IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 18, 2020, accepted November 26, 2020, date of publication December 4, 2020,
date of current version December 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042612

Developing Data-Driven Approaches for Traffic
Density Estimation Using Connected Vehicle Data

MOHAMMAD A. ALJAMAL 134, (Member, IEEE), MOHAMED FARAG'-2,
AND HESHAM A. RAKHA 13, (Fellow, IEEE)

ICenter for Sustainable Mobility, Virginia Tech Transportation Institute, Virginia Tech, Blacksburg, VA 24061, USA

2College of Computing and Information Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria 1029, Egypt
3The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA

4Precision Systems, Inc, Washington, DC 20003, USA

Corresponding author: Hesham A. Rakha (hrakha@vt.edu)

This work was supported by the University Mobility and Equity Center (UMEC).

ABSTRACT This paper introduces novel approaches for the estimation of the traffic stream density. First,
an artificial neural network (ANN) data-driven approach is developed to estimate the level of market
penetration (LMP) of connected vehicles at two fixed locations. Then, the estimated values are used as
inputs to a Kalman filter (KF) approach to estimate the vehicle count between these two locations. Second,
three data-driven approaches are developed to directly estimate the vehicle count using only connected
vehicle data, an ANN, a k-nearest neighbor (k-NN), and a random forest (RF). A congested signalized
roadway in downtown Blacksburg, Virginia, is used to test and compare the performance of the estimation
approaches. Results demonstrate that the ANN approach produces reasonable errors in estimating the LMPs;
however, integrating the ANN with the KF results in larger errors than the errors produced from using
the KF with a predefined fixed average value obtained from historical data. The results also demonstrate
that the data-driven approaches provide accurate vehicle count estimates, with the ANN being the most
accurate of the three approaches. Lastly, the paper compares the three developed data-driven approaches
with model-driven approaches (i.e., KF), showing that the ANN outperforms all other approaches. However,
taking into consideration that the difference is not large, the computational time needed to train the ANN,
the large amount of data needed, and the uncertainty in the performance when new traffic behaviors are
observed (e.g., incidents), the use of the KF approach is recommended in the estimation of traffic stream

density due to its simplicity and applicability in the field.

INDEX TERMS Connected vehicles, real-time estimation, machine learning, traffic stream density.

I. INTRODUCTION

People wasted around 166 billion hours in traffic congestion
in 2017, including around 3.8 billion gallons of fuel [1].
Traffic engineers and researchers are working to provide
solutions for the traffic congestion problem. One efficient
solution is to deploy Intelligent Transportation System (ITS)
applications with the aim of increasing the capacity of the
existing traffic infrastructure [2]. One ITS application is the
use of connected vehicle (CV) technology, which can allow
information exchange between two CVs (V2V communica-
tion) and also between any CV and the traffic infrastructure
(V2I communication). In the case of traffic congestion, traffic
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infrastructures such as the traffic signal controller can send
early messages to the surrounding CVs to find alternative
routes, leading to a reduction in trip travel times.

Traffic congestion can be represented by the macroscopic
traffic stream density (the number of vehicles that traverse
a specific roadway segment divided by the length of that
segment). Traffic density is considered a spatial rather than
a temporal measurement. Consequently, the temporal traf-
fic occupancy measurements, obtained from loop detectors,
cannot be used to estimate the traffic density for the entire
link unless multiple loop detectors are installed, which results
in high costs. A more efficient way to estimate the traffic
density is to exploit CV technology with the ability to share
real-time information, such as the vehicle’s location and
speed, anywhere inside the link [3]. Consequently, this paper
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aims to develop three data-driven approaches for the estima-
tion of the traffic stream density on signalized approaches.
The three data-driven approaches include an artificial neural
network (ANN), a k-nearest neighbor approach, and a ran-
dom forest (RF) model. The three estimation approaches are
developed using CV data only and compared to real-time
model-driven filtering techniques to identify the merits of
each approach.

Il. RELATED WORK

To estimate the number of vehicles on a road segment,
researchers have developed different estimation approaches
such as model-driven (filtering techniques) and data-driven
(machine learning). In addition, different data sources were
used to implement the proposed estimation approaches, such
as the data from fixed sensors (e.g., loop detectors), data from
two different detection sources (fusion data), and CV data.
In this section, we will present and discuss previous studies
that developed model-driven and data-driven approaches to
estimate the traffic stream density.

A. MODEL-DRIVEN ESTIMATION APPROACHES

For the use of fixed sensors, the input-output approach has
been widely used to develop model-driven approaches. One
study developed a Kalman filter (KF) approach to estimate
the vehicle counts on a signalized link using at least three
loop detectors (two at the boundaries of the tested link and
the third one in the middle of the link) [4]. Ghosh and
Knapp [5] developed a KF approach to estimate the total
number of vehicles using data from four loop detectors.
Bhouri et al. [6] also developed a KF approach, using six loop
detectors, to provide accurate estimates for the vehicle counts
in an on-ramp segment. In summary, the aforementioned
studies require installing multiple fixed sensors to provide
accurate estimates. However, the cost of implementing these
approaches in the field is high. Moreover, it was found that
fixed sensors always produce some noise in their data [7].
Thus, there is an urgent need to use additional data sources to
reduce the noise.

Fusion data has been given more attention following the
introduction of advanced technologies such as CVs. Recently,
researchers have started using fixed sensors together with
CV data for seeking better estimation accuracy. A study
attempted to provide accurate estimates of traffic density
using mobile sensors and loop detector data [8], showing that
the estimation accuracy using fusion data outperformed the
loop detector data. A recent study utilized CVs and cameras
to estimate traffic density in a 500 m highway segment. The
model developments were based on the assumption that the
average speed of CVs is approximately equal the average
speed of traditional vehicles [9]. In that study, a KF model
was developed under the consideration of having a linear
parameter-varying system with known parameters. The state
equation was based on the traffic flow continuity equation,
while the measurement equation was based on the average
speed of CVs. Wright and Horowitz [10] developed a particle
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filter (PF) using fusion loop and CV measurements to esti-
mate the number of vehicles in a freeway section, demon-
strating that the use of fusion data resulted in improving
the estimation accuracy. Another study [11] developed a KF
approach using fused loop and CV data to estimate the num-
ber of vehicles in a signalized link.

