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ABSTRACT Detection of spectral peaks and estimation of their properties, including frequency and
amplitude, are fundamental to many applications of signal processing. Electroencephalography (EEG)
of sleep, in particular, displays characteristic oscillations that change continuously throughout the night.
Capturing these dynamics is essential to understanding the sleep process and characterizing the heterogeneity
observed across individuals. Most sleep EEG analyses rely on either time-averaged spectra or bandpassed
amplitude/power. Unfortunately, these approaches obscure the time-variability of peak properties, require
specification of a priori criteria, and cannot distinguish power from nearby oscillations. More sophisticated
approaches, using various spectral models, have been proposed to better estimate oscillatory properties,
but these too have limitations. We present an improved approach to spectrogram decomposition, tracking
time-varying parameterized peak functions and dynamically estimating their parameters using a modified
form of the iterated extended Kalman filter (IEKF) that incorporates discrete On/Off-switching of peak
combinations and a sampling step to draw the initial reference trajectory. We evaluate this approach on
two types of simulated examples—one nearly within the model class and one outside. We find excellent
performance, in terms of spectral fits and accuracy of estimated states, for both simulation types. We then
apply the approach to real EEG data of sleep onset, obtaining quality spectral estimates with estimated
peak combinations closely matching the expert-scored sleep stages. This approach offers not only the ability
to estimate time-varying parameters of spectral peaks but, moving forward, the potential to estimate the
governing dynamics and analyze their variability across nights, subjects, and clinical groups.

INDEX TERMS Electroencephalography, Kalman filter, parameter estimation, sleep, spectral analysis,
spectral peaks, spectrogram.

I. INTRODUCTION
Many applications of spectral analysis involve detection and
estimation of characteristic peaks or functions within back-
ground noise, such as audio and speech signal processing,
magnetic resonance spectroscopy (MRS), and analysis of
physiological signals. Moreover, in many cases, the compo-
sition or properties of the peaks vary in time. For example,
electroencephalographic (EEG) recordings of the brain dur-
ing various states, processes, and conditions display char-
acteristic time-varying oscillations, which organize func-
tional activity and facilitate information transfer between
regions [1].
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EEG of sleep, in particular, is characterized by patterns of
oscillatory activity that change at multiple time scales over
the course of the night [2]–[7]. These oscillations are clas-
sically defined by frequency ranges and other properties [8],
like duration. Some arise and persist over extended periods of
time (∼minutes), whereas others are more transient, lasting
less than a few seconds.

EEG oscillations are not pure sinusoids but variable phe-
nomena and complex waveforms in aperiodic background
noise. The waveform shapes reflect the underlying neuronal
dynamics and change with physiological state [9]–[12]. The
properties of the resulting broadband spectral peaks (e.g.,
peak bandwidth and shape) correspond to the waveform mor-
phology. Likewise, the background noise is believed to reflect
the relative excitation and inhibition of the underlying neural
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populations and appears spectrally as a ‘1/f ’ decay [13].
When visualized as a spectrogram, the oscillations of EEG
thus appear as peaks moving on a background of noise, as the
properties of these peaks (e.g., frequency location, amplitude,
and bandwidth) and those of the noise background change
with time.

In addition to the temporal variability, EEG activity varies
spatially across the scalp corresponding to the cortical local-
ization of the underlying processes [14]–[16]. Sleep EEG,
specifically, displays a topographic pattern of oscillatory
peak dynamics [5], [17]–[21]. Crucially, the peak properties
(including frequency location, prominence, and even num-
ber) are also known to vary widely between individuals [16],
[22], and in sleep, often deviate substantially from the clas-
sical definitions [21], [23], [24]. Moreover, the oscillatory
properties have been found to change with age [12], [13],
[19], [25], [26] and with clinical pathology. Alterations and
aberrations in sleep EEG oscillations have been found in
schizophrenia [27], [28], autism [29], epilepsy [30], sleep
disorders [31]–[34], stroke [35], and neurodegenerative dis-
orders [36], for example.

Sleep is thus a continuous, dynamic process, and modeling
and analyzing the full variability of sleep EEG oscillations
is imperative for understanding the process of sleep and
identifying pathological biomarkers. Such analyses require
an approach that 1. captures the spectral shapes and relevant
peak properties of the oscillatory activity, 2. tracks the con-
tinuous changes of the properties of interest throughout the
night, 3. identifies the (relatively) discrete On/Off-switching
of the transient oscillations, and 4. flexibly accounts for the
intra-subject spatio-temporal variations and inter-subject het-
erogeneity of spectral peaks. Unfortunately, most sleep EEG
analyses do not account for this variability, averaging over
the dynamics and/or applying a priori definitions and criteria
across subjects.

Traditionally, the process of sleep is discretized into
five stages—wake, rapid eye movement (REM), non-REM
(NREM) 1, NREM 2, and NREM 3—based on the presence
and prominence of strictly defined oscillations. All clinical
analyses of sleep EEG are done by having an expert techni-
cian manually score the entire night’s sleep record into the
five discrete stages to produce a hypnogram. This is done by
visualizing the EEG signals—as well as other physiological
signals, like electrocardiogram (ECG) and electrooculogram
(EOG)—in 30 second segments as time-domain traces and
assessing the presence/absence of the characteristic oscilla-
tions according to the clinical definitions [8]. This process is
extremely time consuming and highly subjective [37], and the
resulting hypnogram very coarsely discretizes the continuous
dynamics of the sleep process.

Quantitative analyses of oscillatory activity in the sleep
EEG are most commonly based on either average spectra or
bandpassed amplitudes. Average spectra are formed by aver-
aging over spectral estimates from separate timewindows [6],
[17], [35], usually based on sleep stage. From these spectra,
oscillation frequencies, amplitudes, and other properties can

be determined, but nearly all of the temporal variations are
averaged out. Alternatively, the EEG signal is bandpassed to
the frequency range of interest and instantaneous amplitude
or power within the band computed [18], [24], [27], [31],
[38], e.g., via Hilbert transform. While this provides instan-
taneous amplitude/power estimates, specific frequency and
bandwidth estimates are unavailable, being instead fixed by
the specified range. Thus, both approaches obscure, to some
degree, the temporal variations of the peak properties, both
are susceptible to confounding of power/amplitude estimates
due to leakage from nearby or overlapping oscillations, and
both are rely on a priori band definitions and other oscillation
criteria that do not account for inter-subject heterogeneity.
Some analyses, usually those analyzing specific detected
oscillations, do tailor detection criteria to individual subjects
[4], [20], [24], [35], [38], [39]. But despite these adjustments,
such analyses still impose hard criteria on phenomena that
do not necessarily follow such demarcations [21]. Automatic
oscillation-detection methods have also been shown to dis-
agree substantially with each other and to perform poorly
relative to expert scoring [37].

