othermethods and the firefly algorithm [8]was also
used for the detection of the pantograph. Template matching
was applied to detect parts in PAC system. Zhou et al. [9]
proposed a dynamic target templatematchingmethod to iden-
tify catenary suspension movements based on location point
feature.

With the development of High-speed Railway, high-speed
and complicated background augment the detection require-
ments and bring more challenges to contact point detection.
Traditionalmethods have a good precision, but they don’t per-
formwell if the background is complicated. For example, line
detected based method can’t detect correctly contact line and
pantograph head if there are other lines in the background,
especially during the passage of the location point. Template
matching are robust to the background but the detection speed
and accuracy perform not as well as the line detection. Conse-
quently, it is of great significance to propose a novel method
to accurately identify and locate the contact point for further
research on PAC system fault diagnosis. In recent years, deep
learning-based methods have been widely applied for railway
defect detection [10], [11], [12] and greatly improved the
accuracy and stability of surveillance methods.

With the development of deep learning, deep convolu-
tional neural networks (DCNNs) play essential roles in image
processing and more powerful algorithms have appeared
one after another, such as the YOLO series networks [13],
[14], [15] and Faster R-CNN [16] for object detection,
SiamFC series network [17] for multiple object tracking,
which are widely used in the engineering field. In rail-
way PAC system monitoring, DCNNs are also researched
and applied for its powerful representation capabilities in

computer vision applications, for example, dropper detec-
tion[18], strip wear [19], [20] and arc detection [21].

DCNNs achieved performance improvements with devel-
opment of deep network. SinceAlexNet [22] won the LSVRC
2012 classification competition, the most advanced DCNN
architecture has grown deeper. AlexNet has only 5 convolu-
tional layers, while the subsequent VGG network [23] and
GoogleNet [24] have 19 and 22 layers respectively. However,
the deep improvement of the network cannot be achieved
through simple stacking of layers. Due to the gradient dis-
appearance problem, deep networks are difficult to train.
Because the gradient propagates back to the previous layer,
repeated multiplications may make the gradient infinitely
small. As a result, as the number of layers in the network
becomes higher, its performance tends to saturate, and even
begins to decline rapidly. He et al. [25] proposed the residual
learning framework (ResNets) to ease the training of net-
works that are substantially deeper than those used previ-
ously. ResNets make it possible to train hundreds or even
thousands of layers and still show superior performance in
this case.

To improve the contact point detection performance,
many researchers applied DCNN in detecting the CPT.
Zhang et al. [26] proposed a method combining deep con-
volutional network with handcrafted features to detect the
CPT. The upper surface of the pantograph strip was detected
by an improved DPN and optimized. The edge detection
and Hough Transform were used and the widest line was
considered the contact line above the pantographwhich is not,
however, always the case for real application, for example,
if the camera is far from the line. Shen et al. [27] worked
on CPT’s real-time tracking in the image sequences with
complex background. The method was combined kernelized
correlation filters, results refinement and result confiden-
tial evolution. But the hypothesis assumes that the CPT’s
position relative to the region’s center is a constant among
adjacent image frames, which was inaccurate under certain
circumstances.

To solve the above problem and improve the detection
speed, we proposed three modules in novel contact point
detectionmethodwithout detecting pantograph head and con-
tact line separately. In the first real-time tracking module,
a revised version of KCF algorithm combined with tem-
plate matching was applied. It combines previous position
information and keeps a robust yielding of contact region.
Besides it reduces the following computing consumption and
improves detection speed. In the second pixel-level detection
module, CPT was detected straightly by regression in con-
tact region through a new designed network, called contact
point regression residual network (CPRR-Net). In the last
filter-based optimization module, a CPT motion theoretical
equation was proposed as predictive theoretical value and
combined with detected value to located final CPT position
in Kalman filtering, which enhances the robustness and accu-
racy of the model. The combination of the three modules
guarantees the robustness of the program against background
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interference and also increases the running speed to ensure
real-time performance.

In summary, the contributions of this article are as follows:
1) The new proposedmethod bases on Tracking-Detection-

Optimization strategy, which ensures the stability and
real-time performance of the algorithm as a whole.