Recently, a few studies have attempted to estimate the
number of vehicles on signalized links using CV data only.
Several benefits of using CV data have been recognized; for
example, the high quality of data compared with existing
data sources (e.g., cameras and loop detectors), the data
can be collected at any location inside the network, thus
offering a clear picture about traffic behavior at any time
and location, and the cheap cost of collecting the data given
that no additional infrastructure is required. In those studies,
the linear KF, linear adaptive KF (AKF), and nonlinear PF
model-driven approaches were developed to provide accurate
estimates [12]-[15]. Moreover, a comprehensive comparison
between the KF, AKF, and PF was performed. It was found
that: (1) the AKF and PF are very sensitive to the system’s
initial condition (e.g., vehicle count), while the simple KF is
the least sensitive to the initial condition, and (2) the PF and
AKF require more computational time than the KF [15].

B. DATA-DRIVEN APPROACHES

Machine learning techniques require considerable amounts of
data to build mathematical models that draw the relationship
between the model’s inputs and outputs, and thus machine
learning is considered a data-driven technique. Data-driven
approaches have been employed to estimate traffic state vari-
ables such as traffic stream density and speed [14], [16]-[21].
In those previous studies, the proposed estimation approaches
have relied on different data sources such as data from fixed
sensors and fused data.

ANN and k-NN data-driven approaches were developed
to produce reliable estimates of vehicle counts [21]. In that
study, authors relied on fixed sensors to obtain traffic speed
and flow measurements to build and train the ANN and
the k-NN approaches. Fulari et al. [16] developed an ANN
approach to estimate the number of vehicles using video
and Bluetooth data. It was found that the ANN approach
performs well if a good quantity of training data is accessible.
Fused loop and CV data were used to develop support vector
machine and k-NN approaches, with the aim of estimating
the level of traffic congestion in a freeway segment [22].
Another study [20] deployed data from fixed sensors and CVs
to build different data-driven estimation approaches such as
ANN, k-NN, and RF to estimate the hourly traffic volumes.
In that study, the ANN was found to outperform the other
approaches. Aljamal et al. [14] developed an ANN approach
to estimate the level of market penetration (LMP) rate of the
CVs. In that study, the ANN approach provides the AKF
approach with real-time values of the LMPs, resulting in
improving the vehicle count estimation accuracy. The LMP
represents the percentage of the CVs to the total number of
vehicles.
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In summary, studies have shown the benefits of using
data-driven approaches in addressing different aspects of
the traffic state estimation problem. Therefore, the research
described in this paper aims to develop data-driven
approaches in the application of traffic stream density esti-
mation (vehicle counts). One commonality among the related
studies is that they all estimated the vehicle counts using data
from fixed sensors or using fused source data (e.g., loop with
CV data).

The research described in this study aims to develop dif-
ferent data-driven estimation techniques to estimate the vehi-
cle counts using only CV data. The proposed estimation
approaches are applied to test a signalized link in down-
town Blacksburg, Virginia. The proposed research extends
the state-of-the-art in vehicle count estimation by making
three major contributions:

1) This study develops three data-driven estimation
approaches (ANN, k-NN, and RF) to estimate the vehi-
cle counts in signalized links. The three data-driven
approaches are developed using only CV data.

2) This research develops a data-driven approach to esti-
mate the LMP for the CVs at the entrance and the exit
of the link.

3) This study compares the three proposed data-driven
approaches with state-of-the-art model-driven estima-
tion approaches KF, AKF, and PF).

The paper is organized as follows: Section III demon-
strates the development of the simulation data. Section IV
presents the proposed estimation approaches. Section V
shows the findings of the estimation approaches. Section VI
presents the conclusions of the paper and potential future
work.

Ill. DEVELOPMENT OF SIMULATION DATA

A congested link in downtown Blacksburg, Virginia, was
selected to evaluate the proposed estimation approaches. The
link falls between two traffic signals, as shown in Figure 1.
The link length is 97 meters. The INTEGRATION micro-
scopic traffic assignment and simulation software [23]—[26]
was used to simulate the network in Figure 1. The INTE-
GRATION software tracks vehicle longitudinal motion using
the Rakha—Pasumarthy—Adjerid collision-free car-following
model, also known as the RPA model [27]. The RPA model
captures vehicle steady-state car-following behavior using
the Van Aerde model [28], [29]. Movement from one steady
state to another is constrained by a vehicle dynamics model
described in [30], [31]. Vehicle lateral motion is modeled
using lane-changing models described in [25]. The model
estimates of vehicle delay were validated in [32], while vehi-
cle stop estimation procedures were described and validated
in [33]. The traffic origin-destination (O-D) values for the
network were calibrated using real count data. The speed limit
of the tested link is 40 km/h, the speed-at-capacity is 32 km/h,
the jam density is 160 veh/km/In, and the saturation flow rate
is 1800 veh/h/lane.
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FIGURE 1. Tested link section in downtown Blacksburg, VA.
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A. GENERATION OF THE TRAINING DATA SET

Training data are needed to develop machine learning estima-
tion approaches. The INTEGRATION simulation software
was used to generate the CV data given that empirical CV data
are costly to gather. A total of 1000 scenarios were simulated
using different input factors:

« Different scaling factors of the base O-D table,

« Different right-turn traffic volumes that exit Main Street
toward Jackson Street, and

o Different random seeds for each LMP scenario.

For right-turn traffic volumes and demand O-Ds, 20 differ-
ent scaling factors were generated from a uniform distribu-
tion, ranging from 0.8 to 1.2; for example, a scenario could
have a 0.82 O-D demand scaling factor and a 1.05 right-turn
volume demand scaling factor. The INTEGRATION simula-
tion software generates an output time-space file that includes
real-time information about the CVs, such as the vehicle’s
location and speed. In section IV, more details are provided
about the inputs and outputs that are considered in the training
data set.