A variety of approaches have been proposed to bet-
ter estimate the oscillatory properties of interest from
EEG or other signals. Olbrich and Achermann [40]
use windowed-autoregressive (AR) models to identify
oscillatory events and estimate frequencies and ampli-
tudes. Tarvainen et al. [41] estimate a state-space
autoregressive-moving average (ARMA) model for nonsta-
tionary EEG.Dubois et al. [42] andMatsuda andKomaki [43]
use state-space models of time-varying parameterized oscil-
lations, estimated via unscented particle filter (UPF) and
Kalman smoother (KS), respectively. Yet other approaches
have been proposed to estimate instantaneous amplitudes
and frequencies of signals comprising variable sinusoids
[44]–[46]. While these approaches perform well at identi-
fying frequencies and amplitudes, the underlying AR and
sinusoids do not fully capture the spectral shape of many
EEG oscillations. Moreover, AR parameters are not directly
interpretable in terms of frequencies and amplitudes, which
must be derived. Haller et al. [9] offers a spectral decom-
position fitting explicitly parameterized peak functions.
However, as with the windowed-AR of [40], there is no
temporal continuity between estimates of separate windows.
Prerau et al. [47] proposed a particle filter approach to esti-
mate time-varying, parameterized peaks of an EEG spectro-
gram. While this method enables tracking of variable peaks,
it encountered several limitations and difficulties. First,
the method, like the state-space approaches of [43]–[46],
does not handle the phenomena of peaks quickly turning off
(disappearing) and on (reappearing), as with sleep spindles in
EEG of non-REM sleep. More importantly, the high dimen-
sionality of the observations, i.e., the instantaneous spectral
estimates, quickly leads to degenerate particle weightings.

We propose an improved method for the decomposition of
spectrograms into sets of time-varying parameterized peak
functions. We develop and demonstrate this method in the
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context of analyzing sleep EEG, but the method may be
applicable to analogous problems in other fields, like spec-
troscopy. Our method augments the state-space model of [47]
to capture the discrete On/Off-switching of peaks and uses
a variation of the iterated extended Kalman filter (IEKF) to
overcome the degeneracy of the particle filter and estimate the
varying peak parameters. Because the peaks are parameter-
ized in terms of directly interpretable properties, the temporal
continuity imposed by the state-space model is interpretable
as well. The resulting decomposition of the spectrogram pro-
vides not only improved peak identification over traditional
approaches, like average spectra and bandpass filtering, but
also direct estimation of peak properties and their uncertain-
ties. These estimates further enable statistical analyses and
comparisons of peak properties over time. Characterization
of these dynamics, and their variation within and between
individuals and between patient groups, will not only further
our understanding of the process of sleep but possibly reveal
diagnostic markers.

II. METHODS
We propose using a state-space model to represent a spec-
trogram as combinations of parameterized peak oscillations,
where the peak parameters vary smoothly in time and the
combination of On/Off-peaks changes dynamically as well.
The peak parameters and On/Off-combination are estimated
using a modified version of the IEKF and a decomposition
of the spectrogram so obtained. We demonstrate this method
and test its relative performance on two types of simulated
data. We then apply the method to real EEG data from sleep.
(Code is available for download in the supplemental material
as well as at http://sleepeeg.org/peaktracking/.)

A. PARAMETERIZED SPECTRAL APPROXIMATION
In this model, at each time t , the instantaneous spectrum yt
of the estimated spectrogram, evaluated at vector of discrete
frequency bins ω, is approximated as the sum of a set of peak
functions h(i) observed in noise vt ,

yt =
∑
i∈I

h(i)
(
ω; x(i)t

)
+ vt . (1)

Here, I is the set of available peaks, the h(i) are their respec-
tive peak functions, and the x(i)t are their respective sets of
parameters. The observation noise is assumed zero-mean,
E [vt ] = 0, and temporally uncorrelated with covariance
E
[
vt1v
′
t2

]
= R · δt1−t2 .

B. PEAK FUNCTIONS
Themodel is flexible in terms of the number and types of peak
functions that can be included. The parameters are generally
chosen to be interpretable in terms of location (frequency) and
shape (amplitude, bandwidth, etc.) of the corresponding peak.
Those that we have implemented include a Gaussian (with
and without harmonics), a shifted-gamma, a box-exponential,
and an exponential-decay. The parameterized equations of the
peaks are given in Appendix A.

These peak functions were chosen to represent classi-
cally recognized oscillatory peaks in sleep EEG. We use
an exponential-decay to represent the background spec-
tral density, shifted-gammas to represent slow (< 1.5 Hz)
and delta-theta (1.5–8 Hz), a Gaussian with harmonics to
represent alpha (8–12 Hz), a Gaussian to represent sigma
(12–16 Hz), and a box-exponential to represent the 60 Hz line
noise.

C. PARAMETER EVOLUTION AND BOUNDS
The parameters of the peak functions form the state vector xt ,
varying smoothly over time following a random walk,

xt = F · xt−1 + wt . (2)

The state noise wt is assumed zero-mean, E [wt ] = 0, and
temporally uncorrelated with covariance E

[
wt1w

′
t2

]
= Q ·

δt1−t2 . It is further assumed the state and observation noises
are uncorrelated, E

[
vt1w

′
t2

]
= 0. We use a decay factor

F = 0.9 · I for the state transition to enhance stability of the
resulting filter estimates.

Many of the peak parameters are required to be posi-
tive (e.g., amplitudes, frequencies, and bandwidths). It is
often advantageous to further restrict parameters to specified
intervals (e.g., a specific frequency range for given peak).
To achieve this, we employ exponential and sigmoid link
functions, respectively. Their parameterized equations are
given in Appendix B. The resulting bounded versions of
the dynamic state variables, x t,k = lk

(
xt,k

)
, then param-

eterize the observation peak functions, where k indexes
the component state variables and their respective link
functions.

D. COMBINATIONS OF ON/Off-PEAKS AND THEIR
TRANSITIONS
In many applications, like EEG analysis, the oscillation con-
tent of a signal may change rapidly, with sets of peaks appear-
ing or disappearing, often in particular combinations, almost
instantaneously. It is, thus, frequently of benefit and interest
to allow peaks to turn on and off in certain combinations
at various times, and to model the transitions between these
combinations. We model the dynamic On/Off-switching of
peaks as a probabilistic discrete transition among a set of
allowable combinationsJ . With αt the vector of probabilities
of being in each combination and 8 the matrix of transition
probabilities (i.e., 8j2,j1 is the probability of transitioning
from combination j1 to j2), the probabilities vary according
to

αt = 8 · αt−1. (3)

For clarity and brevity, we variably refer to the combination
of On/Off-peaks as the On/Off-peaks combo, the On/Off-
combo, or even simply the combo. The formation of
the combo transition matrix 8 is described in Alg. 5 in
Appendix C.
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E. STATE-SPACE MODEL
Together, the observation and state equations of the
state-space model are as follows,

yt =
∑
i∈I(jt )

h(i)
(
ω; x(i)t

)
+ vt , (4)

xt+1 = F · xt + wt+1, and (5)

αt+1 = 8 · αt , (6)

where x t,k = lk
(
xt,k

)
are the bounded peak parame-

ters and I (jt) is the set of On-peaks in On/Off-combo
jt . For brevity and clarity moving forward, we denote the
overall observation function for each combo j by hj (x),
where hj (x) =

∑
i∈I(j) h

(i)
(
ω; l

(
x(i)
))

incorporates the
sub-selection of parameters, the application of link functions,
and the summation of peak functions, and suppresses the
dependence on frequency bins.

