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ABSTRACT Postprandial blood glucose prediction is a crucial part of diabetes management. Recently, this
topic has been of great interest, resulting in many research projects and published papers. Although different
input parameters that might be beneficial for blood glucose prediction models were comprehensively
discussed, specific data preprocessing, feature engineering and model tuning steps were not explained in
detail in many of these papers. In this work, we developed and comprehensively described a data-driven
blood glucose model based on a decision tree gradient boosting algorithm to predict different characteristics
of postprandial glycemic responses; the model utilized meal-related data derived from a mobile app diary
(including information on the glycemic index), food context (information on previous meals), characteristics
of the individual patients and patient behavioral questionnaires. A set of rules was defined and implemented
to detect incorrect meal records and to filter faulty data, and analyses were conducted on the overall food
diary data and in particular, the data on the current meal for which the postprandial blood glucose response
was calculated. Different gradient boosting models were trained and evaluated with parameters selected
via random search cross-validation. The best models for the prediction of the incremental area under the
blood glucose curve two hours after food intake had the following characteristics: R = 0.631, MAE =
0.373mmol/L∗h for themodel not using data on current blood glucose; R = 0.644,MAE = 0.371mmol/L∗h
for the model using data on the current blood glucose levels; and R = 0.704, MAE = 0.341 mmol/L∗h for
the model utilizing data on the continuous blood glucose trends before the meal. The impact of features was
evaluated using Shapley values. The meal glycemic load, amount of carbohydrates in the meal, type of meal
(e.g., breakfast), amount of starch and amount of food consumed 6 hours before the current meal were the
most important contributors in the models.

INDEX TERMS Gestational diabetes mellitus, glucose prediction, gradient boosting, machine learning.

I. INTRODUCTION
The postprandial glycemic response (PPGR) is an impor-
tant characteristic of blood glucose (BG) control effective-
ness and glucose metabolism in patients with all types
of diabetes. Clinical trials have shown the importance of
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controlling one’s blood glucose level after meals within
the normal range [1], [2]. Diabetic pregnancy, despite the
improved metabolic control, is still a strong risk factor for
alterations in fetal development and keeping fasting glu-
cose levels in range can contribute to decreasing number of
fetal malformations [3]. A considerable number of papers on
blood glucose prediction for type 1 diabetes were published
recently [4], and these studies utilized different machine
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learning algorithms and different sets of input data. Feed-
forward neural networks, combinations of physiology-based
models and machine learning techniques, recurrent neural
networks and support vector machines appear to be the most
frequently used algorithms for blood glucose prediction [5].
With the same data, in a direct comparison with other models,
gradient boosting tends to show the most precise results [6].
Although different input parameters that might be beneficial
for blood glucose prediction models were comprehensively
discussed, specific data preprocessing, feature engineering
and model tuning steps were not explained in detail in many
of these papers. There is also a lack of studies on gestational
diabetes mellitus (GDM) and pregnant women in general.
The aim of this study was to develop a PPGR prediction
model based on data collected from GDM patients that can
also be utilized as a main component of a mobile-based
recommender system.

II. MATERIALS AND METHODS
A. RESEARCH METHODOLOGY
The CGM data were collected in a clinical trial held
by the authors at Almazov National Medical Research
Centre (St. Petersburg, Russia). Patients with GDM and
healthy pregnant women (controls) who participated in the
GEM-GDM study were included in the present study. The
design of the parent GEM-GDM study is described else-
where [7]. In brief, the women with GDM were randomized
into two groups according to their glycemic goals: the first
group had strict glycemic goals (fasting BG <5.1 mmol/L
and <7.0 mmol/L BG two hours after meals), and the sec-
ond group had less strict glycemic goals (fasting BG
<5.3 mmol/L and <7.8 mmol/L BG two hours after meals).
The GEM-GDM trial was registered at the ClinicalTrials.gov
(Identifier: NCT03610178). Altogether, 235 participants
took part in the study (97 from the first group, 101 from
the second group, and 37 from the control group). The partic-
ipant characteristics are presented in Table 1.

The participants were invited to participate in a one-week
CGM recording session, in which they tracked informa-
tion on meal consumption in the mobile app, as described
elsewhere [8]–[11]. The CGM and meal-related data were
matched using the same algorithm that was described by the
authors in a previous paper [12].

The data were processed with Python 3.7 programming
language and the scikit-learn library [13] for core machine
learning procedures.

B. EVALUATED FEATURES
The set of features used to train the model was created with a
combination of the following subsets: meal-related data (n =
28), meal context data (n = 25), patients’ individual charac-
teristics (n = 34), patient survey data (n = 44), and CGM
data on BG trends before the meal (n = 21). The complete
set of features is presented in the Appendix. Together with the
amount of macro- and micronutrients consumed, the meal-
related data included the glycemic index and glycemic

TABLE 1. Characteristics of healthy pregnant women and GDM patients.

load, which were assigned to food included in the database
using the algorithm described by the authors in another
paper [14].

The output PPGR characteristics included the peak BG
level after the meal start (BGMax, mmol/L), incremental
area under the glycemic curve 120 minutes after meal start
(iAUC120, mmol/L∗h), BG rise from the meal start to the BG
peak (BGRise, mmol/L), and BG 60 minutes after the meal
start (BG60, mmol/L), which are all numeric values. These
characteristics were evaluated in three scenarios:

a) no data on the preprandial BG levels were included in
the prediction;

b) a single BG level measurement at the start of the meal
was included as an input feature (BG0, mmol/L);

c) the data on the CGM trends before the meal were
included as input features.

