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ABSTRACT Monitoring fish welfare has become increasingly important for salmon farmers. Current
approaches require manual labor and physical inspection or interpretation of video. Echo sounders make real-
time monitoring of the entire fish population over time possible. However, current approaches for automatic
interpretation of echograms mainly focus on species classification and therefore fail to appropriately encode
the spatiotemporal properties contained within the data. Other approaches are primarily aimed at the
feeding process and require a human-in-the-loop. Transformer-based approaches have been shown to better
handle long sequences than Long Short-Term Memory networks in recent Natural Language Processing
research. We therefore introduce EchoBERT - Echo Bidirectional Encoder Representation Transformer,
a transformer-based approach for behavior detection in farmed Atlantic salmon (Salmo salar, Salmonidae),
using the spatiotemporal properties contained in echograms. The model interprets the spatiotemporal
dynamics of echograms through attention mechanisms to classify fish behavior. We compare EchoBERT
to a traditional sequence modeling approach on the task of detecting behavior indicative of pancreas disease
in a six-fold cross-validation study using data from 6 distinct farming cages. We show that EchoBERT
shows a strong correlation between model predictions and true labels, indicated by a Matthew’s Correlation
Coefficient score of 0.694± 0.178 using an ensemble approach, compared to 0.626± 0.084 for traditional
sequence models. We also find that EchoBERT is capable of detecting disease indicators over a month prior
to detection using standard procedures. Our results show that EchoBERT has high potential for automatic
behavior detection through unintrusive methods suitable for applications in aquaculture. The source code is
available at: https://gitlab.com/hakonma/echobert.

INDEX TERMS Atlantic salmon, behavior detection, deep learning, fish welfare, sequence modeling,
transformer.

I. INTRODUCTION
Fish welfare is an increasingly important topic in the salmon
(Salmo salar, Salmonidae) farming industry. With increased
governmental focus on humane treatment of salmon, increas-
ing fish welfare can reduce costs and increase production.
Traditional methods for monitoring fish welfare include man-
ually examining fish each week, surgically tagging a small
portion of fishwith health tags, andmanual videomonitoring.
These methods require human expertise, are labor intensive
and can introduce stress in the fish. They are also reliant
on a representative sampling process, but since they do not
easily facilitate sampling from the entire cage population,
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a good sampling will rarely happen. The use of non-intrusive,
automatic approaches facilitating a more representative sam-
pling processes could greatly increase fish welfare through
detecting indicators of reduced welfare faster and more accu-
rately, while reducing the need for manual labor and stress
in the fish.

Echo sounders use acoustic back-scatter to visualize fish
and are a common tool for fish discovery and monitoring for
both fishermen and scientists. Recently, this technology has
been adopted in salmon farming facilities, since it offers a
non-intrusive approach to monitor the entire water column
for activity. The acoustic data are acquired through the use of
echo sounders, which send out an acoustic signal andmeasure
the resulting echo generated from the sound scattered back
to the transducer. This produces distinct echo signals as the
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acoustic signal transitions from water to air when it hits
the swim bladder of the fish. These signals are visualized
through plotting the depth along the y-axis and time along
the x-axis. Color is used to represent the volume of the
measured echo. This process produces an echogram as shown
in Fig. 1. Echo sounders therefore offer real-time visualiza-
tions of the entire fish population in a single visualization.
However, current approaches for such extendedmonitoring of
echograms are either fully manual or semi-automatic and are
primarily used for feeding operations. They are therefore not
well-suited for large-scale fish welfare monitoring. Further-
more, most automatic approaches for echogram analysis fail
to account for the temporal aspects contained within the data.
As echograms visualize time along the x-axis, they contain an
historic account of the position of the fish and their activities.
Such information could contain important behavioral cues
indicating changes in fish health and general welfare.

FIGURE 1. A sample echogram from one of our available cages. The
y-axis shows the depth in meters, while the x-axis shows the time steps.

Recently, the field of deep learning has seen adoption in
aquaculture. The use of deep neural networks has led to
applications ranging from fish identification [13] and fish
feeding behavior [12] to segmentation of blood defects in
cod fillets [16]. Deep Neural Networks are highly parame-
terized statistical models used in combination with learning
algorithms to approximate the functions underlying the data
used to train the model. This has led such models to become
the state-of-the-art in a many fields, including Computer
Vision (CV) and Natural Language Processing (NLP) [9].

In this work we propose EchoBERT, a novel transformer-
based approach for general fish behavior classification from
echograms as seen in Fig. 2. The model is based on recent
research in NLP [3], [25], but is modified for the new
domain. EchoBERT introduces a non-intrusive option for
near real-time fish health monitoring using the raw data
obtained from echo sounders. In contrast to [25] and [3]
the echo domain does not contain a fixed-sized vocabu-
lary from which the language is built. Instead each echo
sequence is unique as fish position themselves dynamically;
even bubbles in the water introduce noise. We therefore train
EchoBERT using a novel vector-substitution pre-training
technique to further enhance its robustness to the domain
specific challenges produced by the dynamic environment
and to enable it to better understand the behavior dynam-
ics underlying the echograms. We validate the approach on
the task of disease detection and compare EchoBERT to
well-known sequence processing models trained using the
same pre-training approach. We show that EchoBERT out-
performs other models by a significant margin, indicating its
effectiveness for automatic behavior detection in echograms.