F. IEKF WITH DISCRETE SWITCHING AND SAMPLED
REFERENCE TRAJECTORY
The peak parameters xt and On/Off-peak combo jt are esti-
mated via a modified form of the IEKF. The general IEKF is
detailed in references such as [48]. We make two modifica-
tions to the IEKF—one to handle the discrete switching of the
On/Off-combo and one to further handle the nonlinearity and
improve the convergence. For real-data applications, we also
add checks to handle non-convergence.

The outline of the approach is as follows. Given the filter
estimates for the previous time step, the common prediction
estimates are obtained. For each On/Off-combo, random state
samples are drawn from a multivariate Gaussian with mean
and covariance given by the prediction estimates, and the
maximum likelihood draw becomes the initial reference tra-
jectory for that combo. Filter estimates are obtained for each
combo by the iterated updates, starting at their respective
initial references. The posterior probability of each combo
is computed from the total likelihoods and transition prob-
abilities. The new filter estimates are then the posterior mode
combo and its state and state-error covariance. The general
steps for the full algorithm are given in Alg. 1.

1) IEKF STEP AND ESTIMATION OF ON/Off-COMBO
The discrete switching of the On/Off-combination is handled
analogously to adaptive parameter estimation as detailed in
references such as [49]. At each time t , the IEKF updates
are computed separately for each combo j to obtain separate
prediction and filter estimates of the state and state-error
covariance of the approximating Gaussian density. In our
case, the state equation is linear, so the prediction updates of
the state and state-error covariance estimates are straightfor-
ward, x̂ jt|t−1 = F · x̂ jt−1|t−1 and Pjt|t−1 = FPjt−1|t−1F

T
+ Q,

respectively. Due to the nonlinear dependence of the obser-
vation function on the state, the filter updates of the state and
state-error covariance estimates, x̂ jt|t andP

j
t|t , respectively, are

approximated by linearizing the update equations around a
reference trajectory ηjt . These equations are given in Alg. 3.

Algorithm 1: Iterated Extended Kalman Filter With Pre-
dictive Sampling and Probabilistic Parameter Switching
Data: y1:T , I, J , R, F, Q, Nd , Niter, x̂0, P0, and α̂0
Result: {x̂t|t ,Pt|t , ĵt|t }Tt=1
x̂0|0← x̂0; P0|0← P0; α̂0|0← α̂0
for t ← 1 to T do

x̂t|t−1← F · x̂t−1|t−1
Pt|t−1← FPt−1|t−1FT + Q
for j← 1 to NJ do

ε
j
t|t−1← yt − hj

(
x̂t|t−1

)
η
j
t,1← referenceTrajectory (Alg. 2 or 6)

{x̂ jt|t ,P
j
t|t ,LL

j
t } ← filterUpdate (Alg. 3, 7, or 8)

ε
j
t|t ← yt − hj

(
x̂ jt|t
)

end
{x̂t|t ,Pt|t , α̂t|t } ← modeOnOffCombo (Alg. 4)

end

Algorithm 2: referenceTrajectory—Max Likelihood

Data: x̂t|t−1, Pt|t−1, Nd , j, yt , hj, R
Result: ηjt,1
d j,1← x̂t|t−1
εj,1← yt − hj

(
d j,1

)
for i← 2 to Nd do

wj,i ∼ N
(
0,Pt|t−1

)
wj,i← only retain components relevant to j
d j,i← x̂t|t−1 + wj,i

εj,i← yt − hj
(
d j,i
)

end
i∗← argmini

(
εj,i
)T R−1εj,i

η
j
t,1← d j,i

∗

In the basic EKF, the prediction estimate serves as the refer-
ence trajectory, ηjt = x̂ jt|t−1. In the IEKF, the approximation
is improved by iteratively using the resulting estimate as
subsequent reference and stopping at convergence.

The linearized equations utilize the derivative matrix of
the observation function, M j (η) = ∂xhj (η). The derivatives
of the individual peak functions and the link functions with
respect to their parameters are straightforward to compute.
They are included in Appendixes A and B.

The filter estimates of the combo probabilities α̂t|t are
computed by taking the observation likelihoods,

p (yt | jt , y1:t−1) =
∫
xt
p (yt | xt , jt , y1:t−1)

·p (xt | jt , y1:t−1) dxt , (7)

obtained separately from the IEKF for each combo, weighting
by the predicted transition probabilities, p (jt | y1:t−1) = 8j,··

α̂t−1|t−1, and normalizing,

p (jt | y1:t) =
p (yt | jt , y1:t−1) p (jt | y1:t−1)∑
jt p (yt | jt , y1:t−1) p (jt | y1:t−1)

. (8)
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Algorithm 3: filterUpdate—EKF/IEKF

Data: x̂t|t−1, Pt|t−1, η
j
t,1, Niter, yt , hj, ∂xhj, R

Result: x̂ jt|t , P
j
t|t , LL

j
t

for k ← 1 to Niter do

M ← ∂xhj
(
η
j
t,k

)
K ← Pt|t−1MT

[
MPt|t−1MT

+ R
]−1

z← yt − hj
(
η
j
t,k

)
−M

[
x̂t|t−1 − ηk

]
η
j
t,k+1← x̂t|t−1 + Kz

end
x̂ jt|t ← η

j
t,Niter+1

Pjt|t ← [I− KM ]Pt|t−1 [I− KM ]T + KRKT

LLjt ←−
1
2 z
T
[
MPt|t−1MT

+ R
]−1 z

−
1
2 ln det(MPt|t−1M

T
+ R)− Ny

2 ln(2π )

Algorithm 4: modeOnOffCombo

Data: α̂t−1|t−1, 8, LL
1:NJ
t , x̂1:NJ

t|t , P1:NJ
t|t , ε1:NJ

t|t , x̂t|t−1,

Pt|t−1, ε
1:NJ
t|t−1 , R

Result: x̂t|t , Pt|t , α̂t|t
if minj

(
ε
jT
t|t−1R

−1ε
j
t|t−1

)
< minj

(
ε
jT
t|tR
−1ε

j
t|t

)
then

j∗← argminj
(
ε
jT
t|t−1R

−1ε
j
t|t−1

)
x̂t|t ← x̂t|t−1; Pt|t ← Pt|t−1; α̂t|t ← ej∗

else
j∗← argmaxj LL

j
t

for j ∈ J do
LRjt ← LLjt − LLj

∗

t + log
(
8j,· · α̂t−1|t−1

)
− log

(
8j∗,· · α̂t−1|t−1

)
end
ĵt|t ← argmaxj LR

j
t

x̂t|t ← x̂
ĵt|t
t|t ; Pt|t ← P

ĵt|t
t|t ; α̂t|t ← eĵt|t

end

The observation likelihoods are computed as logarithms,
ln p(yt | jt , y1:t−1), and denoted LLjt in the algorithms.
While in principle the joint filter density p (xt , jt | y1:t)

could be computed as a mixture of separate Gaussian state
estimates, we have found that this performs poorly. Instead,
at each time step, we select the On/Off-combination with
the maximum probability, ĵt|t = argmaxjt p (jt | y1:t), and
approximate the combo filter probabilities by the correspond-
ing indicator vector, α̂t|t ≈ eĵt|t . This selected combo and
its associated filter estimates then serve as the overall filter
estimates, x̂t|t ≈ x̂

ĵt|t
t|t andPt|t ≈ P

ĵt|t
t|t , and the starting point for

all combos at the next time step. The selection of the modal
On/Off-combo is detailed in Alg. 4.