2)We propose a novel contact point regression residual net-
work (CPRR-Net) to yield CPT coordinate in contact region
and a CPT motion equation combined with filtering method,
which can better locate and correct CPT coordinate under
various background conditions. To the best of our knowledge,
this is the first work in CPT coordinate regression and in CPT
coordinate optimization by Kalman filter.

3) We establish a new dataset PAC-TPL2020, whose con-
ditions mainly consist of arcing, unfavorable weather, light
interference, multi-lines interference, etc. The effectiveness
of the proposed methods was analyzed thoroughly based on
the dataset PAC-TPL2020.

The rest of this article is structured as follows. Section II
introduces the structure of the PAC system and presents
the current problems encountered in real application scenar-
ios. Section III explains the implantation details of the pro-
posed method for contact point localization and Section IV
shows the results from the experiment on real railway lines.
Section V provides the conclusion of this article.

II. PAC SYSTEM AND MONITORING CHALLENGES
In this section, we will introduce the pantograph and catenary
system, especially the contact parts. Then we introduce the
difficulties faced in real application scenarios and give an
overall view of the problems that our proposed method aims
to solve.

Nowadays, the PAC system is the most adapted ways for
trains to receive electricity. The structure is shown in Fig. 1.
The catenary system is set along the rail which is composed
of messenger, dropper, overhead line, pillar, location point,
etc. The pantograph is composed by frame and head. The
pantograph head is lifted by the frame and contacts to the
overhead contact line. The contact strip on the pantograph
head slides along the contact line to get the electricity from
the catenary when train goes forward. The contact line is
installed as a zig-zag shape along the railway, which aims to
reduce wear because the whole contact strip could contact to
the overhead wire.

Catenary system adopts double overhead lines in some
railway lines. Double overhead lines have their characteris-
tic advantages, for example, augmenting the contact region,
which helps reduce contacting wear. Amore important reason
is that double overhead lines setting has less power loss
while transmitting the same amount of power because double
overhead lines have less resistance.

The contact points locate at the intersection of the contact
lines and the upper surface of the pantograph carbon contact
strip. The double contact lines system has two contact points
with the pantograph as shown in Fig. 2. However, the con-
tact line itself has a certain width in the collected precise

FIGURE 2. Double contact lines model.

FIGURE 3. Demonstration of contact line structure and key point
position. (a) Four intersection points of marginal lines; (b) Cross section
of contact line.

image data [see Fig. 3-(a)]. Consequently, there are 2 detected
marginal lines for a single contact line and 4 lines for double
contact line system based on line detection method. Consid-
ering that the bottom of the contact line is arc-shaped [see
Fig. 3-(b)], computer vision-based CPT detection hypothesis
assumes that contact points’ position relative to the middle of
two intersection points of marginal lines.

In real application scenarios, the challenge of recognizing
PAC contact points in engineering applications lies in the
complexity of the background, such as cantilever and bridge
frame interference [see Fig. 4-(a)], unfavorable weather con-
ditions [see Fig. 4-(b)], arcing [see Fig. 4-(c)], foreign light
interference [see Fig. 4-(d)], etc. In view of the complexity
of the PAC system, it is difficult to continuously and stably
detect the CPT positions.

In view of complexity of PAC system background, line
detection-based method, which is easily interfered by mul-
tiple interference, is not feasible for real-world application.
Severe weather and light interferences bring huge challenges
to the stability and accuracy of other method. Therefore, it is
essential and necessary to propose a novel method based
on multiple strategies in aim of accurate and robust CPT
detection.

III. THE CPT DETECTION METHOD
Towards the accurate and robust CPT detection in complex
background, we proposed a progressive detection method
based onmultiple strategies which include three modules [see
Fig. 5]. In the first real-time tracking module, the contact
region was focused and tracked by KCF according to initial
position which was located automatically by template match-
ing at the beginning of the program. Then a new-designed
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FIGURE 4. Challenges for CPT detection under different backgrounds (Images from dataset PAC-TPL2020). (a) Cantilever and bridge frame interference;
(b) Unfavorable weather condition; (c) Arcing; (d) Foreign light interference (The first 2 images are moonlight interference and the last 2 images are
road lamp interference).

deep convolutional neutral network, called contact point
regression residual network (CPRR-Net) in pixel-level detec-
tion module was applied to detect line-intersection points’
coordinate in contact region. The outputs of CPRR-Net were
the coordinate of line-intersection points and a location point
judge index for updating CPT motion equation in follow-
ing module. In the last filter-based optimization module,
Kalman filters corrected contact position by combining the
predicted coordinate that was calculated by CPT motion the-
oretical equation and detected coordinate that was detected by
CPRR-Net. The optimization module improved the detection
accuracy and eliminated singularities caused by arcing, light
interference and other factors.