IV. METHODOLOGY

In this section, three research approaches are presented:
(1) model-driven approaches, (2) integrating data-driven and
model-driven approaches, and (3) data-driven approaches.
In the first research approach, linear and nonlinear filtering
approaches are used to estimate the vehicle counts. The sec-
ond approach first develops a data-driven approach to esti-
mate the ratio of the number of CVs (N.,) to the total
number of vehicles (N7), and then combines the data-driven
approach with the most accurate model-driven approach to
finally estimate the vehicle counts. The third approach devel-
ops data-driven approaches to directly estimate the vehicle
counts.

A. FIRST APPROACH: MODEL-DRIVEN APPROACHES

Linear and nonlinear filtering approaches are presented in
this section, namely: 1) KF, 2) AKF, and (3) PF. These filter-
ing techniques are always used to solve state-space models.
A state-space model is represented by: (1) a state, and (2) a
measurement system. The filtering techniques are mainly
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used to provide posterior estimates given some measurements
with the aim of minimizing the errors in the a priori estimates.

In this paper, the state-space model presented in [12] is
used to estimate the vehicle counts. The state and mea-
surement equations are presented in Equations (1) and (3),
respectively.

N(1) = N(t — At) + u(r) ey
in __ out
u(t) = At [¢"() — ¢"" ()] o)
max(p, Omin)
TT(t) = H(1) x N (1) 3)
2 Xp
H(t) = @)

q"(t) + g (1)
where N(¢) is the number of vehicles crossing the link at
time 7, N(t — At) is the number of vehicles crossing the
link in the preceding time interval, u(¢) is the system input,
p is the CVs’ LMP, defined as the ratio of the CV counts
to the total vehicle counts. In this research approach. the
p is computed from historical data and assumed to remain
constant for the entire simulation. For instance, if a scenario
of 10% LMP is evaluated, the p value is assumed to be 10%.
g™ and ¢°" represent the flow of CVs entering and exiting
the link, respectively, during At. The At is updated when 5
CVs traversed the tested link [12]. TT is the average travel
time for CVs.

The following subsections present three filtering tech-
niques to solve the described state-space model.

1) THE KF APPROACH
The KF [34] is a linear filtering technique and can be imple-
mented using the following equations:

N= () = Nt(t — At) + u(t) 5)
TT(t) = H(t) x N~ (1) (6)
P~ @)= Pt — Ap) @)
Gty = P~H®O [HOP~ (O HO" +RI™" (8)
Nt @) =N"®+G@) [TTt)— TT (1)] ©)
Priy=P ) x[1—H ) G (1)] (10)

where N~ and N are the priori and the posterior vehicle
count estimates, TT is the estimated average travel time,
P~ and P are the priori and posterior covariance estimates
for the state system, G is the Kalman gain, and R is the error
covariance in the measurement system.

The state error covariance is a tuning parameter that quan-
tifies the uncertainty of the state’s estimate represented by
the mean. If the state covariance value is low, then the state
estimation outcome is accurate and close to the actual value.
In real-applications, the user needs to define the initial esti-
mates of the state error covariance P (0) based on how off the
initial vehicle count value is from the actual value. After that,
the KF will adjust the initial estimate and provide real-time
covariance error estimates using Equations (7) and (10), with
the aim of converging the estimation error to zero. For the
measurement error covariance value, an offline procedure can
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be adopted to provide a reasonable covariance value. The
measurement error covariance value is used to represent the
accuracy of the system’s measurements (in our case the travel
time values from the CVs). If we assume that the algorithm is
reset each day at midnight, the traffic would be very low and
the covariance matrix can be set at a value close to zero. For
more details, readers can refer to [12].

2) THE AKF APPROACH

The linear AKF dynamically estimates the noise error val-
ues for the state and measurement systems every estimation
step. The AKF approach can be solved using the following
equations:

N™ (@) = NT(t — At + ut) + m(t — A1) (11)

TT(1) = H(t) x N~ (1) (12)

Pty = Pt — A+ M@ — A1) (13)
1 < .

r=- Z [TT(t) — TT(1)] (14)

t=1
 J— n—1
R=— ; [0 = 1.0 = ' = (——)

X H(t)P’(t)HT(t)] (15)

Gt)y= PPH®" [HOP~ (1) H®" +ROI™"  (16)
Nt =N"0+G@) [TT(0)— TT () —r(H]  (17)
Pry=P ) x[1—H t) G (1] (18)

m = % Z [INt(@t) = Nt — At) — u(t) + m(t — A1)]
t=1

M = ! E [(”l(t) ”l) (”l(t) ”l) ( 1)
n—1 — ' n

x Pt — Aty — PY(1)] (20)

where r and R are the mean and covariance of the measure-
ment noise, n is the number of state noise samples, and m and
M are the mean and covariance of the state noise.

3) THE PF APPROACH
The PF [35] is a nonlinear filtering technique. First, the PF
generates different particles with unique relative weights.
In every estimation step, the system removes the particles
with low relative weights and replaces them with new par-
ticles (resampling), thus preserving only the important par-
ticles. To compute the posterior value, an average value of
the remaining important particles are calculated. The PF
approach can be implemented using the following steps:
o Initialization: r = 0
-N*(0),R, V, and .
- Generate particles:

N'(0)~P(No) 1)

e Fort=1:T
NUt) = NU(t — At + u(r) (22)
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TT!(t) = H(r) x N'(r) (23)

W) = 2171R o~ (TT=TT' (1) )’ /2R (24)
L

Wy =wa) /) we (25)

=1

After normalizing the weights using Equation (25),
the low-weighted particles are replaced with new par-
ticles (resampling [35]). After a few iterations in the PF
process, the weight will focus on a few particles only and
most particles will have insignificant weights, resulting
in sample degeneracy [36]. The resampling process is
therefore used to tackle the degeneracy problem.