2) IMPROVED REFERENCE TRAJECTORY
To improve the ability of the iterations to converge, we add
a step between the prediction and filtering to sample for

an improved initial reference trajectory. At each time t , for
each combination j, we draw Nd = 1000 state samples
d j1:Nd from the common prediction density,N

(
x̂t|t−1,Pt|t−1

)
,

evaluate the predicted observations, and take the initial refer-
ence trajectory ηjt,1 to be the draw of maximum likelihood,
or equivalently that with minimum sum of square prediction
errors. The details are given in Alg. 2.

3) MISSING DATA, ARTIFACTS, AND NON-CONVERGENCE
As in any Kalman filter application, instances of missing
observations are easily handled by skipping the filter step and
propagating the predictions forward. Real EEG data are often
corrupted by brief artifacts. These can be handled in off-line
analyses by detection and exclusion prior to filtering, treat-
ing the corresponding time points as missing data. It would
further be possible to incorporate the detection of artifacts in
on-line fashion at the expense of increased computation time.
At each time, prior to the combo selection, the filter estimates
of all combos are compared to the prediction estimates. If a
prediction estimate is of greater likelihood than all filter
estimates, then the current observation is treated similarly to
being an artifact. The corresponding combo is selected and
its prediction estimates retained as the filter updates. This
is a further safeguard against missed artifacts and iterative
divergence and is indicated in Alg. 4.

G. ALTERNATIVE FILTER ESTIMATES
To evaluate the relative importance of the draws and iterations
in improving performance, we compare the performance of
the above method, referred to as IEKF-d, with that of several
other related methods. The basic EKF is obtained by omitting
the prediction draws and only performing the first filter-
ing iteration. An EKF with improved reference trajectory,
referred to as EKF-d, is obtained by utilizing the draws while
only applying the single iteration. The standard IEKF uses
iterations without drawing the initial reference trajectory.

We also evaluate the possibility of using higher-order
terms in the filtering to improve the quality of the esti-
mates. The iterations in the filtering step of the IEKF can
be viewed as a mode optimization via Newton-Raphson with
the 2nd-derivatives set to zero. We implemented a version
of the IEKF that uses the Hessian in the iteration steps to
evaluate whether its inclusion improved the estimates. This
method was tested both without particle draws, referred to
as IEKF-2, and with particle draws, referred to as IEKF-2d.
We also implemented a Gaussian 2nd-order EKF, referred to
as EKF-2o, following [48]. Lastly, we tested whether select-
ing the draw of maximum posterior filter density, referred to
as IEKF-dm, as opposed to maximum likelihood, improved
convergence. The filter update equations of these variant
methods are detailed in the algorithms in Appendix E. The
updates for IEKF-2/IEKF-2d are given in Alg. 7. The updates
for the EKF-2o are given in Alg. 8. The maximum posterior
selection of reference trajectory is included in Alg. 6. All
methods share the common filtering steps of Alg. 1.
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The set of methods compared are thus:

1) Basic EKF—no prediction draws, single filter update
(i.e., one iteration).

2) EKF with draws and one iteration.
3) Standard IEKF—no draws, 10 iterations.
4) IEKF with draws and 10 iterations.
5) IEKF with 2nd-derivative and no draws.
6) IEKF with 2nd-derivative and draws.
7) 2nd-order EKF—no draws, single filter update.
8) EKF with draws evaluated at posterior.

H. SIMULATED DATA
We compared the performance of the variant methods by
applying them to two types of simulated data with variable
number of peaks present. Every simulation features a set of 1
to 5 peaks on an exponential-decay background. The param-
eters of all peaks, including the background, vary in time.
The non-background peaks also turn on and off probabilisti-
cally. The first simulation type is nearly within the generative
model class, with the parameters following hard-bounded
random walks. The second simulation type is well outside
with underlying model class, with the parameters following
pseudo-deterministic patterns, including sines, saw-tooths,
and steps, of varying periods. One thousand simulations were
generated for each simulation type and number of peaks. Each
simulation consists of 100 time points and 300 frequency
bins, covering a frequency range of 0–100 Hz.

The simulated frequency range was randomly divided
into non-overlapping frequency intervals that serve as the
frequency bounds of each non-background peak. Each
non-background peak is randomly assigned a peak-type as
gamma (25%), Gaussian (50%), or box (25%), where the
number of harmonics for each Gaussian is determined by
the upper bound of its frequency. All amplitudes were bound
between 4 and 20. Bandwidth bounds for each peak had a
minimum of 3 and a maximum determined by the width of
the frequency bounds. See the available code for the complete
list of parameter bounds and other simulation details.

I. STATISTICAL MEASURES
The performance of the variant filters when applied to the
simulated data was assessed by a set of statistical measures,
chosen to evaluate 1. the model fit to the observed spec-
trogram, 2. the accuracy of the state estimates, and 3. the
ability to correctly determine the On/Off-peaks. The model
fit to the spectrogram is assessed by three measures computed
from the filter observation errors, εt|t = yt − hĵt|t (x̂t|t ). The
mean observation error measures any bias in the model fit.
The mean-square of the observation errors reflect the size of
the residuals. The Box Q statistic of the observation errors
measures two-dimensional correlations in the residuals, cap-
turing aspects of non-whiteness. The mean and mean-square
are computed over all time steps and frequency bins, but
the Box Q is computed for windows over 4 time lags and
±4 frequency bins.

The accuracy of estimating the underlying state was
assessed by two measures. The mean-square of the state
errors, averaged over state variables only for times when
the respective parameters are truly On, measures the accu-
racy of the specific filter estimates. The probability of the
true state values lying within the 95%-filter interval of the
state, averaged over state variables for all times, measures
the more general reliability of filter density in capturing the
state. The ability to identify On/Off-peaks is measured by
computing the probability of correct On/Off-determination
averaged over all peaks at all times.

Several alternatives to the above measures were also com-
puted to support the robustness of the findings. Themaximum
of the absolute value of the observations errors provides an
alternative measure of the size of the residuals. An alternative
assessment of the correlations between observation errors is
provided by a Wald statistic of the instantaneous correlations
across frequency bins (up to 4 neighbors) and the Moran’s
I statistic over 31t × 41ω windows. The Cohen’s kappa of
the On/Off-combo estimation is an alternative measure of the
ability to identify On/Off-peaks.

The last statistic computed was the run time of the filter
estimates. We computed each statistic for each filter estimate
of each simulation, and compared the distributions (over
simulations) of these statistics to evaluate the relative perfor-
mance of the various forms of the filter. See the available code
for the specific computations of the statistics.