A. REAL-TIME TRACKING MODULE
In order to realize real-time CPT detection, the tracking
method is necessary. Recently, the correlation filter-based
single object tracking is one of the most popular and applied
methods because of its efficiency and accuracy. However,
a single point is impossible to be tracked directly in the
complicated railway background, so we first take the contact
region with feature of lines intersection as initial targets.
On account of the great success achieved by correlation
filter-based tracking, KCF [28] was applied in this article

to realize the contact region tracking with PAC monitoring
images.

In the real-time tracking module, as shown in Fig. 5,
a revised version of KCF was adopted to obtain the relevance
of the contact region at different displacements by correla-
tion filtering and update the region iterations further through
the correlation and send contact region positions frame-by-
frame to following steps, then in the next pixel-level detection
module, CPTs were located by a method of regression with
cropped CPT-focused images, which also helped reduce the
amount of data to be processed and improve the detection
efficiency.

Before the quick tracking, the initial position containing
contact region needs to be transmitted to KCF program in
the proposed method. The proposed approach in the tracking
module intelligently combined template matching in the spa-
tial domain to locate the contact area, where the characteris-
tics of the intersection between pantograph and catenary was
obvious. The matching method distinguished contact lines
from messenger lines by its width and gray value because
contact lines are thicker and brighter than messenger lines in
the acquired images.

Therefore, for the initialization, the filter template which
contains contact region moves through the first PAC image
and calculates the sum of the gray-scale products of each pixel
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FIGURE 5. Overall flowchart of the proposed methodology for online CPT detection based on multiple strategies.

position, assuming that the size of the image f (x, y) isM×N
and the size of the template sub-image w(x, y) is J ×K , then
the correlation between f and w:

c(x, y) =
K∑
s=0

J∑
t=0

w(s, t)f (x + s, y+ t) (1)

In the correlation filtering tracking part, the first frame I
and the corresponding contact region are provided by match-
ing part. The classifier is trained in Fourier domain using
the subsequent training samples, Ii (a, b)∈ {0, . . . ,a− 1} ×
{0, . . . , b−1}, which are captured by cyclic shifts of image I
with size a× b pixels. x is cropped around target center. The
expected label yi(a, b) for each sample xi follows a Gaussian
function, ranging in 0− 1. yi will be 1 for the contact region,
and depress to 0 for other regions which shifts away from
the contact region. The goal for KCF training is to find
a function f (z) = ωT z that minimizes the squared error
between samples xi and their regression target yi as follows:

min
ω

∑
i

(f (xi)− yi)2 + λ ‖ω‖2 (2)

where λ is the regularization parameter to control overfitting
and ω is the optical value to minimize the equation.
In our proposed method, template matching and KCF

cooperated to realize the consecutive tracking of the contact
region. As the initialization of KCF, template matching was
put into use at the initial segment of each anchor section

according to the index p which was the number of spans in an
anchor span. When passing overlap spans, template matching
was activated with a fixed interval in order to re-locate the
new contact line.

With correlation filtering technology in real-time track-
ing module, the contact region was tracked effectively. The
coordinate vectors were transmitted to the clipping section
and the origin images were cropped into uniform size,
100 pixel× 100 pixel in this article. In the end of the tracking
module, the cropped images that included contact regions
were transmitted to the following detection module.

B. PIXEL-LEVEL DETECTION MODULE
Traditional contact point detection method firstly located the
surface of pantograph strip and the contact line separately and
then extracted their intersection point as contact point, which
process was complicated and computational. To simplify
the method and improve real-time performance, the contact
point detection was a pixel-pixel regression process in this
model. We introduced a novel contact point regression resid-
ual network (CPRR-Net), where contact point coordinate was
detected directly.