These scenarios describe situations in which no glucose
measurements are made before meals (a), a single mea-
surement is made via a glucometer or flash CGM (b), and
real-timeCGM trends are used in the prediction algorithm (c).
The main focus was on the iAUC120 measure, which is also
often referred to as a measure of the postprandial glycemic
response in the literature.

C. FLAWED RECORD DETECTION ALGORITHM
Wrongmeal information recorded in the diary due to a lack of
motivation or deliberate misreporting from the patient might
be the key problem in developing data-driven BG prediction
models [14].

A set of rules was formulated by a group of Alma-
zov Centre endocrinologists working with meal diaries to
detect and remove flawed meal records in patients’ diaries
to improve models. These included features were derived
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from the analysis of the overall meal diary data during
the CGM recording period and the analysis of the char-
acteristics of particular meals for which the PPGR was
evaluated.

The following rules were formulated and implemented to
filter negligently filled-in and misreported information:

1 – more than 50% of the meals recorded in the diary
consisted of a single dish or a single dish with a single
beverage (negligent recording);

2 – the average daily consumed energy according to the
information in the diary was less than 1000 kcal (evidence of
food consumption underreporting);

3 – the weight of more than 50% of the dishes included in
the diary were rounded to the hundreds, excluding beverages
(rough rounding);

4 – more than 20% of the postprandial BG glucometer
estimations were distinguished from the appropriate CGM
measurements by 1 mmol/L or more (potential misreporting);

5 – the amount of snacks recorded in the diary was less than
10% of all meal records (meal underreporting).

Before the meal and corresponding PPGR were added to
the dataset for model training, a set of rules was used to filter
the meals (mainly to check whether the time recorded in the
food diary was correctly recorded):

1 – an insulin injection was performed less than 300 min-
utes before meal start (we considered only meals without
prior insulin injections);

2 – the meal was accompanied by a subsequent meal
occurring less than 60 minutes after its start;

3 – the meal was on the CGM peak: the BG level at the
meal start was more than 1 mmol/L higher than that at an
hour before the meal;

4 – the meal was on the falling edge of the CGM peak:
the BG level at half an hour before the meal was at least
0.4 mmol/L higher than that at the meal start, while the BG
level at half an hour after the meal was at least 0.4 mmol/L
lower than that at the meal start;

5 – the meal had an inadequately low PPGR to a consider-
able amount of carbohydrates: a meal with more than 40 g of
carbohydrates with a subsequent incremental area under the
CGM curve at 120 minutes after meal start (iAUC120) of less
than 0.3 mmol/L∗h.

D. GRADIENT BOOSTING REGRESSION
A gradient tree boosting model [15] was chosen as the model
to predict the PPGR due to its high prediction accuracy
with heterogeneous datasets and ability to work with missing
data. A detailed description of the algorithm can be found
in the original paper [16]. In brief, this algorithm creates
a prediction model in the form of an ensemble of weak
prediction models. It builds the model in a stagewise fash-
ion and generalizes them by allowing the optimization of
a loss function, which in our case, was the mean square
error (MSE).

E. COMPARISON OF ALGORITHM REALIZATIONS
There are three commonly used realizations of gradi-
ent boosting algorithms: xgboost [17], catboost [18] and
lightgbm [19]. We trained and evaluated three algorithms
under the same conditions to compare them in terms of
precision. The appropriate R, MAE, MSE and RMSE were
chosen as the metrics for comparison. The resulting precision
did not differ significantly between the models of different
realizations (up to the second value after the dot for the above
listed characteristics). While the training time differed vastly
between libraries (with lightgbm requiring approximately
9 times less time to train than xgboost and 39 times less time
than catboost with an 8-core CPU), the training time itself
was not chosen as an important parameter, as after initial
training, themodel will be used inmobile apps for predictions
only. The xgboost model was chosen for further analysis;
the model had comparable precision and was implemented
with the greatest ease in Android apps, as it has the officially
supported Java package XGBoost4J, which had previously
been used in a number of projects.

F. PARAMETER TUNING AND MODEL SELECTION
Model hyperparameters were tuned via 300 rounds of random
grid searching with 10-fold grouped cross-validation with the
coefficient of determination as a scoring value. The groups
were separated in such a way that the records from the same
participant did not appear in either the training or validation
set. The set of hyperparameters included the following: the
subsample, which was the subsample ratio of the training
instances; n_estimators, which was the amount of trees to
be constructed; min_child_weight, which was the minimum
sum of instance weight (Hessian) needed in a child node
for additional partitioning; max_depth, which was the max-
imum depth of a tree; learning_rate (eta), which was the
step size shrinkage used in an update to prevent overfitting;
gamma, which was the minimum loss reduction required
to make another partition on a leaf node of the tree; col-
sample_bytree, which was the subsample ratio of columns
used when constructing each tree; reg_alpha, which was
the L1 regularization term for the weights; and reg_lambda,
which was the L2 regularization term for the weights. This
covers all the tunable parameters of the extreme gradient
boosting machine [17].