FIGURE 2. An overview of EchoBERT. The echogram is linearly
transformed and positionally encoded before it is fed into four encoders.
The model output is calculated using a single sigmoid activated unit.

Contributions:
1) We propose the application of sequence models to

echogram behavior classification.
2) We propose a general approach for fish welfare clas-

sification making use of both the spatial and temporal
information contained within echograms.

3) We introduce a novel pre-training technique making
models more robust to the dynamical echo domain and
more capable of understanding the underlying behavior
producing echograms.

II. RELATED WORK
A. ECHO DATA APPLICATIONS
Echo data has widespread marine applications due to the
acoustic properties of water and the accuracy and availabil-
ity of echo-sounders. In [8] they show that discrimination
between fish and macroinvertebrates (eg. Amphipoda) is pos-
sible using split-beam echo sounders at different frequen-
cies. [2] compare discriminant function analysis to neural
networks for classification of fish schools into three groups.
The data was labeled through visual expert examination and
prior knowledge. Five school descriptors were extracted from
the echograms and were used for prediction. They found
that both methods perform comparably well and achieve
high classification accuracies. [4] use a random forest to
distinguish ocean krill and mackerel icefish in echograms.
They collected echograms using several frequencies and
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applied convolutional kernels and a masking bitmap to clean
the data. They extracted school parameters from echograms
and labeled their data using trawl composition data from
captured fish. The resulting dataset was then used to train
a random forest classifier to distinguish ocean krill, mack-
erel, icefish, and a mixed class. Their approach resulted in a
value of k = 0.92, with a 95% confidence interval ±0.04.
[19] used convolutional neural networks (CNNs) to detect
schools of herring. They use regions of interest to extract
salient echogram segments which are then fed into a CNN
for classification. They compare several well known CNNs
and a baseline Support Vector Machine (SVM) and achieve
an F1-score of 0.82 using the DenseNet201 CNN. [6] use
a CNN to identify fish species from echograms. They feed
segmented images to a custom CNN trained from scratch to
achieve F-scores above 0.9 for all species.

Our work separates itself from these approaches in two
major ways. First, we use data obtained from salmon farms.
Thus, there are several thousands of individual fish present
in the echograms at all times. Second, we treat echograms as
sequence data and not as images, thus our approach is able
to leverage the spatiotemporal aspects of the data to better
understand and fish behavior.

B. LANGUAGE MODELING
For machines to be able to do NLP, words from a vocabulary
must be represented in a numerical form. The most common
approach for converting words to numbers is word embed-
dings. This approach involves mapping words to vectors of
real numbers which are then processed by programs produc-
ing models of the language.

Up until recently, language modeling tasks almost always
included recurrent neural networks (RNNs). These networks
include a loop-back connection that allows them to consider
their previous state when generating their current state. They
therefore naturally include sequential information in their
processing pipeline in an intuitive way. However, vanilla
RNNs quickly proved incapable of handling long sequences.
Due to vanishing gradients in the backpropagation-through-
time (BPTT) algorithm, vanilla RNNs have a hard time when
input sequences become long as very little information about
the beginning of the sequence is available to the RNN at
the end of the sequence. To account for this, Long Short-
Term Memory (LSTM) RNNs were introduced [7]. These
networks expand on vanilla RNNs by including information
gates, allowing LSTMs to learn what information to remem-
ber and what information to forget. However, the sequential
nature of RNNs also means that their processing is not easily
parallelizable. This makes them slow to train and resource
inefficient compared to other neural network architectures.

The transformer [25], introduced a new approach to NLP.
The transformer handles sequential data without the use of
recurrent connections. Instead, it relies purely on an attention
mechanism. The attention mechanism computes an attention
score for the entire input sequence. It then weights which
parts of the sequence to pay attention to and which to discard

by applying this score to the sequence. This approach is
highly parallelizable and allows the transformer to process the
entire input without the need for BPTT. Transformer-based
models have become the new go-to model for nearly all NLP
tasks and have achieved state-of-the-art results on multiple
benchmarks [17], [18], [25], [26]. In [3] the Bidirectional
Encoder Representation Transformer (BERT) for language
representation is introduced. This approach only uses the
encoder portion of the original transformer, together with two
novel pre-training tasks to pre-train deep bidirectional rep-
resentations in an unsupervised setting. The resulting model
can then be fine tuned to achieve (previously) state-of-the-art
results on eleven natural language processing tasks.

EchoBERT separates itself from these language modeling
tasks by not having a fixed vocabulary. Our input sequences
contain continuous data rather than a vocabulary words.
There are infinitely many ways fish can arrange themselves
in the cages, and thus there are equally many resulting
echograms. We therefore do not have a fixed corpus to create
word embeddings from, leading us to use the raw echo vectors
instead. We also introduce a novel pre-training technique to
increase EchoBERT’s understaining of the domain and the
behavioral fish dynamics underlying the resulting echograms.