J. EXPERIMENTAL DATA: EEG OF SLEEP ONSET
We applied the IEKF-d (and, for comparison, the basic EKF)
to sleep EEG data from a single subject from a study pre-
viously presented in [50]. We analyzed a single occipital
channel (O2) recorded during the second night. The data
were recorded at 500 Hz and downsampled to 200 Hz. The
analysis was limited to ∼55 minutes covering the sleep
onset process. The multitaper spectrogram was computed
using 15-second windows with a 7-second slide, a time-
half-bandwidth product of 15 with 29 tapers, and with lin-
ear detrending, resulting in 2049 frequency bins of width
0.0488 Hz. The frequencies of the observed spectrogram
were subselected to improve the filter performance. Between
35 Hz and 55 Hz, every 5th frequency bin was retained,
and between 55 Hz and 65 Hz, every 2nd bin was retained.
The state-space model used in the IEKF-d comprised an
exponential-decay background, a gamma slow-oscillation
peak, a gamma delta-theta peak, a Gaussianwith two harmon-
ics for the alpha peak, a Gaussian sigma peak, and a box peak
for the 60 Hz line noise. The details of the model are given in
Appendix F.
The observation noises are independent (i.e., R is diagonal)

with Rii = 0.5, except for frequency bins between 55 and
65 Hz, where Rii = 3. The peak parameter bounds, diagonal
state noise covariance Q, initial state x̂0, and diagonal initial
state covariance P0 are given in Table 1 in Appendix F. The
initial state values for the background parameters, a0, r0, and
o0, are determined by an iterative nonlinear fit to the first
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20 time points of data. (See supplemental code for details.)
The available On/Off-peak combos, J , and initial combo
probabilities, α0, are given in Table 2 in Appendix F. The
combo transitionmatrix8 is formed via Alg. 5 inAppendix C
with pon = 0.2, poff = 0.3, and pstay = 0.8.

The model and its hyperparameters were chosen, largely
by trial-and-error, specifically for the example subject and
channel. However, in addition to the temporal dynamics,
the spectral content of sleep EEG displays spatial variations
across the scalp, vast inter-subject heterogeneity, and dra-
matic changes due to age and pathology. These variations can
deviate widely from the classically defined oscillations and
are just beginning to be explored.

The example subject was chosen because their oscilla-
tory activity hews closely to the traditional peak definitions.
An occipital channel was used because it most prominently
displays the eyes-closed alpha oscillation indicative of wake
and, hence, is where sleep onset is most easily observed.
And the second-night data was used because the first night
of sleep studies is for acclimation of the subjects to the study
environment.

To further test the robustness of the approach, we applied
the IEKF-d, using the same model and hyperparameters,
to second-night, O2-channel data for the remaining subjects
from the dataset. The results of three of the additional sub-
jects are presented in the Supplemental for comparison. The
purpose of this comparison is not a full exploration of the
dynamics and variations of sleep EEG oscillatory activity,
which is outside the scope of this paper, but to demonstrate
the utility of the proposed approach towards addressing such
questions.

III. RESULTS
We evaluated the performance of the proposed IEKF with
draws (IEKF-d) by applying it to two types of simulated
datasets, hard-bounded random walks from (nearly) within
the underlying model class and pseudo-deterministic patterns
from outside the underlying model class. We assessed the
performance by a set of statistical measures and compared
the performance to that of a set of related, variant methods.
We then applied the IEKF with draws to real EEG data of the
sleep onset process.

A. SIMULATED DATA
The results for the random-walk simulations are given in
Appendix G. Fig. 6 shows the IEKF-d estimates for a single
simulation of three peaks on an exponential-decay back-
ground. Fig. 7 shows the distributions of the main statis-
tical measures across the simulations for the eight variant
filters. And Fig. 8 shows the distributions of the additional
statistical measures, including the computation times. Asmay
be expected when the simulations are essentially within the
underlying model class, the filter performance is exceptional,
particularly for filters utilizing draws, with almost universally
correct determination of On/Off-peaks and completely white
observation residuals.

Because the in-class scenario of these simulations is sim-
pler, and because the near-perfect performance impairs finer
comparisons of the statistical measures, we forgo further
detail of the random-walk results and move to fully elabo-
rate the results of the more challenging pseudo-deterministic
simulations. The same patterns of relative filter performance
are seen in the statistical measure distributions for both the
random-walk and pseudo-deterministic simulations.

Fig. 1 shows the results for a single pseudo-deterministic
simulation with three peaks on an exponential-decay
background—the true simulated spectrogram Fig. 1(A),
the spectrogram estimated from the IEKF with draws
Fig. 1(B), the residuals Fig. 1(C), and the true and estimated
On-peaks Fig. 1(D). Qualitatively, we see the excellent agree-
ment between the true and estimated spectrograms, as well
as the overall whiteness of the residuals. The agreement
between the true and estimated spectrograms requires, not
simply accurate estimation of the peak parameters, but correct
determination of the combination of On/Off-peaks, which
is indeed seen in Fig. 1(D). The true and estimated peak
parameters are shown in Figs. 1(H)–1(G), where the estimates
(dark colored lines) track the true values (solid black lines)
very well, with the true states almost always within the 95%-
confidence interval (colored regions). The points of discrep-
ancy primarily occur when a peak is off (dashed black lines)
and, as would be expected, the estimates revert toward the
center of the bounds while the uncertainties grow. When the
peak turns back on, the estimate and its uncertainty collapse
to the true value.

Fig. 2 shows the distributions of the statistics com-
puted for the variant methods applied to the sets of 1000
pseudo-deterministic simulations with 1–5 peaks on an expo-
nential background. In general, we find the IEKF with draws
produces the best fits by each statistic of all the methods
tested. We find that the draws are more important than the
iterations at improving the quality of the estimation, with
all methods utilizing draws producing smaller, whiter errors
than those without. The iterations do improve the estimation,
even for methods utilizing draws, though less dramatically,
so due to the added computation time, in applications where
time is critical, the EKF with draws may be preferable.
The methods utilizing 2nd-derivatives actually showedmixed
improvements/degradations in performance.

The distributions of the mean residuals are shown in
Fig. 2(A.i). Nearly all methods appear zero-mean, with the
exception of the basic EKF and EKF-2o, which appear to
be negatively biased, likely due to the modeling discrepancy
of the 0.9 factor in the state transition F and the absence of
compensatory draws or iterations. In Fig. 2(A.ii), the dis-
tributions of the MSEs reveal the draws of the reference
trajectory greatly improve the quality of the estimates. Each
filter with draws shows MSE distributions shifted towards
zero and with smaller variance relative to the analogous
filter without draws, i.e., MSEs of the IEKF with draws are
consistently smaller than those of the IEKF without draws.
Comparison of the MSE distributions for filters without and
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FIGURE 1. Pseudo-deterministic example. (A) Simulated spectrogram of three peaks—one Gaussian with harmonics, one gamma, and one
exponential-box—on an exponential-decay background, with peak parameters following pseudo-deterministic patterns. (B) Filter estimate of the
spectrogram obtained from IEKF-d. (C) Residual spectrogram, i.e., the difference between the spectrogram and the filter estimate. (D) Indicators of true
On-peaks (black lines) and estimated On-peaks (colored lines). (E)–(H) IEKF-d filter state estimates of peak parameters. True parameter values are shown
in black (solid when peak is On, dashed when peak is Off). Filter estimates and the 95%-confidence intervals are indicated by the colored lines and
regions.
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FIGURE 2. Statistical measures of filter performances when applied to 5000 simulated spectrograms of 1–5 peaks on an exponential-decay background
with parameters varying pseudo-deterministically. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 (purple), IEKF-2d (orange), EKF-2o
(teal), IEKF-dm (magenta). (A.i) Mean (over time and frequency) of the filter residuals. Most of the filters appear zero-mean, as expected. The exceptions
are the EKF and EKF-2o, which do not utilize draws or iterations and show a slight negative bias, likely due to the ‘‘model mis-specification’’ of the
0.9 state transition factor. It is also clear the draws greatly reduce the variance of the filter residuals. (A.ii) Logarithm of the mean (over time and
frequency) of the square filter residuals. Again, the draws alone produce a greater reduction in residual variance than the iterations alone (e.g., EKF-d vs.
IEKF), but the iterations do add further improvement (e.g., IEKF-d vs. EKF-d). This same pattern of relative performance is also apparent in the other
measures. (A.iii) Logarithm of the two-dimensional Box Q statistic of the filter residuals. (B.i) Logarithm of the mean (over time and peak parameters) of
the filter state errors, restricted to times when the respective peaks are On. (B.ii) Probability of the true state values lying within the 95%-confidence
interval of the filter state estimates. (B.iii) Probability of correctly determined On/Off-status of all peaks at all times.