L
Nt () = % DN (26)
=1

where V is the variance of the initial vehicle count estimate,
N' is the particles’ locations from 1 to L, and TT is the
observed measurement from the CVs. More details can be
found in [15].

B. SECOND APPROACH: INTEGRATING DATA-DRIVEN
AND MODEL-DRIVEN APPROACHES

In our state-space equations, the p variable is found to be the
main source of noise in the state-space model [12]. Unlike the
first research approach described in IV-A, two p variables,
instead of one p variable, are used in the state-space equa-
tions, namely: 1) pi,, and 2) pour. pin and pyr are observed at
the entrance and exit of the link, respectively. The p;, and
the p,,; are displayed in Equations (27) and (28), respec-
tively. A¢y, A, D¢y, and D7 are the number of CV arrivals,
total number of arrivals, number of CV departures, and total
number of departures, respectively. Equations (29) and (30)
present the new formulation of the u(z) and H(¢) using the
two p variables.

Pin(t) = Acy/AT 27)
pout(t) = Dcv/DT (28)
q"t) g1

=A - — 29
u(e) ! [pin(t) pout(t)] @)
Hiy = — 2 (30)

Pin(t) Pout ()

It should be noted that the two variables can be measured
if two fixed sensors (e.g., cameras) are installed in the entry
and exit of the tested link; however, the installation cost
is high, thus making this approach undesirable. A more-
efficient approach is to employ estimation techniques such
as machine learning without the need to add to the existing
infrastructure. Hence, in this research approach, an ANN is
developed to estimate the p;, and p,,, variables.

1) ANN APPROACH
The ANN data-driven model is a combination of simple
units (nodes) that are connected by links. The ANN aims
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to recognize relationships between enormous amounts of
data by adding certain number of neurons in the assigned
hidden layers. The ANN contains three layers: the input layer,
the hidden layer, and the output layer [37]. The mechanism
behind the ANN is that every node receives/sends signals
from incoming/outgoing links by performing computations.
The links that connect the nodes in the network have certain
weight values, and these weights determine the strength of
connection between the nodes.

a: ANN INPUTS AND OUTPUTS
In this section, the aim was to use the nearest existing fixed
sensor with the CV data to build the ANN model. As seen
in Figure 1, an existing camera is located upstream of the
tested link (at the intersection of College Street). The camera
in the field measures the total traffic counts at the intersection.
Consequently, the total traffic count variable is used as an
input for the ANN model. In addition, CVs are used to gen-
erate the inputs of the ANN model as their ability to provide
measurements at any location inside the network.

Seven inputs are used to build the ANN approach,
as follows:

1) The total traffic counts obtained from the camera (C7),
2) The number of CVs on the tested link (N,),

3) The number of CVs at the entrance of the link (A,),
4) The space-mean speed of CVs (uy),

5) The average speed for CVs at link entrance (S1),

6) The average speed for CVs at link exit (§2), and

7) The estimation interval time (Af).

Figure 2 displays the ANN inputs and outputs. To build a
strong ANN approach, the inputs must relate to the outputs,
which allows the ANN to define the relationship between the
inputs and the outputs. For instance, a high traffic volume
(Cr, Ny, and A.,) means that we have more vehicles in the
link, which results in having large values in the denominator
in Equations (27) and (28). The speed factor (ug, S1, and S2)
is also an important indicator of the level of congestion.
A congested link can also result in having large values in
the denominator in the two equations. It should be noted
that the At variable strongly relates to the output variables.
Remember that At is not a constant value and is updated when
new 5 CVs are observed at the end of the link. A high Az
value means that the number of CVs is low, which results in
low output values. The ANN output variables are p;, and pgy;-
In reality, the p output values vary between 0 and 1; O means
that no CVs are observed, while the value of 1 means that the
number of CVs is equal to the total number of vehicles.

The ANN approach was trained offline using the training
data set. The data set was divided into three portions: 70%
for training, 15% for validation, and 15% for testing. The
reported results in section V used external data sets to evaluate
the proposed approaches at different LMPs.

The developed ANN consists of single hidden layer with
10 neurons, with the use of a transfer function of hyperbolic
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FIGURE 2. Estimating the p;, and p,,; variables.

tansgent sigmoid and the Levenberg-Marquardt (LM) opti-
mization method.

After developing and training the ANN approach, the esti-
mated values for p;, and p,,; are used in our most accurate
model-driven approach to estimate the main research goal,
which is the vehicle count.

C. THIRD APPROACH: DATA-DRIVEN APPROACHES

The third research approach aims to directly estimate the
vehicle counts by developing different data-driven estimation
approaches, namely: (1) ANN, (2) k-NN, and (3) RF. The
data-driven approaches were developed using CV data only
without the need to use data from the camera. Six inputs
were considered to train and build the data-driven approaches,
as shown in Figure 3.

N,, ——
AC‘U —
Us 5 .
51 . Learning
52 —

At ———

FIGURE 3. Estimating the vehicle counts (N7) on the tested link.

1) ANN APPROACH
To estimate the vehicle counts, the ANN approach was devel-
oped using the following parameters:

o The structure of the ANN consists of single hidden layer
with 10 neurons.

« A transfer function of hyperbolic tangent sigmoid and
the LM optimization method were used.

o Number of Epoch was 332.

o Training time was around 12 minutes. The ANN was
trained in MATLAB R2019a on a Dell PC with 8.0 GB
RAM.

o Learning rate was 0.01.

« MU control parameter was 1 x 107>,

o R value was almost 0.86 for the training, validation, and
testing data set.The R value measures the correlation
between model outputs and desired outputs. A value
close to 1.0 means that the model outputs are very close
to desired outputs.

VOLUME 8, 2020

2) k-NN APPROACH

The k-NN [38] is used for classification and regression appli-
cations. The k-NN does not build a model but requires storing
the entire data set. To estimate a new value using the k-NN,
the following information is required: (1) having access to the
training records, (2) defining the distance metric to compute
the distance between the records, and (3) identifying the value
of the number of nearest neighbors (k). The results section
will test different k values to find the optimal k value for
the k-NN approach. The new estimated value is computed by
taking the average value of the nearest neighbors.