The ranges of the hyperparameters specified in the random
search are shown below:

’max_depth’: range(1, 13, 1),
’min_child_weight’: range(1, 8, 1),
’gamma’: [i / 10.0 for i in range(0, 7)],
’subsample’: [i / 10.0 for i in range(4, 10)],
’colsample_bytree’: [i / 10.0 for i in range(4, 10)],
’reg_alpha’: [0, 1e-5, 1e-2, 0.1, 1, 10, 100, 1000],
’reg_lambda’: [0, 1e-5, 1e-2, 0.1, 1, 10, 100, 1000],
’n_estimators’: [100, 500, 1000, 1500, 2000, 5000],
’learning_rate’: [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3].
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TABLE 2. Comparison of food consumption between groups.

The presented above range of hyperparameters covers
every possible feasible solution for the extreme gradient
boosting algorithm [17].

G. MODEL EVALUATION
Pearson’s coefficient of correlation R andmean absolute error
(MAE) were chosen as the key metrics for model evaluation
with the test set. The final accuracy was evaluated with
the data from new patients (25% of all patients). Feature
importance and its effect on the output variable in predicted
models was evaluated with the Shapley additive explanations
method [20].

III. RESULTS
A. PARTICIPANTS DATA
The final dataset included information on 3240 records of
meals and corresponding PPGRs from patients. The datawere
divided into a training and test set at a ratio of 75%/25% so
that the data from the same participant was included only in
the training and/or the test set.

B. DATA FILTERING
After the filtering process, the CGMand diaries from 144 par-
ticipants were selected by the algorithm for model construc-
tion (57 from the first group, 64 from the second group,
25 from the control group). The food diary datawere analyzed
and discussed with the patients by endocrinologists during
in-clinic visits and via online consultations. The analysis of
the food diary data showed that the women from the control
group consumed significantly more calories, carbohydrates
and fats per day and had a higher daily glycemic load, while
there was no difference between the GDM patients in the
groups with different glycemic goals (Table 2).

Such a considerable difference in daily calorie intake
and carbohydrates consumed between the GDM and control

FIGURE 1. The results of peak postprandial blood glucose prediction
(BGMax) with the test set. X scale - real values, Y scale – predicted values.
The yellow dots correspond to evaluations with mistakes of magnitude
less than 1 mmol/L, and the red dots correspond to mistakes of
magnitude greater than 1 mmol/L.

groups might be due to not only dieting behavior but also
the underreporting of meal-related data by the GDM patients,
even though all the patients were informed about the rec-
ommended daily consumption of calories and macronutrients
and potential adverse effects of severe diet restrictions on the
fetus. However, the patients tended to adhere to strict diets to
avoid the need for insulin therapy.

C. PRECISION OF EVALUATED MODELS
Models were evaluated for each of the following three scenar-
ios: without BG data, with data on the BG level only at meal
start and with data on the BG trends derived from CGM. The
resulting precision metrics for each of the evaluated PPGR
characteristics are presented in Table 3.

The mean absolute error (MAE) for the BGMax model
when the CGM trends were used was 0.528 mmol/L, with
a Pearson correlation coefficient for the predicted and real
values of R = 0.740. When no CGM trends but BG0 data
were used, the values were MAE = 0.556 mmol/L and
R = 0.725; when the BG data was not used, the values were
MAE = 0.682 mmol/L with R = 0.527. The evaluation
results of the precision of the BGmax predictive model are
shown in Fig. 1. The complete set of model precision metrics
and hyperparameters for the xgboost models are shown in
table 3.

D. FEATURE IMPORTANCE EVALUATION
The Shapley additive explanations method was implemented
by means of the SHAP package. The results of the feature
importance evaluation using the Shapley value method are
presented in Fig. 2. The graph shows the influence of each of
the 20 most significant features (in descending order from top
to bottom) on the iAUC120 prediction for a given data point
in the test set. The scale shows the influence of the feature
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FIGURE 2. SHAP value evaluation for the 20 most important features for iAUC120 prediction with the test set. gl – glycemic load of the meal; carbo –
the amount of carbohydrates in the meal, in g; types_food_n – meal type (1 – breakfast, 2 – lunch, 3 – dinner, 4 – snack, the value was one-hot
encoded); kr – the amount of starch in the meal, in g; prot_b6h – proteins consumed 6 hours before the meal (grams); prec_meal_shift – time
between the preceding and current meals (minutes); COC – combined oral contraceptive use before pregnancy (1 – yes, 0 – no); LDLC_V1 – low
density lipoprotein cholesterol at the time of inclusion in the study; kkal – the energy value of the meal; carbo_b6h – carbohydrates consumed
6 hours before the meal (grams); PG_2h – 2-hour plasma glucose level in OGTT (mmol/L); kcal_b6h – energy value of foods consumed 6 hours before
the meal (kcal); Weight – prepregnancy weight, kg; pv_b6h – alimentary fibers consumed 6 hours before the meal (grams); mds – the amount of
monosaccharides and disaccharide in the meal, in g; gi – glycemic index of the meal; Fasting_PG – fasting plasma glucose at the time of inclusion in
the study (mmol/L); pv_b12h – alimentary fibers consumed 12 hours before the meal (grams); prot_b3h – proteins consumed 3 hours before the
meal (grams); BMI – prepregnancy body mass index, kg/m2.

on each prediction (Shapley value). The farther the point lies
from zero (shown as a gray vertical line), the stronger the
impact of this feature on the output (e.g., a glycemic load
of 20 is lower than average and tends to lead to a lower
predicted iAUC120). The colors correspond to the values of
the features for each particular point, ranging from below
average (blue) to average (purple) to above average (red).
For the top two most significant features (gl and carbo),
it can be clearly seen that lower values of glycemic load
and carbohydrates result in significantly lower iAUC120
values.