III. METHOD
A. DATASET
Our dataset consists of echo data collected at the Matre
research station (61◦N) of the Institute of Marine Research
(IMR), Norway [11]. Six square sea cages (12 × 12 m and
15 m depth; approximately 2000 m3) were used. The fish’s
vertical distribution and density were observed continuously
by a PC-based echo integration system (CageEye MK IV,
software version 1.1.1., CageEye AS, Steinkjer, Norway)
connected to an upward facing transducer which multiplexes
between 50 kHz (42◦ acoustic beam angle) and 200 kHz
(14◦ beam angle). However, only the 50 kHz data was used.
Echo intensity, which is proportional to fish density, was inte-
grated by the echo integration system at 7.5 cm depth intervals
using 10x oversampling giving a 75 cm moving average. All
six cages were respectively monitored by one single CageEye
transducer positioned approximately 18 m depth (below the
cage bottom) and directed towards the cage center, as seen
in Fig. 3. This resulted in a blind zone in the volume between
the water surface and the sphere-shaped end of the echo
beam. Since the transducer was facing upwards towards the
water surface, the reflections were not impacted by sediments
and the frequency used is not sensitive to turbidity. Although
the size of the fish is related to the echo data produced by
the system, the echo sounder used is not able to distinguish
between individual fish. It therefore only provides a crude
assessment of the biomass in the cage.

During data collection all six cages became infected with
Pancreas Disease (PD) [10], [15], [24]. The first signs were
detected in February 2019, when seven out of twenty clini-
cally sampled fish were shown to be infected with the disease
through clinical evaluation. A drastic decrease in appetite
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FIGURE 3. An upward facing transducer is placed at the bottom of the
cage, producing an echogram. The volume covered by the yellow beam
results in one vertical vector in the echogram.

FIGURE 4. A typical time slice from our dataset. Each time slice consists
of 256 time steps along the x-axis. The vertical resolution for each time
step is 192× 7.5 cm.

across all cages was measured two months later, on the
25th of April. This is a typical indicator of PD infection
in the industry. All cages were therefore clinically assessed
the following week, with all samples showing signs of PD.
Data collection was terminated after another month due to
emergency slaughtering of all cages.

The dataset was created by extracting raw echo data to .csv
files using a CageEye conversion tool. We removed the sea
surface and the lower portion of the echo data by cutting
off the upper and lower part of the vertical measurement.
This resulted in each measurement having a vertical reso-
lution of 192 × 7.5 cm = 14.4 m. One file per day was
created, containing continuous time-series data. The entire
dataset contains data from 07.06.2018 to 20.05.2019 for five
cages, and from 07.11.2018 to 20.05.2019 for cage 2. The
missing data from cage 2 was due to data corruption. For each
cage all dates were concatenated and split into 256-step time
slices, where each step corresponds to one ping from the echo
sounder. The resulting dataset is an n× 192× 256 matrix for
each cage, where n is the number of time slices for that cage
and 192 is the vertical resolution of the sensor below thewater
surface. Time is along the x-axis and depth along the y-axis,
as shown in Fig. 4. This makes each time slice a historical
account of 256 echo sounder pings and enables sequence
models to treat the time slices as sequences, processing each
ping as a time step in the sequence.

B. DATASET SPLIT
Data from within the same cage looks very similar for time
slices near each other in time. Generating a test set from

FIGURE 5. Attention score being calculated for the word ’it’. The attention
score is highest around ’The’ and ’dog’ meaning that the attention
mechanism strongly relates ’it’ with these two words.

the same cages used for training could therefore lead to
the models overfitting to the cages rather than learning a
generic understanding of what is happening in the echograms.
To account for this, we perform k-fold cross-validation with
k= 6 folds. Each fold uses one of the cages as its test dataset,
while training and validation datasets sample random time
slices from the remaining cages.

C. EchoBERT
The EchoBERT model uses the transformer approach pre-
sented in BERT [3]. We use only the encoder part of the
transformer since the task does not involve translation.We use
a linear projection layer to linearly transform the input into
a sequence of vectors, each of length dmodel (where dmodel
is normally 256). Following the linear layer is a positional
encoding as described in [25]. This enables the model to
understand the order of the input sequence and enhances its
capabilities to model temporal dependencies. The resulting
sequence is fed into a stack consisting of four encoder mod-
ules stacked on top of each other, regularized by dropouts [22]
between every module. Finally, a classification head consist-
ing of a single sigmoid-activated unit, takes the output of the
encoder stack as input and produces a sequence classification
output.

1) ENCODER MODULE
Each EchoBERT encoder module consists of a self-attention
layer and a feed-forward network. The self-attention layer
calculates the attention over its input using an attention
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FIGURE 6. Multi-head attention processing the input x in h parallel tracks
using h heads before combining the tracks into a single attention
calculation.

mechanism. The attention mechanism computes an attention
score for the entire input sequence. It then weights which
parts of the sequence to pay attention to and which to discard
by applying this score to the sequence, as seen in Fig. 5.

To compute an attention score, the input sequence x is
linearly transformed into a Query-matrix Q, a Key-matrix K
and aValue-matrixV , using a different weight matrix for each
of the transformed matrices. The resulting matrices are then
used to compute a normalized score by taking the dot product
of the query and key matrices, dividing it by a scaling factor
√
dk , where dk is the dimensionality of the Key, and applying

a softmax function as seen in eq. 1. The resulting attention
score is then multiplied with the Value-matrix to compute the
attention.