3) RF APPROACH

The RF [39] is a supervised learning technique and can be
used in classification and regression. The RF is a set of
decision trees. Each decision tree is constructed using a subset
of inputs. The desired estimation values are given based on
the majority votes from all trees. The advantage of using the
RF is the ability to handle a large data set without the need
to create dummy variables. For the purpose of this study,
100 trees were used to develop the RF.

V. RESULTS AND DISCUSSION

This section tests the accuracy of the three research
approaches on a signalized link in downtown Blacksburg,
Virginia. The relative root mean square error (RRMSE) and
the root mean square error (RMSE) are used to evaluate and
compare the proposed estimation approaches. The RRMSE
and RMSE can be computed using Equations (31) and (32),
respectively.

S S
RRMSE (%) = 100 |$ Y [N+(s) - N(s)]Z/Z N(S)
s=1 s=1

€1V

RMSE (veh) = |} [N+(s) — N(s)]2 / s (32)

s=1

where N (s) is the actual vehicle count, N T(s) is the estimated
vehicle count value, and S is the total number of estimations.

A. FIRST RESEARCH APPROACH

This section evaluates the three estimation model-driven
approaches: 1) KF, 2) AKF, and 3) PF, using data from CVs
only. The three approaches are used to estimate the number of
vehicles crossing the tested link. Table 1 presents the RRMSE
and RMSE values at different LMPs; 1, 3, 5, 8, 10, 15, 20, 30,
40, 50, 60, 70, 80, and 90%. For most of the LMP scenarios,
the KF approach produces the lowest error values, while the
PF approach outperforms the KF and the AKF for a few
scenarios (1, 70, 80, and 90%). Howeyver, the nonlinear PF and
the AKF require more computational time and they are also
very sensitive to the initial conditions [15]. Consequently,
the use of the linear KF approach is highly recommended due
to its simplicity and high-performance accuracy.
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TABLE 1. RRMSE and RMSE values of KF, AKF, and PF approaches for

TABLE 3. RRMSE of KF and KFNN approaches at different LMPs.

different LMPs.
LMPs % RRMSE (%), RMSE (veh) LMPs % KIFQ‘RMS]i((FIi)N
KF | AKF PF
10 36 64
o4 |s432] 58,43 37,28 T2 | 37 | 0
3 [39.3.0] 4836 139,30 T3 s s
L é L ,37;2,80 f4;3,2, ,38L2,9, Ta0 3 s
__3_ _|3628] w0,307|37,29 o[
o £07 B ,36L2,8 | ,38L2;9, ,37L2,9, T 31T 59 T
o £57 B 73612780 f0;3.707 73973707 T e T 57 T
__ 20 |37.28] 3930713930, BT EE U R
L 307 B ,38L2,90 ,38;2;9, f2l3727 T 0 T3 T
40 37,29 | 38,29 |39,3.0
© 50 [37,28] 38,29 |37,28
60 31,24 | 38,29 |31,24 TABLE 4. RRMSE of k-NN approach using different k values.
S0 |26,20] 32,25 [2519
© 80 |23,18] 31,24 20,15 k | RRMSE (%)
© 90 |20,15] 30,22 | 14,10 1 24.63
2 2
3 2047
B. SECOND RESEARCH APPROACH a4l 1991
First, the ANN approach is developed to estimate the percent- S 194
age of the CVs to the total number of vehicles at the entry and 6 1927
the exit of the tested link, p;, and p,,;, respectively. Table 2 1 1vo7
presents the RRMSE values for estimating the two variables. 8 188
The results demonstrate that the ANN produces reasonable 9 1881
error values; the errors for estimating p;, vary between 14 and 10 1868
25%, while the error values are between 10 and 23% for o,y . 11 18.54
2| 1858
TABLE 2. RRMSE of pj, and po,; at different LMPs. 13 1848
4 1847
P 7% |_RRMSE (%) s 847
pin | pout
10 14 19
20 ) 18 ) 23 and under-estimate p,,,; or vice versa for the same estimation
30 ) o2 ) 22 step, resulting in large errors in the state equation compared
40 |25 21 to the errors from using the average p. Such large errors make
50 | 25 ) 19 the error corrections from the KF difficult. In conclusion,
60 | 24 | 16 the use of one single p value in the state-space equations is
70 |24 ) 14 sufficient to produce accurate estimates.
80 | 25 | 12 In next section, data-driven approaches are developed to
90 24 10 directly estimate the vehicle counts without the need for

After that, the estimated p values are used as inputs to the
KF to estimate the vehicle counts on the tested link. A new
approach, named KFNN, was developed based on integrating
the KF and the ANN approaches. Remember that the KF
approach uses an average one value from the actual p values
in its equations, while the KFNN approach uses real-time
values for p;, and p,, in the KF equations at every estimation
step. Table 3 shows the RRMSE values for estimating the
vehicle counts using the KF and KFNN approaches. The table
demonstrates that the KF approach outperforms the KFNN
approach. Investigations were undertaken to find the reason.
The investigations found that the ANN may over-estimate p;,
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model-driven approaches.

C. THIRD RESEARCH APPROACH

This section utilizes the three data-driven approaches to esti-
mate the number of vehicles traversing the tested link. The
data source used to train and build the three approaches
was only CV data without the need of the camera data. For
practical considerations, the only information that is needed
in practice is as follows: (1) the number of connected vehi-
cles (CVs) that enter the subject link, (2) the number of
CVs on the subject link, (3) the space-mean speed of CVs,
(4) the average speed for CVs at the entrance and the exit
of the link, and (5) the estimation time interval duration.
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TABLE 5. RRMSE and RMSE values using data-driven approaches.