with iterations—i.e., the EKF with draws and the IEKF with
draws, respectively—show the iterations also improve the
quality of the estimates, though to a lesser extent than the
draws. Further comparisons of EKF with EKF-2o and IEKF
with IEKF-2 show the 2nd-derivatives do slightly improve the
quality of the estimates without draws, but show negligible
improvement over the use of the draws, i.e., IEKF-d vs.
IEKF-2d. The same patterns are seen when the maximum
absolute value is used as the statistic, shown in Fig. 5(A) in
Appendix G.

The distributions of the Box Q statistic, shown in
Fig. 2(A.iii), capture two-dimensional correlations in the
residuals, a quantitative indicator of non-whiteness. As with
the MSE, the Box Q indicates that the draws substantially
improve the quality of the estimates, with the distributions

being shifted towards zero and of lower variance, while
the iterations provide some, but less, improvement. Again,
it appears the use of 2nd-derivatives may offer some improve-
ment in the whiteness of the residuals when draws are not
involved. The same patterns are seen when instantaneous
correlations or Moran’s I are used as the statistic, shown in
Fig. 5(B) and 5(C), respectively, in Appendix G.

A similar pattern of improvements is seen in the statistical
measures of the quality of the state estimates, the mean
square state error Fig. 2(B.i), the probability of the true state
falling within the 95% confidence estimate Fig. 2(B.ii), and
the probability of estimating the On/Off-status of the peaks
Fig. 2(B.iii). The slight exception is that the use of second
derivatives in the IEKF, i.e., IEKF-2 and IEKF-2d, appears
to slightly worsen the state estimates. The same pattern is
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FIGURE 3. Sleep onset process. (A) and (B) Hypnogram and multitaper spectrogram, respectively, of occipital EEG recorded during the transition from
wake to sleep. The eyes-closed wake-alpha peak (∼10 Hz) and its two harmonics are initially present before disappearing at around 3750 seconds at the
transition to sleep. At that point the slow (< 1.5 Hz) and delta-theta (1.5–8 Hz) power increase, indicative of NREM sleep. The transient increases of
sigma (∼14 Hz) power, suggestive of sleep spindles, also occur for the remainder of the spectrogram time. (C) Filter estimate of the spectrogram obtained
from IEKF-d, using a model with an exponential-decay background, a gamma slow peak, a gamma delta-theta peak, a Gaussian-with-two-harmonics
alpha peak, and a box 60 Hz peak. (D) Residual spectrogram, i.e., the difference between the spectrogram and the filter estimate. (E) Indicators of
estimated On-peaks.

seen when the accuracy of the On/Off-combo determination
is assessed by Cohen’s kappa, which is shown in Fig. 5(D) in
Appendix G.

The distributions of computation time are shown in
Fig. 5(E) in Appendix G, where the draws are seen to be
somewhat computationally more expensive than the iter-
ations. Moreover, the evaluation of draws and selection
of reference trajectory based on the filter posterior mode
(EKF-dm) as opposed to the maximum likelihood (EKF-d),
shows nearly identical performance and computation time,
suggesting the filter posterior mode may be an equivalent and
more principled means of selecting the reference trajectory.

B. EEG DATA OF SLEEP ONSET
Fig. 3 shows the results of application of the IEKF-d to
occipital EEG recorded during the sleep onset process.
Figs. 3(A) and 3(B) shows the hyponogram (scored sleep
stages) and multitaper spectrogram of EEG data recorded
during the sleep onset process, respectively. The transition

from wake to NREM is very apparent in the spectrogram,
as the alpha (8–12 Hz) oscillation, related to eyes-closed
wake, is initially present and disappears and the slow and
delta-theta (< 8 Hz) peaks, which are the hallmark of NREM
sleep, strengthen in power. This transition is also indicated by
the scored stages. Fig. 3(C) shows the estimated spectrogram
obtained from the IEKF with draws, Fig. 3(D) shows the
residuals, and Fig. 3(E) shows the estimated On-peaks. Qual-
itatively, the estimated spectrogram is in excellent agreement
and the residuals appear white, while the estimated combos
are consistent with the scored stages.

The parameter estimates of each peak are shown in
Fig. 4. These estimates further indicate the appropriateness
of the decomposition of the spectrogram into the relevant
peak oscillations, with the estimated alpha amplitude clearly
decreasing before the peak disappears at sleep onset, when the
delta-theta peak appears and its amplitude begins increasing.
These distinct spectral power changes would be conflated
in traditional bandpass analysis of alpha amplitude, as the
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FIGURE 4. Sleep onset process—estimated parameters. (A) Slow gamma peak. (B) Delta-theta gamma peak. (C) Alpha Gaussian peak with two
harmonics. (C) Sigma Gaussian peak without harmonics. (D) 60 Hz box peak. (E) Exponential-decay background. Filter estimates and the 95%-confidence
intervals are indicated by the colored lines and regions. Grey bars indicate when each peak was estimated to be On.

increasing delta-theta power leaks into the alpha band fol-
lowing sleep onset. Our proposed method not only produces
‘‘cleaner’’ estimates, but, crucially, the direct interpretability
of the parameter estimates allows separation of overlapping
peaks.

For comparison, the results of applying the basic EKF to
the same data are shown in Fig. S1 in the Supplemental.

The performance is adequate but does show a few points of
impaired tracking, particularly near the quick transitions from
∼3800 s to ∼4200 s, and an extended period of large error,
where the filter was unable to recover following the artifact
at ∼5500 s.
Spectrograms and IEKF-d filter estimates for three addi-

tional subjects are shown in Fig. S2 in the Supplemental.
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These estimates were obtained using the same model and
hyperparameters as used for the main subject above. Despite
the model and hyperparameters not being tuned individually
to the additional subjects, the estimates fit the observed spec-
trograms fairly well.

However, we must stress there is a crucial difference
between obtaining passable spectrogram fits and obtaining
decompositions with appropriately interpretable parameter
estimates. The same model flexibility that enables quality fits
can produce estimates with ‘‘incorrect’’ peaks, usually due to
compensatory changes in parameters. For example, fitting a
neighboring alpha peak instead of an actual sigma, or using
a large, broad delta-theta to make up for a poor background.
Such errors are not present in the examples here, and the state
estimates are of reasonable interpretability. But in general,
judicious setting of hyperparameters, particularly the parame-
ter bounds, is vital to obtaining correctly interpretable results.