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (1)

The self-attention layer is configured in a multi-head atten-
tion configuration to improve its performance. This con-
figuration uses a different set of weights for each head,
resulting in different Q, K and V matrices for every head.
This allows each attention head to learn different attention
scores, making the multi-head approach capable of attending
to several features in parallel. The multi-head attention scores
are then concatenated and linearly transformed to compute
the final attention score, as expressed in eq 2 and diagrammed
in Fig. 6. To keep computational costs similar to that of a

FIGURE 7. EchoBERT consists of the encoder part of a transformer. It uses
4 encoder modules before passing the output through a sigmoid
activated decision head.

single-head approach, the dimensionality of the query and
value matrices is reduced to dQ = dV =

dmodel
h , where h is the

number of heads used. In EchoBERT we use h = 16 heads
per encoder module and set dmodel = 256 using the first linear
projection layer, resulting in dQ = dV = 16.

MultiHead(Q,K ,V ) = [head1, ..., headn]WO,where

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ),

WK
i ∈ RdK×dmodel ,

WQ
i ∈ RdK×dmodel ,

WV
i ∈ RdV×dmodel , and

WO
∈ RhdV×dmodel . (2)

Between each sub-layer in the encoder module there is also
a residual connection and a layer normalization. The residual
connection adds a shortcut through the network, providing an
alternative route for the gradient to flow. This allows deeper
networks to be built since the error signal can always reach the
lower levels in the network through the residual connections.
The full EchoBERT model is shown in Fig. 7.

2) TRADITIONAL SEQUENCE MODEL
We compare EchoBERT to a traditional sequence model
to show how the long-term dependency capabilities of
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FIGURE 8. The traditional sequence model consists of four LSTM layers, each with 256 cells. The σ represent sigmoid
activations, tanh represent tangens hyperbolicus activations, ct−1 represent previous cell state, ht−1 represents the
previous hidden state and xt represents current time step input.

EchoBERT increase model performance. Both models have a
comparable number of parameters per layer, making models
with the same number of layers directly comparable.

For our traditional sequencemodel, we use an LSTM recur-
rent network. It consists of four layers, each with 256 cells.
The final classification head is, again, a linear layer taking
the output of the LSTM as input and outputting a single
sigmoid-activated classification. We regularize the model
using dropout with a probability of 0.1 between every layer.
The model is visualized in Fig. 8.

D. PRE-TRAINING TASK
To increase the model’s understanding of the echo data
dynamics, we adapt the next-sequence prediction task
from [3] and introduce a novel substituted-vector prediction
task as a unsupervised pre-training step. The use of unsu-
pervised pre-training steps is a common approach in NLP to
help models learn the underlying structure of the data before
fine-tuning the model on the actual task [3], [17], [18]. In
the pre-training step we create a synthetic dataset from our
original dataset, where dataset splits are kept as stated in
section III-B, but the classification task is changed.

1) TASK #1: NEXT TIME SLICE PREDICTION
For the model to understand long-term dependencies in
echograms it is important that it understands how the fish
school’s position in one time slice affects future school posi-
tions. For example, if the school begins feeding behavior
in one time slice, it is reasonable to expect it to continue
this behavior in the next time slice as well. However, if the
school is already feeding in one time slice, it could also be
reasonable to expect it to stop feeding in the near future.
To this end, we train a binary next-time-slice prediction task.
For each pre-training example, two time slices (A and B) are
concatenated along the time-axis. With a probability of 50%,
time slice B is the actual successor to A, otherwise, B is a
random time slice selected from the training dataset, as shown
in Fig. 9. To give the model information about where B starts
in the concatenated vector, a value of 1 is added to the input
vectors of B through a time-slice embedding.

2) TASK #2: SUBSTITUTED VECTOR PREDICTION
To train a bidirectional representation in our model,
we take inspiration from the Masked LM pre-training step

FIGURE 9. The input to the model. Time slices A and B are concatenated
along the x-axis, where B is the actual successor to A with a probability
of 50%. The arrows indicates where A ends and B begins. Here B is not
the time slice naturally following A.

FIGURE 10. Masking time-step-vectors in the input. Vectors in the original
echogram are masked with random vectors from the training data,
resulting in a masked echogram. The task is to predict which vectors
originate from the original echogram and which are masked.

introduced in [3]. This approach masks individual time
steps within time slices through masking randomly chosen
time-step-vectors in the original input. However, instead of
masking our vectors using a ’[MASK]’ token, we directly
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FIGURE 11. Input generation for the pre-training task. The A and B time slices are first time slice embedded
before they are masked using the substituted vector masking and finally concatenated to form the input x .
The corresponding prediction target is shown to the right of each step.

substitute 50% of the vectors in time slices A and B with
random vectors sampled from our training dataset, as shown
in Fig. 10. This results in the masked time slices A′ and B′.
In contrast to [3], we do not task the model with recreating
the original vector that was substituted. Instead, we introduce
a novel binary task where, for each time-step-vector in the
time slice, the model must predict whether it is the true
vector or a substitution. The reason for this is that the original
vector is inevitably very similar to the prepending vector,
making it possible for the model to simply copy that vector
for a maximum score. Since we always substitute vectors
with real vectors from within the dataset, there is no mis-
match between the pre-training and fine-tuning. This allows
us to obtain a bidirectional model that does not suffer from
the drawbacks mentioned in [3]. Since our model predicts
real = 0 or substituted = 1 for all vectors in the input, we do
not expect an increase in pre-training steps to be required for
the model to converge.