LMPs % | RRMSE (%), RMSE (veh)
ANN | kNN | RF

1 27,2.1 | 40,31 | 42,32
T3 | 29,22 | 3728 | 42,32
5 | 29,22 | 37,28 | 38,28
T8 | 28,20 | 36,27 | 38,28
10 | 27,21 | 35,28 | 38,28
15 | 2519 | 33,24 | 36,27
T 20 | 24,18 | 33,24 | 36,27
T30 | 2217 [ 30,23 | 34,26
T 40 | 20,15 [ 27,21 (30,23
50 | 17,13 | 2418 | 26,20
60 | 1ata | 22016 | 23,17
70 |09 [ 20015 | 21016
T80 | 907 [ 1814 | 19,15
90 | s06 | 17,13 17,13

TABLE 6. RRMSE and RMSE values using model- and data-driven
approaches.

Model-Driven Approaches | Data-Driven Approaches
KF AKF PF ANN k-NN RF

37,28 | 27,2.1 40,3.1 | 42,32

39,3.0| 29,22 37,28 | 42,32

38,29 | 29,22 37,28 | 38,28

LMPs %

30 |[38.29 42,32 22,17 ] 30,23 | 34,26
T30 [37,29] 738,29 139,30 20,15 | 27,21 | 30,23
T 50 |37.28] 38,29 [37.28] 17,13 | 24,18 | 26,20
T 60 |31,24 738,29 (31,24 1411 | 22,16 | 23,17
70 |26,20] 32,25 (25,19 11,09 | 20,15 | 21,16
T80 [23.,18| 31,24 (20,15 9,07 | 18,14 | 19,15

Vehicle-to-Infrastructure (V2I) communication can provide
this information to the traffic signal controller.

First, different neighbors (k) were tested to calibrate and
train the k-NN approach, as shown in Table 4. The optimal &
was found to be 14, with an RRMSE of 18.47%.

After calibrating the data-driven estimation approaches,
external data were used to test and evaluate the performance
of the estimation approaches. Table 5 presents the RRMSE
and RMSE values using the three data-driven estimation
approaches: ANN, k-NN, and RF. The results demonstrate
that the ANN outperforms the k-NN and the RF for all LMP
scenarios.

Next, the paper compares the performance of the
model-driven approaches (KF, AKF, and PF) and the
data-driven approaches (ANN, k-NN, and RF) for
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the application to traffic stream density. Table 6 summarizes
the RRMSE and RMSE values using the six estimation
approaches. The table demonstrates that the ANN approach
produces the most accurate estimates compared with the other
approaches. However, it is worth mentioning the difficulties
of applying this approach in the field due to the huge amount
of data needed to train and build the ANN approach, espe-
cially for a large network (e.g., Los Angeles, CA). Moreover,
sudden changes in traffic behaviors (e.g., incidents) would
not always ensure accurate estimates and thus might lead to
worsen the performance of the traffic signal controller. Con-
sequently, we recommend using the KF approach for traffic
density estimation due to its simplicity and applicability in
the field.

VIi. SUMMARY AND CONCLUSION

The paper presents three approaches to estimate the number
of vehicles along signalized links. The first approach includes
three model-driven estimation techniques (KF, AKF, and PF)
using solely CV data. The first approach uses a single average
o value, obtained from the actual historical LMPs, in the
state-space equations. The second research approach devel-
ops an ANN to estimate two p variables, pj, and pgy:, to be
used in the state-space equations. Fused CV and camera data
are utilized to build the ANN. After that, the second approach
integrates the ANN with the KF (KFNN approach) to esti-
mate the number of vehicles on signalized links. The third
approach includes three data-driven techniques (ANN, k-NN,
and RF) to directly estimate the number of vehicles using
only CV data. The three research approaches were applied
on a signalized link in downtown Blacksburg, Virginia. The
main findings and conclusions of the paper are summarized
as follows:

o The use of CV data is sufficient to provide accurate
vehicle count estimates.

e The use of two estimated variable values in the
state-space equations is not recommended as it may
produce undesired large errors in the state equation.
It was found that the ANN approach may over-estimate
the first variable and under-estimate the second variable
or vice versa for the same estimation step. Consequently,
the second research approach is not recommended.

o The ANN is the most accurate estimation approach.
However, taking into consideration the large amount
of data needed to train and build the ANN, the long
computational time needed to build the ANN, and the
constraints on keeping the traffic behavior the same as
the behavior in the training data set, the use of the KF
approach is highly recommended for the application of
traffic density due to its simplicity and applicability in
the field.

Proposed Future work entails testing the performance of
the traffic signal controller using the outcomes of the KF
approach as inputs and developing online learning techniques
to estimate the number of vehicles to adapt for local traffic
conditions.

219629



IEEE Access

M. A. Aljamal et al.: Developing Data-Driven Approaches for Traffic Density Estimation Using CV Data

REFERENCES

(1]

[2]

[3]

[4]

[5]
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Trident Academy of Technology Institute. (2019). Commuters Waste About
54 Hours a Year in Traffic, and it’s Not Just During Rush Hour. [Online].
Available:  https://www.nwitimes.com/news/national/commuters-waste-
about-hours-a-year-in-traffic-and-it/collection_eac664b9-5300-55bf-bffe-
3dbcb68a8483.html

F.-Y. Wang, “Parallel control and management for intelligent transporta-
tion systems: Concepts, architectures, and applications,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 3, pp. 630-638, Sep. 2010.

M. A. Aljamal, “Real-time estimation of traffic stream density using
connected vehicle data,” Ph.D. dissertation, Charles E. Via, Jr. Dept. Civil
Environ. Eng., Virginia Tech, Blacksburg, VA, USA, 2020.

G. Vigos, M. Papageorgiou, and Y. Wang, ‘“Real-time estimation of
vehicle-count within signalized links,” Transp. Res. C, Emerg. Technol.,
vol. 16, no. 1, pp. 18-35, Feb. 2008.