Fig. 3 shows three particular predictions of iAUC120 for
three meals corresponding to different patients included in
the test set. The features that increased the predicted values
are shown in red, and those that decreased the values are
shown in blue. The cyan vertical arrows at the top of the
three graphs show the mean iAUC120 value (0.52 mmol/L∗h,
same value on all three graphs), and the currently predicted
iAUC120 value is shown with larger red vertical arrows (for
the upper graph, it is equal to 0.94 mmol/L∗h; for the middle
graph, it is equal to 0.22 mmol/L∗h; and for the bottom
graph, it is equal to 0.65 mmol/L∗h). The length of each
line corresponding to a different feature is proportional to

the magnitude by which the feature influenced the predicted
value. These lines are shown in descending order from the
vertical line corresponding to the predicted value (e.g., for
the prediction on the top graph values gl=40.4, carbo=55.9,
kr=29.14, and types_food_n=1 are the top four values that
increase the prediction values, while PG_2h=5.01 is the top
value that decreases the prediction values). As seen from
the second example, when we have a glycemic load and an
amount of carbohydrates that are significantly lower than
average, the model tends to predict a very low PPGR. In con-
trast, in the third situation, the model predicts a PPGR above
the average, despite the low glycemic load and small amount
of carbohydrates due to the type of meal (breakfast) and the
absence of food being consumed 6 hours before the meal
(kcal_b6h = 0), which might also be evidence of a morning
meal or snack.

IV. DISCUSSION
Effective strategies are required to reduce the immense global
burden of GDM on maternal and offspring health outcomes.
Diet is a fundamental component of the treatment of GDM.
The current nutritional guidelines are based on population
averages.
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FIGURE 3. Sample evaluations of iAUC120 for three different meals consumed by various patients. Upper situation – the meal contains a
considerable amount of carbohydrates, middle – the meal contains a small amount of carbohydrates, bottom – the meal consumed in the morning
contains a small amount of carbohydrates. The large red vertical arrow shows the place of the predicted iAUC120 on the scale, while the cyan
smaller vertical arrow shows the average iAUC120 of the dataset. The red horizontal arrows show the increasing effect of variables, while the blue
color shows the decreasing effect of the variables. types_food – meal type (1 – breakfast, 2 – lunch, 3 – dinner, 4 – snack, the value was one-hot
encoded); kr – the amount of starch in the meal, in g; carbo – the amount of carbohydrates in the meal, in g; gl – glycemic load of the meal; PG_2h
– 2-hour plasma glucose level in OGTT (mmol/L); kcal_b6h – energy value of foods consumed 6 hours before the meal (kcal); prot_b6h – proteins
consumed 6 hours before the meal (grams); carbo_b6h – carbohydrates consumed 6 hours before the meal (grams).

However, the variability in the success of diet and lifestyle
programs as well as the increasing evidence of high inter-
personal variability in PPGRs supports the concept that one
size does not fit all in terms of nutritional recommendations.
To address this issue, several studies on the development
of PPGR prediction algorithms in healthy adults have been
recently published [21]–[23].

In this study, we derived algorithms that predict PPGRs to
specific foods in pregnant womenwith and without GDMand
evaluated the influence (input) of factors explaining PPGRs.

Tuning hyperparameters using a randomized grid search
with a big set of iterations on awide range of hyperparameters
with the 10-fold grouped cross validation and the following
evaluation on the data from new patients reassures the top
features listed in Fig. 2 and the set of hyperparameters pre-
sented in Table 3 should remain the same to fit the data of new
patients. However, there might be fluctuations due to variance
in the data.

The comparison of the results acquired in the study with
results from recent papers shows a similar level of precision,
although the analysis methods and input features are not
directly comparable. For instance, R = 0.70 for the model
predicting iAUC120 (which reflects the PPGR) presented in
a study by Zeevi et al. [21] was achieved when the model
was tested and evaluated in healthy patients with the use of
gut microbiota data. Mendes-Soares [22] achieved R = 0.62
while also using data on CGM trends. In our study, R = 0.631
and MAE = 0.373 mmol/L∗h for the model not using blood
glucose data, R = 0.644 and MAE = 0.371 mmol/L∗h for
the model using data on the current blood glucose levels, and
R = 0.704 andMAE = 0.341 mmol/L∗h for the model using

data on the continuous blood glucose trends. To improve the
precision of the presented algorithm, gut microbiota data can
be included. However, gut microbiota profiling increases the
cost and thus may decrease the utility of the algorithm.