3) PRE-TRAINING PROCEDURE
To generate each pre-training input, we apply the time slice
embedding to both A and B time slices. The resulting time
slices are then masked using the substituted vector masking,
producing A′ and B′, before A′ and B′ are concatenated to
form the input x. The generation of input is shown in Fig. 11.
The combined length of the input time slices is 512 time
steps. For the pre-training task, two output heads are added
to the model, one for each pre-training task. Both heads
are outputting a sigmoid-activated vector and trained using
binary cross-entropy loss. We train with a batch size of 45 for
30 epochs using a 1-cycle learning rate policy [21] with a

max learning rate of 0.001. We use the Adam optimizer with
β1 = 0.9, β2 = 0.999 and L2 weight decay of 0.01. The
training loss is the sum of the mean substituted vector error
and mean next-time slice error. The training is performed
using the NTNU IDUN computing cluster [20]. The models
are trained in parallel on 5 nodes, each consisting of two Intel
Xeon cores and 2 NVIDIA Volta V100 GPU with 16 GB
memory. Each pre-training takes approximately 1 hour to
complete.

4) FINE-TUNING PROCEDURE
For the infection classification task, fine tuning requires
replacing the two pre-training classification heads in the
model with a single infection classification head. This head
outputs a single classification for each input, giving the prob-
ability of an infected school using a sigmoid activation func-
tion. For the disease detection task B, time slices are always
the time slice following A, and there is no vector substitution.
Thus, the input for the disease detection task is A and B
time slices concatenated along the x-axis. The label is a
binary label issick or ishealthy represented by 1 and 0 respec-
tively. We train the model using binary cross-entropy loss,
using the same approach and hyperparameters as described
in section III-D3, but use a learning rate of 0.01. The training
time is approximately 45 minutes for each of the six dataset
folds using the same hardware as in section III-D3.

IV. EXPERIMENTS
A. DATASET DECISIONS
Although a sudden decrease in feeding response is one of the
early signs of PD [15], it is reasonable to assume that the
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TABLE 1. A Comparison of LSTM and EchoBERT Validation Losses for Each Omitted Cage (lower is better). The Loss was Calculated Using Binary
Cross-Entropy Loss.

majority of fish were actually infected before the decrease in
feeding response was measured. Thus actual infection time
is likely before 25.04.2019. In our experiments we therefore
elected to set the infection date to 15.03.2019. However,
an ablation study with two other dates was also performed
in section IV-F3. As a result of this, the disease dataset
contains relatively few examples of infected fish compared to
healthy fish. Imbalanced datasets are a common problem in
machine learning tasks, and there are several ways of dealing
with them [23], including undersampling the majority class
during training, which we have done. We also report our
results using the Matthews Correlation Coefficient (MCC)
score [14], which has been shown to be robust to imbalanced
datasets [1]. The MCC score ranges from−1 to 1. A score of
−1 indicates total disagreement between model output and
target, while a score of 1 indicates a perfect match. A score
of 0 is equivalent with random predictions. The MCC score
is calculated as shown in eq. 3, where TP,FP,TN and FN
are the True Positive, False Positive, True Negative and False
Negative rates, respectively. When any of the sums in the
denominator is zero, the denominator is instead set to one,
resulting in an MCC score of 0.

MCC =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(3)

B. MODEL PRE-TRAINING RESULTS
For the pre-training step, we train one model per fold in our
dataset. This model is trained on all the training data except
data from the excluded cage in a six-fold cross-validation
setup. We report validation loss for both EchoBERT and the
LSTM-based approach. The results can be seen in Table 1
and clearly show that EchoBERT outperforms the LSTM on
every cage.

C. MODEL FINE-TUNING RESULTS
To get a fair evaluation of model architecture performance
on the infection classification task, we train five identical
models starting from the aforementioned pre-trained models.
The classification head is randomly initialized for each of
the five models, enabling us to show the general architec-
ture performance rather than the performance of a particular
model.We report themeanMCC score and standard deviation
over all cross-validation folds in Table 2 and show the mean
and standard deviation for each cage in Fig. 12. EchoBERT
outperform the LSTM by a substantial margin on the aver-
age MCC score for the entire dataset. This indicates that
the ability to handle longer time-sequences is key to model
performance on our task.

TABLE 2. The Mean and Standard Deviation of the MCC Score Over all
Cages. Five Runs Were Performed for Each Model Per Cage.

FIGURE 12. A comparison of EchoBERT and the LSTM. The mean and
standard deviation of the MCC score are shown per cage.

D. ENSEMBLE APPROACH
Recent work has shown that ensembles of neural networks
can outperform single models by a significant margin. Fur-
thermore, networks achieving the same loss do not produce
the same function approximation [5]. We therefore form an
ensemble using the five fine-tuned EchoBERT models per
cage. The ensemble is formed using the mean output over
the five models to produce the ensemble output. We compare
the ensemble to the individual models in a per-cage manner
in Fig. 13 and Table 3.