D. Ghosh and C. H. Knapp, “‘Estimation of traffic variables using a linear
model of traffic flow,” Transp. Res., vol. 12, no. 6, pp. 395-402, Dec. 1978.
N. Bhouri, H. H. Salem, M. Papageorgiou, and J. M. Blosseville, “Esti-
mation of traffic density on motorways,” in Proc. IFAC/IFIP/IFORS Int.
Symp. (AIPAC), 1989, pp. 579-583.

L. E. Y. Mimbela and L. A. Klein, “Summary of vehicle detec-
tion and surveillance technologies used in intelligent transportation
systems,” Southwest Technol. Develop. Inst., New Mexico State
Univ., Las Cruces, NM, USA, Tech. Rep., 2000. [Online]. Available:
https://www.fhwa.dot.gov/ohim/tvtw/vdstits.pdf

J. C. Herrera and A. M. Bayen, “Traffic flow reconstruction using mobile
sensors and loop detector data,” presented at the 85th Transp. Res. Board
Annu. Meeting, Washington, DC, USA, 2008, Paper 08-1868.

N. Bekiaris-Liberis, C. Roncoli, and M. Papageorgiou, ‘“Highway traffic
state estimation with mixed connected and conventional vehicles,” IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 12, pp. 3484-3497, Dec. 2016.

M. Wright and R. Horowitz, “Fusing loop and GPS probe measurements
to estimate freeway density,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 12, pp. 3577-3590, Dec. 2016.

X. Di, H. X. Liu, and G. A. Davis, “Hybrid extended Kalman filtering
approach for traffic density estimation along signalized arterials: Use of
global positioning system data,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 2188, no. 1, pp. 165-173, Jan. 2010.

M. A. Aljamal, H. M. Abdelghaffar, and H. A. Rakha, “Real-time estima-
tion of vehicle counts on signalized intersection approaches using probe
vehicle data,” IEEE Trans. Intell. Transp. Syst., early access, Feb. 21, 2020,
doi: 10.1109/TITS.2020.2973954.

M. A. Aljamal, H. M. Abdelghaffar, and H. A. Rakha, “Kalman filter-
based vehicle count estimation approach using probe data: A multi-
lane road case study,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC),
Oct. 2019, pp. 4374-4379.

M. A. Aljamal, H. M. Abdelghaffar, and H. A. Rakha, “Developing a
neural-Kalman filtering approach for estimating traffic stream density
using probe vehicle data,” Sensors, vol. 19, no. 19, p. 4325, 2019.

M. A. Aljamal, H. M. Abdelghaffar, and H. A. Rakha, “Estimation of
traffic stream density using connected vehicle data: Linear and nonlinear
filtering approaches,” Sensors, vol. 20, no. 15, p. 4066, 2020.

S. Fulari, L. Vanajakshi, and S. C. Subramanian, ‘“Artificial neural
network—based traffic state estimation using erroneous automated sensor
data,” J. Transp. Eng., A, Syst., vol. 143, no. 8, 2017, Art. no. 05017003.
C. Antoniou and H. N. Koutsopoulos, “Estimation of traffic dynamics
models with machine-learning methods,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1965, no. 1, pp. 103-111, Jan. 2006.

T. Wassantachat, Z. Li, J. Chen, Y. Wang, and E. Tan, “Traffic density
estimation with on-line SVM classifier,” in Proc. 6th IEEE Int. Conf. Adv.
Video Signal Based Surveill., Sep. 2009, pp. 13—18.

A. Jahangiri, H. A. Rakha, and T. A. Dingus, ‘“Adopting machine learning
methods to predict red-light running violations,” in Proc. IEEE 18th Int.
Conf. Intell. Transp. Syst., Sep. 2015, pp. 650-655.

P. Sekuta, N. Markovié, Z. V. Laan, and K. F. Sadabadi, “Estimating
historical hourly traffic volumes via machine learning and vehicle probe
data: A maryland case study,” Transp. Res. C, Emerg. Technol., vol. 97,
pp. 147-158, Dec. 2018.

J. Raj, H. Bahuleyan, and L. D. Vanajakshi, “Application of data mining
techniques for traffic density estimation and prediction,” Transp. Res.
Procedia, vol. 17, pp. 321-330, Dec. 2016.

S. M. Khan, K. C. Dey, and M. Chowdhury, “Real-time traffic state
estimation with connected vehicles,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 7, pp. 1687-1699, Jul. 2017.

219630

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(371
(38]

(39]

V.

M. V. Aerde and H. A. Rakha, “Integration release 2.40 for windows:
User’s guide-volume I: Fundamental model features,” Center Sustain.
Mobility, VTTI, Virginia Tech, Blacksburg, VA, USA, Tech. Rep., 2020,
doi: 10.13140/RG.2.2.16142.15682/1.

M. V. Aerde and H. A. Rakha, “Integration release 2.40 for windows:
User’s guide-volume II: Advanced model features,” Center Sustain. Mobil-
ity, Virginia Tech Transp. Inst., Blacksburg, VA, USA, Tech. Rep., 2020,
doi: 10.13140/RG.2.2.24434.32969.

H. A. Rakha and Y. Zhang, ““The integration 2.30 framework for modeling
lane-changing behavior in weaving sections,” Transp. Res. Rec., J. Transp.
Res. Board, vol. 1883, no. 1, pp. 140-149, 2004.

M. A. Aljamal, H. A. Rakha, J. Du, and I. ElI-Shawarby, ‘“Comparison of
microscopic and mesoscopic traffic modeling tools for evacuation anal-
ysis,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 2321-2326.

H. A. Rakha, P. Pasumarthy, and S. Adjerid, “A simplified behavioral
vehicle longitudinal motion model,” Transp. Lett., Int. J. Transp. Res.,
vol. 1, no. 2, pp. 95-110, 2009.

H. A. Rakha, “Validation of van aerde’s simplified steady-state car-
following and traffic stream model,” Transp. Lett., Int. J. Transp. Res.,
vol. 1, no. 13, pp. 227-244, 2009.