There are methods showing good accuracy in predicting
BG based on preceding CGM records, such as methods utiliz-
ing convolutional neural networks [24], [25], which showed
RMSE of 1.21 (for the best patient) and 1.85mmol/L (in aver-
age) respectively for BG prediction 60 minutes ahead, which
are good values concerning prediction for type 1 diabetes
patients). The comparable result was recently shown utilizing
random forest in the same setting [26]. But the requirement
of CGM systems to be constantly utilized in order to predict
BG is expensive and inapplicable in a wide clinical practice
for GDM patients.

Table 4 compares the prediction quality of the developed
models to different types of models recently developed and
presented in the literature. There are no models developed
for GDM and pregnant women in the literature, so we
compared our model with those for healthy people and
type 1 diabetes mellitus patients. All the models exhibit
adequate accuracy that allows them to be used in patient
assistance. The developedmodel in comparison to others does
not require microbiome data as models by Zeevi et al. [21]
and Mendes-Soares et al. [22] or continuous blood glucose
measurements on the time of prediction as models by
Li et al. [24], Zhu et al. [25] and Rodriguez-Rodriguez et al.
[26], which makes it much more accessible for clinical
practice.

In this study, we demonstrated the significant importance
of meal characteristics, food context and some individual
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TABLE 3. Resulted precision metrics and hyperparameters for the best models.
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TABLE 4. Comparison between the proposed and prior developed
models.

characteristics in PPGR prediction. Information on preceding
BG measurements also plays a significant role in improv-
ing model precision, but in the majority of cases in clinical
practice, these data are not available or significantly increase
the cost of monitoring and cause an inconvenience for the
patient. Therefore, in this paper, we focused on SHAP value
evaluation for the most important features for iAUC120 pre-
diction with the algorithm not utilizing the data on BG
trends.

The most important input into PPGR prediction was made
by GL and the amount of carbohydrates, which is in line with
the existing evidence [23], [27]. GL is the result of the amount
of carbohydrates in the food consumed multiplied by its GI.
The impact of GI itself was much smaller than that of the
amount of carbohydrates, as it was ranked 16th in the topmost
important PPGR contributors. This is because the algorithm
takes the most important data on GI from GL characteristics
and, in the majority of cases, does not require the inclusion
of GI itself.

The third most important feature contributing to PPGR
was the type of food consumed, with breakfast being the
factor that increased the PPGR values. This finding can be
explained by the increase in insulin resistance due to the phys-
iological surge in contra-insulin hormones in the morning

hours. We found that meal timing is an important factor
influencing the PPGR, which is in line with the recent data
obtained by Berry et al. These authors developed a machine-
learning model that predicted metabolic responses to food
intake based in a large cohort of healthy adults in the United
Kingdom and noticed that meal timing had larger effects than
anticipated [27].

Another interesting finding is that not only does the com-
position of meals for which the PPGR is evaluated play a cru-
cial role, but also the data on all food consumed within 6-12 h
prior to the meal are important. For example, the fifth most
important feature for iAUC120 prediction was the amount
of proteins consumed 6 hours before the meal. Numerous
studies conducted in rodents and humans have demonstrated
that high protein (HP) diets improve glucose homeostasis.
Acute short-term HP intake lowers postprandial glucose lev-
els compared to low protein (LP) intake in healthy adults [28],
[29] and in individuals with diabetes [30]. It has been pos-
tulated that these improvements in glucose control result
from a decrease in dietary carbohydrate content; however,
the glucoregulatory role of upper small intestinal peptide
transporter 1 (PepT1) in the upper small intestine of healthy
rats was recently demonstrated by Dranse et al [31], provid-
ing evidence that the glucoregulatory influence of acute HP
intake results from the presence of protein itself and providing
insight into the underlying mechanism.

Among the individual participants’ features explaining
the glycemic response, the use of combined oral contracep-
tives (COC) before pregnancy had the highest SHAP values,
increasing the predicted PPGR. These data support the con-
clusions of several studies in which impairment in insulin
sensitivity and glucose tolerance had been described with the
use of oral contraceptives and evidenced by higher glucose
and insulin levels [32], [33].

The limitation of the study is the self-reported nature of
the meal-related data derived from the electronic diaries.
Unfortunately, the importance of precise evaluation of meal
composition in patients’ diaries, which is almost impossible
for unmotivated patients, plays a key role in the performance
of developed PPGR prediction algorithms. In this work,
we presented a set of rules that can be used to automatically
identify flawed user inputs and filter them to improve model
accuracy.

Although we developed PPGR prediction models with pre-
cision levels comparable to those reported in other studies,
there is room for improvement; for example, the inclusion of
microbiome and metabolomics data and detailed assessments
of physical activity would increase the costs but may also
enhance prediction quality.

V. CONCLUSION
Gradient boosting models provide an effective solution
for postprandial blood glucose prediction. Glycemic load,
the amount of carbohydrates and meal type are the most
significant features influencing the PPGR (with BG levels
much higher than expected after breakfast), while the amount
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of food consumed during the 6 hours before the current meal
also plays a significant role.