1) LOSS FUNCTION
For the input image I , there were 8 outputted numbers
(x1, y1), . . . . . . , (x4, y4), representing x and y coordinate val-
ues of 4 intersection points and 1 judge index u indicating the
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detection of location point. The loss function according to the
distance between detected values and labels was:

Loss =
1
n

n∑
i=1

(x − xi)2 +
1
n
λ

n∑
j

(y− yj)2 + γ (u− u)2 (3)

where λ is direction-oriented penalty weight whose aim was
to ameliorate the detection accuracy in different direction
considering that 4 intersection points are distributed in the
same straight carbon contact strip line. γ is the weight to
improve the accuracy of location point detection. The detec-
tion of the location point based on the appearance of registra-
tion arm and location clamp in the image.

The final loss function is obtained by the sum of mean
square error and weights in the last three full connection lay-
ers. During the training validation, accuracy for each epoch
was computed by averaging the prediction of batch-size
image samples. The gradient descent optimization algorithms
were based on Adam [29], an adaptive learning rate method
as back-propagation, which has good performance in find-
ing a minimum loss. In the training process of this article,
the combination of Adam and loss function realized the fast
and reliable regression of CPT coordinate.

2) ARCHITECTURE
The state-of-the-art deep neural network ResNets [25]
designed residual learning framework to ease the training
of networks and achieved good performance in the areas
of image classification and object detection. By inserting
shortcut connections which skip one or more layers directly,
ResNets realized different deeper layers of network. For
example, ResNet-34 consists of 34 convolutional layers
which are structured in four composite blocks and each block
has 3, 4, 6 and 3 sub-blocks, respectively. There are also
global average pooling layers in the network and a fully
connected layer in the end of the network. Through such a
structured design, Resnets has realized the construction of a
deeper network and achieved favorable training results.

To better adapt PAC images and output the CPT coordi-
nate in detection module, we re-architected the ResNets and
proposed a novel CPRR-Net, as shown in Fig. 5. From a
general view, images in CPRR-Net were fed into 4 blocks
in sequence to extract features in different level and followed
by 3 fully-connected layer for regression. The new architec-
ture of CPRR-Net takes advantage of the high-level features
and also intersection details for detection, and it keeps high
accuracy while locating the intersection point between the
pantograph upper surface and the contact line.

The implementation of the CPRR-Net was shown in
TABLE 1. In details, since the contact region was focused
and the intersection feature was enhanced in the last real-time
tracking module, the global average pooling layer was
replaced by the convolutional layer to remove noises and
smooth input images at the beginning of the CPRR-Net. Then
the input layer was set to 32 channels instead of the original
3 channels in order to extract characteristics in different

TABLE 1. The architecture of CPT regression network.

angles. Furthermore, the kernel size 1×1 and 3×3 filters were
used in most convolutional layers. Each building block in the
network was connected to a convolutional layer, followed by
a batch normalization (BN) layer, which helped the network
training and control gradient explosion or disappear.

At the end of the CPRR-Net, three full connection layers
were designed to output 9 values. The sliding decreasing
convolution kernel size was used to convolve the fused feature
map in each composite block, reducing the number of chan-
nels to 9, and a convolution layer was applied to transform the
feature maps into vector size. Then we got the final output of
the CPRR-Net. The 9 values represent the x and y coordinate
values of 4 intersection points and 1 judge index, which
indicates the detection of location point and will be used for
updating parameters in the following process.

C. FILTER-BASED OPTIMIZATION MODULE
In the results of CPT coordinate from the previous work,
Gaussian noise was inevitable during the processing of
both sampling and detection. Therefore, the Kalman filter
which combined the predicted results and detected results for
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FIGURE 6. Distribution of contact line.

prediction and correction is an effective technique to realize
more accurate results. Especially when there were strong arc
occurring, the image information was lost and Kalman filter
could predict the position in the following frames.

In electrified railways, the contact line is installed as a zig-
zag shape along the railway [see Fig. 6] and the contact strip
on the pantograph head slides along the contact line when
train moves along the railway direction (longitudinal). The
lateral movement of the CPT is always kept within the range
of the stagger value and CPT trajectory is approximate to
a straight line within a span. Therefore, to express the new
state of the CPT positions, we proposed CPT state model for
prediction step as follows and x is state vector representing
position and velocity.

_x
−

t = Ft
_x
−

t−1 + Btut (4)

where x̂−t are predictions of the position at time t. Ft is the
state transition matrix which defines the relation between the
state vectors at time t and t − 1. Bt is the control matrix and
ut is control vector. The following equation represented the
transmission relationship of uncertainty at different moments.