In fact, due to inter-subject heterogeneity in frequency
ranges, prominence, and even number of oscillations, one
should not expect the hyperparameter settings (nor even the
peak functions themselves) determined for one individual
to be appropriate for another. Similarly, intra-subject spatial
variation means one should not even expect the model to be
applicable to other channels from the same individual. The
main example subject was chosen because their observed
peaks adhere closely to the standard definitions. The addi-
tional subjects of the Supplemental show some deviations in
peak locations, particularly those of alpha and sigma, but not
substantial ones. In this case, the model and hyperparameters
are close enough that the fits are acceptable and the inter-
pretability of the decompositions are reasonable as well. But
in general, the hyperparameters, and even the model itself,
should be uniquely optimized for each dataset.

The full analyses of this variability is, indeed, the moti-
vation and long-term objective of our future work, but is
well beyond the immediate scope of this presentation. Here,
we have stressed the criticality of these settings in obtaining
interpretable spectrogram decompositions and interpretable
peak parameter estimates.

IV. DISCUSSION
We have proposed and demonstrated a method to decompose
an EEG spectrogram into a set of traditionally recognized
oscillatory peaks that vary with time. The parameters of
the peak functions form the continuous-valued state of a
state-space model, while the combination of On/Off-peaks
form a discrete-switching state. The model is estimated using
a modified form of the IEKF that draws the initial refer-
ence trajectory and at each time step determines the discrete
On/Off-combo.

The simulation results show the method tracks both
the peak parameters and the On/Off-combo exceptionally
well, both within and without the model class. The result-
ing spectrogram estimates show white residuals with lit-
tle two-dimensional correlations. Comparisons with variant
methods reveal that the step of drawing the initial trajectory

for linearization is most responsible for the improvement in
the quality of the estimates over a basic EKF. The iterations
of the IEKF do add further improvement. The second order
EKF did generally improve the estimates over the basic EKF,
but less so than the draws or iterations. The use of the second
derivative in the iterations of the IEKF, slightly improved
the quality of the observation estimates, but at the expense
of slightly worse state estimates, and there is no noticeable
improvement when the draws are utilized.

Application of the method to an EEG spectrogram of
the sleep onset process found great agreement between
the observed and estimated spectrograms and estimated
On/Off-peak combos consistent with the transition fromwake
to NREM sleep.

A. ADVANTAGES OVER OTHER APPROACHES TO EEG
SPECTRAL ANALYSIS
Our method offers several advantages over standard EEG
analyses and other previously proposed methods. The
state-space estimation captures temporal changes lost in
time-averaged spectral estimates and, to some extent,
bandpassed amplitudes. Moreover, the temporal continu-
ity imposed, not present in windowed methods [9], [40],
allows for smoother estimates of time-varying properties.
Our expanded state-space model even includes discrete
On/Off-switching of spectral peaks, a feature not captured by
other state-space approaches [43]–[47]. The functional forms
of the peaks used in our method result in estimates that more
closely match the shapes of the spectral peaks observed in
the EEG than sinusoidal or AR(MA) model estimates [40],
[42]–[46].

Crucially, our peak functions are parameterized in terms
of variables directly interpretable as peak properties, such as
location, amplitude, bandwidth, and other shape parameters.
Coupled with the temporal continuity of the state-space, this
means observed changes in spectral power are interpretable as
well. This is particularly valuable in frequency ranges with
overlapping bands. Whereas traditional average power and
bandpassed amplitude estimates require a priori frequency
specification and cannot distinguish oscillatory power from
nearby oscillation leakage, our method allows separability of
adjacent peaks.

The resulting representation of the spectrogram is both
parsimonious and meaningful. Hundreds of frequency bin
estimates per time point covering the Nyquist range are cap-
tured by a couple dozen directly interpretable state variables.
Most importantly, our approach enables quantitative analyses
of the peak parameters and their dynamics. The joint uncer-
tainty estimates of the state variables obtained by the Kalman
filter allow inference over any peak parameters or related
quantities. Estimation of the state transition matrices is of
particular interest and, as discussed below, an aim of future
work.

More broadly, our approach offers a means towards more
fully capturing the variability of locations and shapes of
oscillatory peaks in sleep EEG spectrograms. Beyond the
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spatio-temporal dynamics, there is wide heterogeneity, across
subjects, in frequency location, and even number, of spectral
peaks. Only recently have analyses begun exploration of this
heterogeneity, and it is rarely addressed in analyses of sleep
dynamics and comparisons of clinical groups. Application of
the same peak definitions (i.e., frequency ranges) and other
criteria across subjects in such analyses can introduce con-
founds into the estimates and undermine comparisons. Our
approach, on the other hand, possesses an inherent flexibility
to analyze each subject and channel individually through the
setting of parameter bounds and other hyperparameters, and
even through selection of the number and type of peaks in the
model.

Fundamentally, the innovation of this work is the overall
structure of the approach. The specific model choice and
hyperparameter settings can, of course, be adapted to each
subject and channel. New parameterized peak functions can
be utilized, if needed. And any of the filter variants, or even
more advanced alternatives, can be employed for estima-
tion, depending on computational constraints. But the gen-
eral approach—of forming a low-dimensional, interpretably
parameterized representation of the spectrogram (or other
high-dimensional observations) with a state-space model and
estimating the model with a slightly modified EKF/IEKF—
provides a foundation for future sleep EEG analyses and
analogous applications in other fields.

B. ESTIMATION CHALLENGES AND IMPLEMENTATION
CHOICES
Several aspects of the proposed approach were required to
overcome unusual, challenging circumstances posed by the
problem. The primary difficulty is that faced by the direct
particle filter of [47]. Because of the large dimension of
the observations, using the likelihood for reweighting of
prediction samples results in immediate collapse to a single
particle. This challenge is similar to that faced in meteo-
rological and geoscience applications [51] with very large
dimensional states and observations. In such applications,
the state dynamics are typically complex and nonlinear, and
the finer details of the state density estimates of critical
import. In our present application, the state dynamics of our
current model are simple, linear, and the precise character-
ization of the state density are not of immediate necessity.
By forgoing a precise density, allowing some ‘‘extra uncer-
tainty’’ in a sense, and simply using the IEKF with sam-
pled reference trajectory and Gaussian assumption, we are
able to not only track the states, but still obtain very pre-
cise estimates. More sophisticated ensembling, sampling,
or reweighting schemes like those discussed in [51], [52],
or [53] may be workable, possibly offering more robust
estimates, but likely at the cost of increased computation
time.

In real data applications, we have found initialization and
setting of hyperparameters, particularly the peak parameter
bounds, are of great importance. We determined the settings
used here by trial and error, though, in principle, they could

be estimated by EM algorithm or sampling methods. These
settings were determined specifically for the main example
subject of Figs. 3 and 4 but applied to all subjects of the
dataset, including the additional examples shown in Fig. S2 of
the Supplemental, for which the estimated fits to the spec-
trograms appear decent. We re-iterate, however, that fitting
a spectrogram is not equivalent to obtaining a reasonable
decomposition, and the selection of an appropriate model
and its hyperparameters is crucial to obtaining the desired
decomposition with reasonably interpretable parameter esti-
mates. One should not expect the samemodel or hyperparam-
eters to be applicable across subjects or different channels
from the same subject, due to inter-subject heterogeneity
and intra-subject spatial variability. The full exploration of
this variation across subjects and across clinical groups is
the motivating objective of the current presentation but is
far beyond the scope of this work and the subject of future
analyses.