APPENDIX
The complete set of features used for PPGR prediction.
Basic Features:
group – group number (1 – GDM, 2 – healthy)
n_cgm – the order of CGMS installation (1 - first,

2 - second)
part_of_day – time of the day (1=0-4, 2=4-8, 3=8-12,

4=12-16, 5=16-20, 6=20-24)
preg_week – gestational age on the day of the meal
time_of_day – time of the day (hour)
Meal Characteristics:
a – the amount of retinol in the meal, in mcg
b1 – the amount of thiamine in the meal, in mg
b2 – the amount of riboflavin in the meal, in mg
c – the amount of ascorbic acid, in mg
ca – the amount of Ca in the meal, in mg
carbo – the amount of carbohydrates in the meal, in g
fat – the amount of fats in the meal, in g
fe – the amount of iron in the meal, in mg
gi – glycemic index of the meal
gl – glycemic load of the meal
k – the amount of K in the meal, in mg
kar – the amount of beta-carotene in the meal, in mcg
kkal – the energy value of the meal
kr – the amount of starch in the meal, in g
mds – the amount of monosaccharides and disaccharides

in the meal, in g
mg – the amount of Mg in the meal, in mg
na – the amount of Na in the meal, in mg
ne – the amount of niacin equivalent in the meal, in mg
ok – the amount of organic acids in the meal, in g
p – the amount of P in the meal, in mg
prot – the amount of proteins in the meal, in g
pv – the amount of alimentary fiber in the meal, in g
re – the amount of retinol equivalent in the meal, in mcg
types_food –meal type (1 – breakfast, 2 – lunch, 3 – dinner,

4 – snack)
water – the amount of water in the meal, in g
zola – the amount of ash in the meal, in g
Meal Context:
carbo_b3h – carbohydrates consumed 3 hours before the

meal (grams)
carbo_b6h – carbohydrates consumed 6 hours before the

meal (grams)
carbo_b12h – carbohydrates consumed 12 hours before the

meal (grams)
fat_b3h – fats consumed 3 hours before the meal (grams)
fat_b6h – fats consumed 6 hours before the meal (grams)
fat_b12h – fats consumed 12 hours before themeal (grams)
gl_b3h – glycemic load of the foods consumed 3 hours

before the meal
gl_b6h – glycemic load of the foods consumed 6 hours

before the meal

gl_b12h – glycemic load of the foods consumed 12 hours
before the meal

kcal_b3h – energy value of the foods consumed 3 hours
before the meal (kcal)

kcal_b6h – energy value of the foods consumed 6 hours
before the meal (kcal)

kcal_b12h – energy value of the foods consumed 12 hours
before the meal (kcal)

prec_meal_gi – glycemic index of the preceding meal
prec_meal_gl – glycemic load of the preceding meal
prec_meal_carbo – the amount of carbohydrates in the

preceding meal (grams)
prec_meal_prot – the amount of proteins in the preceding

meal (grams)
prec_meal_fat – the amount of fats in the preceding meal

(grams)
prec_meal_pv – the amount of alimentary fiber in the meal

(grams)
prec_meal_shift – time between preceding and current

meals (minutes)
prot_b3h – proteins consumed 3 hours before the meal

(grams)
prot_b6h – proteins consumed 6 hours before the meal

(grams)
prot_b12h – proteins consumed 12 hours before the meal

(grams)
pv_b3h – alimentary fibers consumed 3 hours before the

meal (grams)
pv_b6h – alimentary fibers consumed 6 hours before the

meal (grams)
pv_b12h – alimentary fibers consumed 12 hours before the

meal (grams)
Participant’s Individual Characteristics:
AH – arterial hypertension in history
AI_V1 – atherogenic index at the time of inclusion in the

study (V1)
Age – age, years
beta_OHB_V1 – beta-hydroxybutyrate level at the time of

inclusion in the study
BMI – prepregnancy body mass index, kg/m2
BP_dyast1 – diastolic blood pressure at the time of inclu-

sion in the study, mm Hg
BP_syst1 – systolic blood pressure at the time of inclusion

in the study, mm Hg
CI – cervical insufficiency (1 – yes, 2 – no)
Chol_V1 – cholesterol level (mmol/L) at the time of inclu-

sion in the study
COC – combined oral contraceptive use (1 – yes, 0 – no)
DM_hystory – the presence of diabetes mellitus in the

family history (1 – yes, 0 - no)
Diet_start – gestational age at the time dieting was started
edema1 – edema during pregnancy (0 – no, 1 – yes)
education – level of education (1 – secondary, 2 – higher)
Fasting_PG – fasting plasma glucose level at the time of

inclusion in the study (mmol/L)
FPG_OGTT – fasting plasma glucose level in OGTT
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FR_V1 – serum fructosamine level (mcmol/l) at the time
of inclusion in the study

GA_sm_stopped – gestational age when smoking was
stopped

GDM_history – a history of GDM (1 – yes, 2 – no)
gest_age_V1 – gestational age at the time of testing V1 (at

the time of inclusion in the study)
HbA1C_V1 – glycosylated hemoglobin level at the time of

inclusion in the study
HDLC_V1 – high-density lipoprotein cholesterol level at

the time of inclusion in the study
height – height, cm
insulin_V1 – plasma insulin level at the time of inclusion

in the study
IGT – impaired glucose tolerance before pregnancy
ketones_V1 – urinary ketones level at the time of inclusion

in the study
LDLC_V1 – low-density lipoprotein cholesterol level at

the time of inclusion in the study
leptin_V1 – serum leptin (ng/ml) level at the time of inclu-