TABLE 3. The Mean and Standard Deviation of the MCC Score Over All
Cages. Five Runs Were Performed for Each Model Per Cage in the
Individual Models Row, While the Ensemble Row Used an Ensemble of 5
Models, Taking the Mean of Their Outputs for Each Cage.

It is clear that the ensemble performs as well as or better
than the individual models on all cages. It also outperforms
the best available model on cages 4 and 6, indicating that
the ensemble approach is even more robust to differences
between cages. These findings are further supported by the
Receiver Operating Characteristics (ROC) curve in Fig. 14,
the Precision-Recall curves in Fig. 15, and the normalized
confusionmatrices in Fig. 16. Here, we show a clear tendency

VOLUME 8, 2020 218379



H. Måløy: EchoBERT: Transformer-Based Approach for Behavior Detection in Echograms

FIGURE 13. A comparison between the ensemble model and the
individual models. The mean and average MCC score is presented for the
individual models, while the direct score is presented for the ensemble.

FIGURE 14. The Receiver Operating Characteristics (ROC) curve and the
Area Under Curve (AUC) for the ensemble and the individual models.

FIGURE 15. The Precision-Recall curves for the ensemble and the
individual models.

for the increased performance of the ensemble approach
through a significantly higher Area Under Curve (AUC) for
the ensemble. The Precision-Recall curve is also higher at
every point. In the normalized confusionmatrices we have the
true positive rate and the true negative rate on the diagonal,
and again, the ensemble outperforms the individual models.

E. WHAT IS THE MODEL LOOKING AT?
Since all processing and categorization of behavior patterns
happen inside the EchoBERT model it can be interesting
to visualize the final attention activations in the encoder

FIGURE 16. The normalized confusion matrices for the ensemble and the
individual models.

modules to see what the model is paying attention to at any
given prediction. In Fig. 17 we show the attention activations
for all four modules of two different EchoBERT models
during testing on the 2nd and 6th cage. From the visualization
it seems that later time-steps are heavier weighted during
healthy classification, while time steps seem more evenly
weighted during infection classification for the model tested
on cage 6. For the model tested on cage 2 however, a pattern
is not very clear. This could indicate that better performing
models have learned better attention weights as the cage-
6 models are generally much better performing than the cage-
2 models. From the visualization it is also clear that some
time-steps are much higher weighted by the models. This
patterns is visible in both models and shows up as vertical
stripes at the given time-step in the attention visualization.
From manual inspection of the echograms at the time-steps
highlighted by the models, nothing out of the ordinary seems
to be happening. However, this could still indicate that the
models view individual time-steps as particularly important
and can pick out seemingly ordinary behavior and single it
out as behavior indicating healthy or infected fish.

F. ABLATION STUDIES
We have shown that EchoBERT is able to accurately detect
behavior indicating PD infection in echograms from the real
world. However, we have not shown the effects of the dif-
ferent aspect of the models presented. We therefore present
a number of ablation experiments to evaluate some of these
aspects in our models.

1) MODEL DEPTH
In section IV-C we claim that the best performing model is a
transformer-based architecture consisting of N = 4 encoder
modules. This was compared to an LSTMwith the same num-
ber of parameters and the same number of layers. To evaluate
this claim we trained four EchoBERT models, each with a
differing number of layers, using the same hyperparameters
and training procedure as described earlier. The results are
shown in Table 4 and Fig. 18. We again report the meanMCC
score along with the standard deviation over 5 models per
cage, starting from the same pre-trained model. The table
shows that N = 4 indeed seems to be the best performing
number of encoder modules for EchoBERT. This is perhaps
surprising given the trend of deeper models achieving bet-
ter results in the deep learning literature [9]. For example,
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FIGURE 17. Attention visualization for each of the 4 encoder layers of two EchoBERT models being tested on the 2nd
and 6th cage during both healthy and infected time slices. The attention is visualized in a correlation matrix where we
plot the input time slice against itself on both the x-axis and the y-axis. Thus when bright pixel values are visible in the
matrix, it means that one time step pays particular attention to another time step. For instance in (a) Encoder Layer 2,
we see that the time steps from y = 0 to 225, pays particular attention to the x = 310 time step, showing up as a bright
vertical line.

TABLE 4. A Comparison of the Different Sizes of EchoBERTs. The Models
Consist of N self-Attention Layers, Where Each Row is a Different Size.
The Results are Reported Using the Mean and Standard Deviation of the
MCC Scores for 5 Separately Trained Models Per Cage.

the largest EchoBERT is significantly worse than the smallest
one. This could be due to the fact that deeper models have

more parameters and therefore aremore capable of overfitting
to the data.

2) EFFECTS OF PRE-TRAINING
We claim that our pre-training task is important to give the
model a deep understanding of the dynamics of the echo
data. To quantify this claim, we train another set of five
EchoBERTs per fold, using the same hyperparameters, but
without the pre-training task, thus training them directly on
the disease detection task. The results are shown in Table 5
and in Fig. 19. From the results it is clear that the pre-
training task is crucial for the performance of the model as the
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FIGURE 18. A comparison of increasingly deeper EchoBERTs shown using
the mean and standard deviation of the MCC score per cage.