N. Wu and H. Rakha, “Derivation of van aerde traffic stream model
from tandem-queuing theory,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 2124, no. 1, pp. 18-27, Jan. 2009.

H. Rakha, I. Lucic, S. H. Demarchi, J. R. Setti, and M. V. Aerde, ‘Vehi-
cle dynamics model for predicting maximum truck acceleration levels,”
J. Transp. Eng., vol. 127, no. 5, pp. 418-425, Oct. 2001.

H. A. Rakha, M. Snare, and F. Dion, ““Vehicle dynamics model for estimat-
ing maximum light duty vehicle acceleration levels,” Transp. Res. Rec., J.
Transp. Res. Board, vol. 1883, no. 1, pp. 40-49, 2004.

F. Dion, H. Rakha, and Y.-S. Kang, “Comparison of delay estimates
at under-saturated and over-saturated pre-timed signalized intersections,”
Transp. Res. B, Methodol., vol. 38, no. 2, pp. 99-122, Feb. 2004.

H. Rakha, Y.-S. Kang, and F. Dion, “Estimating vehicle stops at undersat-
urated and oversaturated fixed-time signalized intersections,” Transp. Res.
Rec., J. Transp. Res. Board, vol. 1776, no. 1, pp. 128-137, Jan. 2001.

R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Eng., vol. 82, no. 1, pp. 35-45, Mar. 1960.

J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic sys-
tems,” J. Amer. Stat. Assoc., vol. 93, no. 443, pp. 1032-1044, Aug. 1998.
T. Li, T. P. Sattar, and S. Sun, “Deterministic resampling: Unbiased sam-
pling to avoid sample impoverishment in particle filters,” Signal Process.,
vol. 92, no. 7, pp. 1637-1645, Jul. 2012.

S. Haykin, Neural Networks: A Comprehensive
Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21-27, Jan. 1967.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

Foundation.

MOHAMMAD A. ALJAMAL (Member, IEEE)
received the B.Sc. degree in civil engineering from
the Jordan University of Science and Technology,
Irbid, Jordan, in 2014, and the M.Sc. and Ph.D.
degrees in civil engineering from Virginia Tech
University, Blacksburg, VA, USA, in 2017 and
2020, respectively. He is currently a Transporta-
tion Engineer with Precision Systems, Inc., Wash-
ington, DC, USA. His research interests include
traffic flow theory, intelligent transportation sys-

tems, machine learning, connected automated vehicles, and traffic model-
ing and simulation. He is also a member of ITE and Jordanian Engineers
Association (JEA). He received the US DOT Award for Outstanding Stu-
dent of the Year in 2018, the First place in the IEEE ITSC 2020 UAS4T
Competition, and Thomas N. Hunnicutt Fellowship from the Department of
Civil and Environmental Engineering, Virginia Tech, in 2017. In addition,
he is a Reviewer for several journals and conferences, including the IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SysTeEms (ITS), IEEE Access,
the IEEE ITS Conference, and the TRB.

VOLUME 8, 2020


http://dx.doi.org/10.1109/TITS.2020.2973954
http://dx.doi.org/10.13140/RG.2.2.16142.15682/1
http://dx.doi.org/10.13140/RG.2.2.24434.32969

M. A. Aljamal et al.: Developing Data-Driven Approaches for Traffic Density Estimation Using CV Data

IEEE Access

MOHAMED FARAG received the B.Sc. degree
(Hons.) in computer engineering from Alexandria
University, Alexandria, Egypt, in 2006, the M.Sc.
degree in computer science from Arab Academy
for science, Technology, and Maritime Transport,
Alexandria, Egypt, in 2010, and the Ph.D. degree
in computer science from Virginia Tech Univer-
sity, Blacksburg, VA, USA, in 2016. He is cur-
rently an Assistant Professor of computer science
with the Department of Computer Science, Arab
Academy for Science, Technology, and Maritime Transport, and a Research
Scholar with the Center of Sustainable Mobility, Virginia Tech Transporta-
tion Institute. His research interests include information retrieval, machine
learning, large-scale data analysis, and big data.

VOLUME 8, 2020

HESHAM A. RAKHA (Fellow, IEEE) received the
Ph.D. degree from Queen’s University, Kingston,
ON, USA, in 1993. He is currently the Samuel
Reynolds Pritchard Professor of Engineering with
the Charles E. Via, Jr. Department of Civil
and Environmental Engineering and the Bradley
Department of Electrical and Computer Engineer-
ing (Courtesy), Virginia Tech, and the Director
of the Center for Sustainable Mobility, Virginia
Tech Transportation Institute. His research inter-
ests include large-scale transportation system optimization, modeling, and
assessment. He also works on optimizing transportation system operations,
including vehicle routing, developing various network and traffic signal con-
trol algorithms, developing freeway control strategies (speed harmonization
and ramp metering), and optimizing vehicle motion [lateral and longitudinal
control of connected automated vehicles (CAVs)] to enhance their efficiency
and reduce their energy consumption while ensuring their safety. He was
the author or coauthor of six conference best papers awards, namely: 19th
ITS World Congress in 2012, 20th ITS World Congress in 2013, VEHITS
in 2016, VEHITS in 2018, and TRB in 2020; received the most cited paper
award from the International Journal of Transportation Science and Technol-
0gy (IJTST) in 2018; and received First place in the IEEE ITSC 2020 UAS4T
Competition. In addition, he received the Virginia Tech’s Dean’s Award
for Outstanding New Professor in 2002, the College of Engineering Fac-
ulty Fellow from 2004 to 2006, and the Dean’s Award for Excellence in
Research in 2007. He is an Editor of Sensors (the Intelligent Sensors Section),
an Academic Editor of the Journal of Advanced Transportation, an Associate
Editor of the IEEE Transactions on Intelligent Transportation Systems and
the Journal of Intelligent Transportation Systems: Technology, Planning and
Operations. Furthermore, he is on the Editorial Board of the Transportation
Letters: The International Journal of Transportation Research and the Inter-
national Journal of Transportation Science and Technology.

219631