sion in the study
menses – the presence of a regular menstrual cycle (1 – yes,

0 – no)
N_abortions – the number of abortions in the patient

history
N_deliveries – the number of deliveries in the patient

history
N_pregnancies – the number of pregnancies in the patient

history
N_pregnancy_loss – the number of pregnancy loss

episodes in the patient history
PCOS – the presence of polycystic ovary syndrome

(0 – no, 1 – yes)
PG_1h – 1-hour plasma glucose level in the OGTT

(mmol/L)
PG_2h – 2-hour plasma glucose level in the OGTT

(mmol/L)
placenta_previa – the presence of placenta previa during

pregnancy (1 – yes, 0 – no)
prolactin – a history of hyperprolactinemia (1 – yes, 0 – no)
smoking duration – smoking duration, years (before

pregnancy)
TG_V1 – serum triglyceride level (mmol/L) at the time of

inclusion in the study
threatened_miscarriage – threatened miscarriage at any

time of pregnancy (1 – yes, 0 – no)
VLDLC_V1 – very low density lipoprotein cholesterol at

the time of inclusion in the study
Weight – prepregnancy weight, kg
Lifestyle Survey:
alcohol1 – alcohol consumption frequency before preg-

nancy (1 – did not consume alcohol before pregnancy;
2 – consumed alcohol before pregnancy 0.5 – 2 times/week;
3 – consumed alcohol before pregnancy more than
2 times/week)

alcohol2 – alcohol consumption frequency during preg-
nancy (1 – did not consume alcohol before pregnancy;
2 – consumed alcohol before pregnancy 0.5 – 2 times/week;
3 – consumed alcohol before pregnancy more than
2 times/week)

bread_any1 – frequency of eating bread (if any) before
pregnancy (1 – less than 6 times per week; 2 – 6-12 times
a week; 3 – more than 12 times per week)

bread_any2 – frequency of eating bread (if any) during
pregnancy (1 – less than 6 times per week; 2 – eating
6-12 times a week; 3 – more than 12 times per week)

bread_whole_grain_bread1 – frequency of eating whole
grain bread before pregnancy (1 – less than 1 time per week;
2 – less than 1-3 times a week; 3 – more than 3 times a week)

bread_whole_grain_bread2 – frequency of eating whole
grain bread during pregnancy (1 – less than 1 time per week;
2 – less than 1-3 times a week; 3 – more than 3 times a week)

cakes1 – frequency of eating cakes before pregnancy (1 –
less than 2 times per week; 2 – 2-4 times a week; 3 – more
than 4 times a week)

cakes2 – frequency of eating cakes during pregnancy (1 –
less than 2 times per week; 2 – 2-4 times a week; 3 – more
than 4 times a week)

chocolate1 – frequency of eating chocolate before preg-
nancy (1 – less than 2 times a week; 2 – 2-4 times a week;
3 – more than 4 times a week)

chocolate2 – frequency of eating chocolate during preg-
nancy (1 – less than 2 times a week; 2 – 2-4 times a week;
3 – more than 4 times a week)

climbing_the_stairs1 – number of flights of stairs climbed
before pregnancy (1 – less than 4 flights per day; 2 – 4-16
flights of stairs per day; 3 – more than 16 flights of stairs per
day)

climbing_the_stairs2 – number of flights of stairs climbed
during pregnancy (1 – less than 4 flights per day; 2 – 4-16
flights of stairs per day; 3 – more than 16 flights of stairs per
day)

coffee1 – frequency of drinking coffee before pregnancy
(1 – 0-1 per day; 2 – 2-3 per day; 3 – more than 3 times per
day)

coffee2 – frequency of drinking coffee during pregnancy
(1 – 0-1 cup per day; 2 – 2-3 per day; 3 – more than 3 times
per day)

dairy_products1 – frequency of eating dairy products
before pregnancy (1 – less than 3 times per week;
2 – 3-6 times a week; 3 – more than 6 times a week)

dairy_products2 – frequency of eating dairy products dur-
ing pregnancy (1 – less than 3 per week; 2 – 3-6 times a week;
3 – more than 6 times a week)

dried_fruits_1 – frequency of eating dried fruit before preg-
nancy (1 – 0; 2 – 1-3 times a week; 3 – more than 3 times a
week)

dried_fruits_2 – frequency of eating dried fruit during
pregnancy (1 – 0; 2 – 1-3 times a week; 3 – more than 3 times
a week)
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fish1 – frequency of fish consumption before pregnancy
(1- less than 3 times per week; 2 – 3-6 times a week; 3 –
more than 6 times a week)

fish2 – frequency of fish consumption during pregnancy
(1 – less than 3 times per week; 2 – 3-6 times a week; 3 –
more than 6 times a week)

fruits1 – frequency of eating fruits before pregnancy (1 –
less than 6 per week; 2 – 6-12 per week; 3 – more than 12 per
week)

fruits2 – frequency of eating fruits during pregnancy (1 –
less than 6 per week; 2 – 6-12 per week; 3 – more than 12 per
week)

legumes1 – frequency of eating legumes before pregnancy
(1 – less than 1 time per week; 2 – 1-3 times a week; 3 – more
than 3 times a week)

legumes2 – frequency of eating legumes during pregnancy
(1 – less than 1 time per week; 2 – 1-3 times a week; 3 – more
than 3 times a week)

meat1 – frequency of eating meat before pregnancy (1 –
less than 3 times a week; 2 – 3-6 times a week; 3 – more than
6 times a week)