FIGURE 19. Comparing EchoBERTs trained from scratch on the disease
data and EchoBERTs that have been pre-trained before they were
fine-tuned on the disease data using the mean and standard deviation of
the MCC score per cage.

TABLE 5. The Table Shows the Effect of the Pre-Training Task by
Comparing Models That Has Been Pre-Trained to Models That Were
Trained From Scratch. The Results are Reported Using the Mean and
Standard Deviation of the MCC Scores for 5 Separately-Trained Identical
Models Per Cage.

non-pre-trained model is far worse across all cages (except
cage 5). They are even worse than the LSTM architectures,
indicating the importance of a successful pre-training.

3) DIFFERENT INFECTION DATES
As we mentioned in section IV-A, actual infection date is
not clear. We therefore examine the effects of changing the
onset date by training two sets of 5 models per fold using
different infection dates. If the actual infection date is earlier
than the date we originally used, we should expect an increase
in MCC performance. Since the original model is trained on
later infection dates, it incorrectly learns that early disease
behavior is healthy behavior. This could confuse the model
and make it overly reluctant when presented with infected
behavior. However, if the actual infection date is later than
the one used in the original model, the opposite may occur.

This would cause the original model to be overly eager to
classify healthy behavior as infected behavior. To examine
such effects, each set of models is trained using a different
infection date than the original model. The dates were set to
15.02.19 and 25.04.19, respectively. The results are presented
in Table 6 and visualized in Fig. 20. The results show that the
originally decided infection date seems to result in the best
model performance. Both of the other dates result in compara-
ble performance reductions. This indicates that the originally
used infection date is close to the optimal date for detecting
disease using behavior patterns from echograms. This could
be because this date captures both early infected behavior as
well as late infected behavior in a balanced manner. If this is
the case, it also indicates that behavior changes as the disease
progresses.

FIGURE 20. Comparing EchoBERTs trained on different target infection
dates showing the mean and standard deviation of the MCC score per
cage.

TABLE 6. EchoBERTs Trained Using Different Disease Onset Dates. The
Results are Reported Using the Mean and Standard Deviation of the MCC
Scores for 5 Separately Trained Identical Models Per Cage.

V. DISCUSSION
Section III-B mentions that we split our test data on cages,
meaning that we end up with a total of six cross-validation
folds. Each fold has its own training dataset, where one cage
is excluded and used as that fold’s test dataset. While this
approach gives a better indication of EchoBERT’s general-
ization capabilities, it also means that a large piece of data
is unavailable for the model during training. Since salmon
behavior is not necessarily uniform across all cages, this
could lead to the model being confused. For example, one
of the cages might be located in a spot where the underwa-
ter current is much stronger than in the other cages. This
would change how the fish orient themselves within that
cage, causing the echogram to look different than those of
the other cages. This could be what is happening with cages
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2 and 4. However information about the current conditions
is not available for the site, leaving us only to speculate.
In spite of this problem, we still achieve strong results, even
for these cages. This indicates the robustness of EchoBERT
to changing conditions. Our dataset is also relatively small
and only contains samples from a single site. Despite the fact
that the data consists of several cages, we believe that data
from different sites could look very different and therefore
cause the model to be fooled. To account for this we would
like future work to also include data from other sites.

Another important fact of the echo data is that biomass
increases in the cage as the salmon grow over the production
period. Since the biomass is at its highest right before the
outbreak of PD, one could argue that the model is only con-
sidering biomass and decides that all activity happening after
the peak is reached is considered infected behavior. However,
as we stated in section III-A, the echo sounder used is not able
to distinguish individual fish and can therefore only give a
very crude estimate of the cage biomass. Furthermore, since
the model processes time slices independently, it can only
use the temporal information available within a time slice.
It therefore does not have access to the historical changes
in the biomass that is not present in the current time slice
being processed. It is therefore also blocked from leveraging
information about biomass in previous time slices when it
performs its prediction. This fact substantiates our claim that
the model actually understands and uses the behavior of the
salmon in its predictions.

Whenwe plot the output of all EchoBERTmodels a pattern
emerges. Throughout most of the 30 trained models a trend
is that they start predicting infected behavior slightly earlier
than the target time. Rather than being a mistake on the part
of the models, this could indicate that the infection date is
actually slightly earlier than what we set as our target. Since
the models seem to be quite capable at correctly detecting
infected behavior it would not be unreasonable to adjust
the infection date based on this observation. Consequently
the reported scores of our models could actually be even
higher, were we to adjust the infection date slightly. The plots
showing the model outputs and the targets are shown in the
Appendix in Fig. 21.

In our comparison with LSTM networks, we only com-
pare EchoBERT to left-to-right LSTMs. This means that
the EchoBERT is able to see time steps both before and
after the current position when making its prediction, while
the LSTM is only able to see the preceding time steps.
This could result in an unfair comparison, especially given
that bidirectionality seems important in the pre-training task.
This is further substantiated by the pre-training task results.
It would therefore be interesting to compare EchoBERT to
a bidirectional LSTM to make a better comparison of the
architectures. We therefore leave this for future work.