P−t = FPt−1FT + Q (5)

where Pt is system noise covariance matrix and Q is the
covariance representing the untracked influences as noise
from the environment.

Through CPRR-Net in pixel-level detection module,
we obtained the observed position value zt and we combined
these observed values with the state vector as follow.

_x t =
_x
−

t + Kt (zt − H
_x
−

t ) (6)

(zt−H
_x
−

t ) represented the residual between our actual obser-
vations and predicted results.Kt is Kalman coefficient, which
is given as follows:

Kt = P−t H
T (HP−t H

T
+ R)−1 (7)

In this model, the position of the contact point was only
observed, and K already contained the information of the
covariance matrix P, so we used the correlation between
the two dimensions of position and velocity to infer speed
information from the position information. In this way, two
dimensions of the state quantity x were modified simultane-
ously. Therefore, the acceleration ut was considered as zero

Algorithm 1 Kalman Filter
1: Initialization:

Get the first two detected point positions from
CPRR-Net: (x1, y1), (x2, y2)

2: Determine the initial speed of CPT: vx0, v
y
0

3: Initialize state vector, covariance matrix,
control vector, control matrix

4: While: ∼done
5: Get the judge index u from CPRR-Net
6: If w> 0.5

Span count number: m = m+ 1
If m > threshold T Break
Else Re-initialization

7: Else
8: Predict the next position: x_predict
9: Transition of noises: p_predict
10: Calculate Kalman coefficient: kalman
11: Update contact point position: x_mat
12: Update the noise covariance matrix: p_mat
13: Show the contact points in the image
14: Save the vectors as CPT positions

in contact point state model. Finally, the noise covariance was
updated for the next iteration, which can be expressed as:

Pt = (I − KtH )P−t (8)

Algorithm 1 introduced the procedures of the combination
of predicted results and detected results by Kalman filter to
realize the CPT position prediction and correction. For ini-
tialization, initial speed was computed by the displacement of
CPT point in the first two consecutive frames with sampling
interval 1t . The judge index u, which varied in range of 0
and 1, is the ninth output number from the CPRR-Net. The
value of wwas greater than 0.5 indicating the detection of the
location point, and less than 0.5 for other situations which
represented contact points within one same span.

With Kalman filter program, gaussian noises in detection
results were suppressed and the absent detection points in
case of arcing were predicted, which assured the whole pro-
gram in a state of robustness.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT AND DATASET
The CPT position measurement helps monitor operating
condition of PAC system and ulteriorly calculate other key
parameters. In this article, a novel CPT detection method
is proposed and tested based on our newly created dataset,
called PAC-TPL2020, which was collected from real oper-
ation of railway lines by States Key Laboratory of Trac-
tion Power (TPL). The high-resolution image acquisition
module was installed on the roof of the train [see Fig. 7].
The visual field of camera focuses on the operating area of
the PAC system, and as the train runs, real-world images
collected without a break. The resolution of the image is
1920 pixel×1080 pixel and the sampling frequency is 50fps.
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FIGURE 7. The image acquisition module.

In order to detect CPT in various background, we estab-
lished a new dataset PAC-TPL2020, whose images were
acquired in real-world scenarios and calibrated manually
with CPT positions. The dataset was not limiting to a spe-
cific railway line but instead covered a wide selection of
interference in diverse working conditions. For example,
PAC-TPL2020 contains different complicated backgrounds,
consists of mainly different interference [see in Fig. 4],
arcing, unfavorable weather, foreign light interference, can-
tilever and bridge frame interference, multi-lines interfer-
ence, etc. Eventually, more than 5000 original PAC system
images were calibrated manually in precise level of pixels
and the CPT coordinate was enregistered as ground truth.
TABLE 2 presented the statistics of different interference.
The total number of images was expanded to 5 times in PAC-
TPL2020 by data strength technology, for example, adding
noises and changing background.

TABLE 2. Statistics of Pac-tpl2020.

PAC-TPL2020 was separated into 3 parts, training dataset,
testing dataset and validation dataset with a ratio of 6:3:1.
The diversity of the dataset enabled model architectures to
focus on the line-intersection feature between pantograph
and catenary in different contexts and the large scale of this
dataset enabled the development of deep residual network for
CPT regression. All the results in this article were evaluated

on this dataset and the richness of data ensure the portability
for other lines.