meat2 – frequency of eating meat during pregnancy (1 –
less than 3 times a week; 2 – 3-6 times a week; 3 – more than
6 times a week)

pastries1 – frequency of eating pastries before pregnancy
(1 – less than 2 per week; 2 – 2-4 times a week; 3 – more than
4 times a week)

pastries2 – frequency of eating pastries during pregnancy
(1 – less than 2 times per week; 2 – 2-4 times a week; 3 –
more than 4 times a week)

performing_sports1 – frequency of performing sports
before pregnancy (1 – less than 2 times a week; 2 – 2-3 times
a week; 3 – more than 3 times a week)

performing_sports2 – frequency of performing sports dur-
ing pregnancy (1 – less than 2 times a week; 2 – 2-3 times a
week; 3 – more than 3 times a week)

sauces1 – frequency of using sauces before pregnancy (1 –
less than 2 times per week; 2 – 2-4 times a week; 3 – more
than 4 times a week)

sauces2 – frequency of using sauces during pregnancy
(1 – less than 2 times per week; 2 – 2-4 times a week; 3 –
more than 4 times a week)

sausages1 – frequency of consuming sausage products
before pregnancy (1 - less than 1 time a week; 2 - 1-3 times a
week; 3 -more than 3 times a week)

sausages2 – frequency of consuming sausage products
during pregnancy (1 – less than 1 time per week; 2 – 1-3 times
a week; 3 – more than 3 times a week)

skimmed_dairy_products1 – frequency of eating skimmed
dairy foods before pregnancy (1 – less than 3 times per week;
2 – 3-6 times a week; 3 – more than 6 times a week)

skimmed_dairy_products2 – frequency of eating skimmed
dairy foods during pregnancy (1 – less than 3 times per week;
2 – 3-6 times a week; 3 – more than 6 times a week)

smoking_1 – smoking before pregnancy (0 – no, 1 – yes)
smoking_2 – smoking during pregnancy (0 – no, 1 – yes)

sweet drinks1 – frequency of drinking sweet drinks before
pregnancy (1 – less than 2 times per week; 2 – 2-4 times a
week; 3 – more than 4 times a week)

sweet_drinks2 – frequency of drinking sweet drinks during
pregnancy (1 – less than 2 times per week; 2 – 2-4 times a
week; 3 – more than 4 times a week)

vegetables1 – frequency of eating vegetables before preg-
nancy (1 – less than 6 times per week; 2 – 6-12 times a week;
3 – more than 12 times a week)

vegetables1_raw – frequency of eating raw vegetables
before pregnancy (1 – less than 6 per week; 2 – 6-12 times
a week; 3 – more than 12 times a week)

vegetables2 – frequency of eating vegetables during preg-
nancy (1 – less than 6 per week; 2 – 6-12 times a week; 3 –
more than 12 times a week)

vegetables2_raw – frequency of eating raw vegetables dur-
ing pregnancy (1 – less than 6 per week; 2 – 6-12 times a
week; 3 – more than 12 times a week)

walking1 – duration of walking before pregnancy (1 – less
than 30 minutes a day; 2 – 30-60 minutes a day; 3 – more than
60 minutes a day)

walking2 – duration of walking during pregnancy (1 – less
than 30 minutes a day; 2 – 30-60 minutes a day; 3 – more than
60 minutes a day)
CGM Trend Features That Were Selected:
BGb240 – BG level 240 minutes before meal start

(mmol/L)
BGb120 – BG level 120 minutes before meal start

(mmol/L)
BGb60 – BG level 60 minutes before meal start (mmol/L)
BGb50 – BG level 50 minutes before meal start (mmol/L)
BGb40 – BG level 40 minutes before meal start (mmol/L)
BGb30 – BG level 30 minutes before meal start (mmol/L)
BGb25 – BG level 25 minutes before meal start (mmol/L)
BGb20 – BG level 20 minutes before meal start (mmol/L)
BGb15 – BG level 15 minutes before meal start (mmol/L)
BGb10 – BG level 10 minutes before meal start (mmol/L)
BGb5 – BG level 5 minutes before meal start (mmol/L)
BG0 – blood glucose level at the beginning of the meal

according to the CGM signal (mmol/L)
BGb60_to_mean – BG 60 minutes before meal start,

divided by CGM_mean
BGRiseb240 – BG rise from 240 minutes before the meal

to meal start (mmol/L)
BGRiseb120 – BG rise from 120 minutes before the meal

to meal start (mmol/L)
BGRiseb60 – BG rise from 60 minutes before the meal to

meal start (mmol/L)
BGTrend240 – BG trend 4 hours before the meal start

(mmol/L)
BGTrend120 – BG trend 2 hours before the meal start

(mmol/L)
BGTrend60 – BG trend 1 hour before the meal start

(mmol/L)
iAUCb240 – Incremental AUC 240 minutes before the

meal start (mmol/L∗hour)

219318 VOLUME 8, 2020



E. A. Pustozerov et al.: Machine Learning Approach for Postprandial BG Prediction in Gestational Diabetes Mellitus

iAUCb120 – Incremental AUC 120 minutes before the
meal start (mmol/L∗hour)

iAUCb60 – Incremental AUC 60 minutes before the meal
start (mmol/L∗hour)
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