Since EchoBERT is based on BERT [3], it could be inter-
esting to directly compare the two. There are even pre-trained
weights for BERT available which could have been used to
bootstrap EchoBERT and avoid the need for our pre-training

step. However, since BERT is trained on NLP tasks it is
poorly suited for the echo domain. This is due to the fixed
corpus available in NLP. In the echo domain we do not have
a fixed set of possible time step vectors as they are generated
from a dynamical system containing nearly unlimited distinct
states. This results in a continuous set of possible time step
vectors rather than a set of categories, making BERT poorly
suited to handle them. It is however possible to drastically
downscale the vertical resolution of the echogram to a vertical
dimension of n and then bin values to a set of fixed size k . This
would effectively create a echogram vocabulary of size kn,
enabling the use of BERT. However, since the vocabulary
of BERT is only around 30000 tokens, this would create a
vocabulary exceeding BERT’s even at very small values of
n and k . There are, however, other ways of compressing the
information containedwithin time-step-vectors and this could
be an interesting future approach since it would also create
a common vocabulary across different locations, potentially
enabling a model trained on data from one location to per-
form quite well in other locations. However, BERT is still
trained on data that have vastly different word-embeddings
in sequence whereas the echo data would still contain very
similar time step vectors when they are temporally close. For
this reason it is still reasonable to assume that the pre-training
tasks used in EchoBERT are necessary to achieve a suffi-
cient understanding of the underlying dynamics producing
the data, thus resulting in a good model even if a common
echo vocabulary is used.

Since EchoBERT is not the first example of machine learn-
ing being applied to the domain of echo data, it could be
interesting to compare it to the other approaches introduced
in [2], [4], [6], [19]. However, none of those approaches
are concerned with behavior detection, and none include the
temporal aspects of echo data making them less likely to be
easily adopted. However, in [12] CNNs are combined with
an LSTM, making the model able to utilize the temporal
aspects of the data. This model could be feasibly adapted
to work with echo data, but the fact that it uses multidi-
mensional CNNs makes it better suited for video. The echo
data only consists of a sequence 1-dimensional vectors. The
use of 2D-convolutional layers would therefore treat the
echograms as images, convolving over multiple time steps at
once. This makes the model unable to utilize the pre-training
tasks used in EchoBERT, making it less likely to accurately
represent the data, which would degrade performance. How-
ever, since the vertical dimension of the echograms indicates
fish position in the water column it is still natural to expect
1-D convolutional layers to be present in EchoBERT. Such
layers can capture proximity information and therefore create
a better representation for the self-attention layers to process.
This is an interesting addition to EchoBERT which we would
like to investigate in future work.

In section IV-D we show that an ensemble of EchoBERT
models perform even better than individual EchoBERT mod-
els. However, it would also be interesting to compare a
pure EchoBERT ensemble to an ensemble also containing
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FIGURE 21. EchoBERT outputs, targets and the EchoBERT moving average output for all cages and all cross-validation folds.

LSTMs as the LSTM sometimes outperforms EchoBERT.
However, as this work mainly focuses on the introduction of
EchoBERT, it is out of the scope of this report. We therefore
leave it to future work.

Our results are presented only on the task of disease detec-
tion, but there are several other behaviors that are interesting
to monitor in salmon, including feeding, fatigue and stress,
as well as changes during growth. Since our dataset did actu-
ally contain a disease outbreak, this was the most natural task
to explore, but future work should include other behaviors,
since they are important to salmon farmers and may give
better insight into salmon welfare.

In section III-A we mention that the characteristic
PD-caused drop in appetite was measured on the 25th of
April. However, in our experiments we set our infection
date to the 15th of March due to some individuals showing
signs of PD already in February through clinical inspection.
Our results show that EchoBERT is able to detect infected
behavior using this date, thus EchoBERT can detect signs
of PD infection from echograms over a month prior to when
they show up in traditional PD detection protocols using the
measured reduction in appetite on the 25th of April. Since
PD is a disease that has a high mortality rate in salmon,

these results show that EchoBERT can help reduce fish
mortality through early detection that results in earlier
treatment.

VI. CONCLUSION
In this work we present EchoBERT, a transformer-based
approach for understanding the spatiotemporal dynamics of
echograms generated at salmon farming facilities. We show
that EchoBERT is able to detect the onset of Pancreas
Disease (PD) in salmon, purely from the behavior patterns
visible in echogram data. To the best of our knowledge, our
approach is the first to treat echograms as sequential data
and to use sequence modeling to interpret it. We also intro-
duce a novel vector-substitution pre-training task to further
improve the model’s understanding of echo data dynamics.
We compare EchoBERT to a traditional LSTM model and
show that it outperforms the LSTM by a significant margin
using Mathew’s Correlation Coefficient as a measure. Using
an ensemble approach, EchoBERT achieves an MCC score
of 0.694 ± 0.178. Furthermore, we show that EchoBERT
was able to detect signs of PD over a month prior to the
detection using appetite reduction as an indicator. Finally,
we perform several ablation experiments to show the effects
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of changing various aspects of both the EchoBERT model
and the dataset. We find strong indications that EchoBERT
is robust to variations in the data and overfitting. However,
future work involves verifying this on new data from different
cages and farming locations.

APPENDIX A
EchoBERT OUTPUTS
See Fig.21.
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