In addition, the CPRR-Net method in pixel-level detec-
tion module was implemented under the deep learning open
source framework TensorFlow. The tested frames were pro-
cessed in computer with 16GB RAM, Intel (R) Xeon (R)
Bronze CPU clocked at 2GHz, and GTX 2080Ti graphical
processing unit (GPU) with 11 GB memory, 32-GB RAM.

B. TRACKING AND DETECTION EVALUATION
1) TRACKING PERFORMANCE
We compared several popular tracking networks, including
Yolo, KCF and SiamFC based on the platform PYSOT.
By using the same training dataset, we got the comparison
results of these method in terms of accuracy and processing
time for the testing dataset. We used the square bounding
boxes in different size to focalize the contact region. To mea-
sure the performance of different methods, the mean cen-
ter location precision (mCLP) was proposed. The mCLP is
defined that the ratio of the number of contact point located
in the inner box to the number of all the tracking images. The
side length of the inner box was half of the proposed square
bounding box, which purposewas tomaintain the intersection
feature of pantograph and catenary in the tracking region by
an inner center-rectangle penalty mechanism.

In the Fig. 8-(a), the position of contact points was located
in the inner yellow box, in which case the intersection feature
of strip and catenary was strengthened in the green tracking
box. By contrast the position of contact point was located
outside of the yellow box in the Fig. 8-(b), so according to
the definition of the mCLP, this was an invalid tracking.

FIGURE 8. Definition of valid and invalid bounding boxes; the green box
is the tracking box and the yellow box is the check box. (a) valid tracking;
(b) Invalid tracking.

According to the new-defined evaluation criterion mCLP
and mean processing time (mpT), the results of different
method performance based on our new defined criteria in
PAC scenario are presented in TABLE 3.

As shown in the TABLE 3, we found that Yolo performed
not as well as SiamFC and KCF in terms of mean pro-
cessing time. Furthermore, KCF had a better performance
than SiamFC in mean center location precision, which is an
essential indicator that we paid more attention in the scenario
of PAC system. In the test, Yolo and SiamFC were tended to
lose the target in our task while passing the location points
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TABLE 3. The results of different tracking methods.

or appearing of support beams during the tracking proces-
sion, whereas KCF possessed a robust tracking performance.
Besides, the mpT of KCF meet the requirement of sampling
frequency of 30fps. So, in this case, KCF was applied to
locate the contact region in tracking section.

The collaboration of template matching and KCF track-
ing guarantees the consecutive tracking of contact regions.
Fig. 9 illustrates the effectiveness of tracking method in dis-
tinguishing between messenger lines and contact lines and
also in line-changing stage. Because messenger lines are far-
ther than contact lines from camera and supplementary LED
lights, contact lines are thicker and brighter in the acquired
images. Fig. 9 (a) and (c) demonstrate that the matching and
tracking method realized accurate location with the interfer-
ence of messenger lines.

When passing the overlap span, as shown in Fig. 9 (b), the
previous online contact line lifted up and the offline contact
line went down to contact with the pantograph head. With
suppletory light, the shadow of the pantograph head was
dropped on the contact line because the contact line was not
touched on the surface of the pantograph head. Therefore,
based on our tracking method, template matching method
was put into use to detect the online contact line in line-
changing stage and the actually touching line was able to be
distinguished.

In other complicated background, the tracking method was
able to keep the accurate location of contact regions based
on the line-intersection features and positions in the previous
frame. For example, in Fig. 9 (d), the proposed tracking
method kept tracking the contact region when the train was
passing a cantilever and bridge structure.

2) CPT DETECTION PERFORMANCE
In this part, the added convolutional layer and the CPRR-Net
were compared with other structures by a series of compara-
tive tests.

In order to measure the accuracy rate of the CPT detec-
tion method based on our database, Coarse Positioning
Region (CPR) and Fine Positioning Region (FPR) were
defined [see in Fig. 10]. FPR and CPR were circles with
a radius of 3 pixels and 5 pixels separately with the label
position as the center. The detected position which located in
FPR was defined as a true result according to the definition

FIGURE 9. Tracking results in different scenarios. (a) Contact line and
messenger in nighttime; (b) Changing of lines when passing though
overlap span; (c) Contact line and messenger in daytime; (d) With
complicated background.

of FPR accuracy and, similarly the point in CPR was counted
in CPR accuracy. Based on the database in this article, FPR
accuracy requires precise detection results and CPR accuracy
tolerates random distribution within a small range.

At the beginning of the network, a convolutional layer was
added to smooth the input images and noise. TABLE 4 is the
consequence of different type of filters and kernel sizes. For
the FPR accuracy rate, both the two kernel sizes 3 × 3 and
5×5 have better performance compared with 7×7 size. The
kernel size 5 × 5 performed better than 3 × 3 size in terms

220402 VOLUME 8, 2020



X. Yang et al.: Online Pantograph-Catenary CPT Detection in Complicated Background Based on Multiple Strategies

FIGURE 10. Definition of different regions for coarse positioning accuracy
and fine positioning accuracy.

TABLE 4. The results of different filters.

of CPR accuracy rate. Eventually the kernel size 5 × 5 was
selected in the first convolutional layer.

The experimental results over all PAC images were sum-
marized in TABLE 5. For comparison, we also reported
results for several other structures, including AlexNet, VGG
and GoogLeNet. Epoch set 5000 and all the method were
convergent to a stable low number. Compared to different
types of structure with performance of speed and accuracy,
CPRR-Net can reach competitive performance with high
accuracy. In order to optimize the structure of the CPRR-
Net, different number of layers 18, 28 and 52 were compared.
The performance of both CPRR-Net-52 and CPRR-Net-28 in
the aspect of accuracy is similar and better than CPRR-Net-
18. While for different number of layers, the more layers,
the longer time needed for training and detection. Eventually
CPRR-Net-28 was the best structure for this detection.

TABLE 5. The results of different filters.

In order to locate the position of CPT, a whole connected
layer was attached and the comparison of different size of the
last part was also listed in TABLE 5. CPRR-Net-28 A, B, C

are separately1, 3, 5 layers in the whole connection part. The
performance of type B and C was close, showing that the
CPR accuracy was more that 94% and the FPR accuracy was
more than 85%. However, more layers caused lower detection
speed. Consequently 3 whole connection layers were selected
considering both accuracy and real-time performance.

3) CPT CORRECTION PERFORMANCE
The Kalman filter was applied to correct and predict the CPT
position by combining theoretical results and detected results.
Fig.11 shows the CPT trajectory with and without optimiza-
tion in the horizontal direction, and respectively demonstrates
the errors from the ground truth. The detected positions are
CPT coordinate detected by CPRR-Net and not yet optimized
by the proposed filtering method. The optimized positions
are the final results corrected with the combination of CPT
motion equation and Kalman filter. Detection errors shown
diminished within 3 pixels with optimization work. The com-
parison of errors showed the significant amelioration effect
on the detection results, especially on large deviation area and
singularities caused by arcing and other interference.

In zone 1, the error values of the detection results by
CPRR-Net were almost distributed within the coarse posi-
tioning region. After the correction by the combination of
contact point motion equation and Kalman filter, the errors
were reduced to within 3 pixels and contracted to the
fine positioning region, namely the accuracy of FPR was
improved. In zone 2, the original detection results performed
a large deviation from the calibration value, and the errors
were within 5-10 pixels. After optimization, the error reduced
within 5 pixels, which improved the accuracy of CPR. In zone
3, a singularity point appeared because the image was overex-
posed due to the severe arcing. The output of the CPRR-Net
was far from the ground truth and the proposed optimization
method reduced the error of the singularity within the CPR.
Therefore, the proposed filter-based optimization method
reduced greatly the errors and had a significant effect on the
detection result. The statistics of the FPR accuracy and CPR
accuracy in test database were given in TABLE 6.

TABLE 6. Accuracy (%) on detection results.

From the statistical results, the original results of CPRR-
Net demonstrated the high performance in CPR accuracy,
but the method also missed certain CPTs in more precise
detection within 3 pixels. By the comparison before and after
the optimization, the filter-basedmethod in the last correction
module improved more than 5 percent in CPR accuracy and
more than 11 percent in FPR accuracy of the detected results.
Conclusively, the combination of the CPT motion equation
and Kalman improved both the accuracy and precision of the
CPT position detection results.
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FIGURE 11. Demonstration of filter-based optimization results (CPT trajectory with and without optimization in the horizontal direction, and
respectively demonstrates the errors from the ground truth).

FIGURE 12. Comparison of detection results by different method: (a) Traditional method based on line detection; (b) The proposed method
without Kalman filter; (c) The proposed method with Kalman filter, and by different interference: (A) Arcing, (B) Moon light, (C) Prop arm,
(D) Location point, (E) Coupling bolt, (F) Unfavorable weather conditions.

C. THE CPT DETECTION RESULTS
For further validation of the proposed method, continuous
railway data with various interference were adopted to verify
the effectiveness and practicality. From the demonstration

of detection results under different interference shown in
images [see in Fig. 12], the comparison among the tradi-
tionalmethod, the proposedmethodwith andwithout Kalman
filter corroborates the great improvement in CPT detection

220404 VOLUME 8, 2020



X. Yang et al.: Online Pantograph-Catenary CPT Detection in Complicated Background Based on Multiple Strategies

FIGURE 13. Consecutive record of arc evolution (interval was 20ms).

FIGURE 14. The detection result curves of the proposed method and
ground truth in horizontal position and vertical position respectively.

performance with our new proposed method. In practical
engineering application, detection results could be influenced
by the interference of arcing, moon light, cantilevers, location
points and coupling bolts and the contact points would be
missed or false detected. For example, when arcing occurred,
foreign light or unfavorable weather interfered and destroyed
the straight-line feature of the contact line, the detection of
certain CPT was missed [Fig. 12-(a)-A, B, F] by applying
traditional line detection method. According to the criterion
that the highest line in the image is the upper face of the
pantograph slide, the contact points were incorrectly detected
due to the presence of cantilevers [Fig. 12-(a)-C], location
points [Fig. 12-(a)-D], coupling bolts [Fig. 12-(a)-E].

Based on the new proposed method in this article, the prob-
lems mentioned above can be solved methodologically and
CPTs are all detected through overcoming the interference
of complicated backgrounds. From the comparison of the
proposed method without and with filter-based optimization
method [Fig. 12-(b), (c)], the improvement of the detection

performance is remarkable in view of that singularities
caused by foreign lights and foreign objects were elimi-
nated by combining the predicted coordinate and detected
coordinate.

For consecutive arcing images [see in Fig. 13], the track-
ing module kept the correct tracking region even if one of
frames was overexposed. Image information was lost and the
results from CPRR-Net was deviated from the ground truth
when severe arcing occurred, but with correction of the last
optimization module, the deviation was eliminated within 5
pixels. It was also worth noting that the proposed method
performed not well when there were long-time and severe
arcing.

PAC-TPL2020 also adopted consecutive railway line
images to verify the effectiveness of the proposed method.
The overall CPT detection results in horizontal and vertical
position were presented respectively in Fig.14 and it showed
that the proposed method had the ability for accurate and
precise detection of railway contact point. The experimental
results proved that our proposed method was capable of
consecutive detection and conductive to real-world railway
monitoring with complicated interference.

V. CONCLUSION
Confronted with complicated backgrounds in real-world sce-
narios, a novel contact point detection method based on mul-
tiple strategies was proposed. The contact region was first
tracked by an adapted KCF in real-time tracking module and
then transmitted to the proposed CPRR-Net in a pixel-level
detection module to get the CPT coordinate. The frame-
work guarantees the robustness and instantaneity by reducing
redundant background and data. Eventually, the detection
results were optimized using Kalman filters and CPT motion
equation in the last filter-based optimization module. This
article also established a dataset PAC-TPL2020 which had
more than 20,000 images with complicated background in
real railway and ground truth of all the CPT coordinate.
Experiments proved that the proposed method achieves a
good performance in terms of accuracy, speed and robustness
regardless of cantilever and bridge frame interference, unfa-
vorable weather, arcing, foreign light interference, etc. In the
following work, more challenges such as tunnel, long-lasting
arcing interference, more complicated line conditions will be
adopted to improve the richness of the PAC-TPL2020 and
the robustness of the proposed method. Furthermore, based
on the precise and high-speed CPT detection results, future
work will focus on the calculation of contact force between
the pantograph and the catenary.
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