C. FUTURE IMPROVEMENTS, EXTENSIONS, AND
APPLICATIONS
Moving forward, the ultimate aim is, indeed, the exploration
and analysis of sleep dynamics and its variations across sub-
jects and clinical groups through application of the approach
to full-night EEGs of larger data sets, i.e., identification and
estimation of individual subject models and comparison of
the estimated states and governing dynamics. Identification
of hyperparameters will be critical in such endeavors, and the
imminent steps will focus on implementing methods (e.g.,
an EM algorithm) to systematically determine appropriate
values. Computation time is currently somewhat prohibitive
for such estimations, especially for a full night of sleep EEG.
Thoughwe havemade some efforts to reduce the computation
time, there are likely still opportunities for further improve-
ment, such as optimizing the parallelization and implement-
ing the filter in the information form. Alternatively, finding
a workable sampling or ensemble scheme, may also enable
simultaneous estimation of hyperparameters.

If the computation time is sufficiently improved, other
extensions and applications may become more practical. For
example, it may be possible to include time-varying state and
observation noise covariances in the model and estimate the
covariances adaptively. Or real-time processing and artifact
handling may be viable.

The approach we have proposed allows tracking and esti-
mation of a set of time-varying, parameterized peaks. While
the motivating application is to sleep EEG spectrograms,
and the specific parameterized observation functions were
chosen to capture the peak properties of primary interest in
the tracking of sleep dynamics, the approach may be useful
for other EEG applications (e.g., cross-channel coherograms)
or other properties of interest (e.g., phase or cross-frequency
coupling) through appropriately defined observation func-
tions. Similarly, other applications where high-dimensional
observations comprise a set of possible functions with
varying parameters of interest (e.g., spectrograms from
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MR spectroscopy or audio or speech signal processing) may
also be possible with properly chosen observation functions.

Sleep is a complex, dynamic process, and the underlying
neural activity presents in the EEG as characteristic oscilla-
tions that change over the course of the night. Our approach
provides a sparse representation of these spectral dynamics
and offers the potential to further model and analyze of the
governing dynamics. Future work will focus on estimation of
the parameter and combo transition matrices and the analysis
of the variability of the dynamics across nights, across indi-
viduals, and across different patient groups. Such analyses
would not only offer a better understanding of the sleep
process but possibly reveal diagnostic markers of pathologies
as well.

APPENDIX A
PEAK FUNCTIONS AND THEIR DERIVATIVES
GAUSSIAN PEAK WITH HARMONICS
The spectral peaks of many classically recognized oscilla-
tions can be represented by a simple Gaussian,

h(Gauss) (ω;F,A,B) = A exp

(
− (ω − F)2

2B

)
, (9)

with parameters for central frequency F , maximum ampli-
tude A, and bandwidth B.
Some oscillations, such as eyes-closed occipital alpha,

will exhibit harmonics in the spectral domain. We represent
this phenomenon by forming the peak at the fundamental
frequency and adding similar peaks of decreasing power at
subsequent harmonic frequencies.

For the case of a Gaussian peak, the fundamental and its
harmonics are of the form

h(Gauss)n = βnA exp

(
− (ω − (n+ 1)F)2

2B

)
, (10)

where the power decrease between subsequent harmonics is
a multiplicative fraction β ∈ [0, 1], such that βn is the power
of nth harmonic peak as a proportion of the power of the
fundamental. With N harmonics and n = 0 the fundamental,
the overall peak function is

h(Gauss) (ω;F,A,B, β) =
N∑
n=0

h(Gauss)n . (11)

The partial derivatives of the Gaussian peak with harmonics
w.r.t the parameters are

∂h(Gauss)

∂F
=

N∑
n=0

h(Gauss)n

[
(n+ 1) (ω − (n+ 1)F)

B

]
(12)

∂h(Gauss)

∂A
= h(Gauss)

[
A−1

]
(13)

∂h(Gauss)

∂B
=

N∑
n=0

h(Gauss)n

[
(ω − (n+ 1)F)2

2B2

]
(14)

∂h(Gauss)

∂β
=

N∑
n=1

h(Gauss)n

[
n
β

]
(15)

SHIFTED-GAMMA PEAK FUNCTION
Broadband peaks with asymmetric tails are observed in the
EEG spectrum, e.g., the low-frequency slow and delta oscil-
lations. Such peaks can be approximated in the form of a
gamma distribution,

h(0) (ω;α, β,O,A) = A
(
β (ω − O)
(α − 1)

)α−1
× exp{(−β (ω − O)+ (α − 1)},

whereα and β are the shape and rate parameters of the gamma
distribution, respectively, O is an additional frequency offset
parameter to translate the peak away from the origin, A is
the maximum amplitude, and the normalization is obtained
by evaluating the gamma distribution function at the mode,
(α − 1)/β. To avoid numerical overflow errors, the function
is computed as the log of the gamma distribution and then
exponentiated.

The α, β, and O parameters are not directly interpretable
in terms of the location and shape of the peak, but more
meaningful ones can be computed from them. We take the
frequency location F of the peak to be the location of the
mode of the shifted gamma distribution, F = (α − 1) /β+O,
the bandwidth B to be the variance of the gamma distribution,
B = α/β2, and the skewness S to be that of the gamma
distribution, S = 2/

√
α. Writing the α, β, and O parameters

in terms of the more meaningful parameters,

α =
4
S2
, β =

2

S
√
B
, and O = F −

2
√
B

S
+
S
√
B

2
,

we obtain a directly interpretable parameterization of the
shifted gamma peak h(0) (ω;F,A,B, S).

For ease of computation and derivation of the derivatives,
we implement the shifted gamma peak in terms of the original
parameters, (α, β, A, and O). The partial derivatives of the
peak function w.r.t. the parameters of interest (F , A, B, and
S) are obtained by the chain rule

∂h(0)

∂F
=
∂h(0)

∂O
∂O
∂F

= h(0)
[
− (α − 1)
ω − O

+ β

]
∂h(0)

∂A
= h(0)

[
A−1

]
∂h(0)

∂B
=
∂h(0)

∂β

∂β

∂B
+
∂h(0)

∂O
∂O
∂B

= h(0)
[
(ω − O) β3

2α
−
(α − 1) β2

α
+
(α − 1)2 β
2α (ω − O)

]
∂h(0)

∂S
=
∂h(0)

∂α

∂α

∂S
+
∂h(0)

∂β

∂β

∂S
+
∂h(0)

∂O
∂O
∂S

= h(0)
[
−α3/2 log

(
β (ω − O)
α − 1

)
+
√
α
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+
β
√
α (ω − O)

2
−

√
α
(
α2 − 1

)
2β (ω − O)

]

BOX-EXPONENTIAL PEAK FUNCTION
Increasing the order of the quadratic term in the expo-
nential of the Gaussian peak produces a more rectangular,
box-shaped peak,

h(box) (ω;F,A,B,P) = A exp

(
− (ω − F)P

2B

)
, (16)

where, as for the Gaussian, the parameters F , A, and B,
represent the central frequency, maximum amplitude, and
bandwidth, respectively. The order P is even and determines
the sharpness of the rectangularity of the peak. It is fixed and
not estimated. This peak closely approximates the spectral
peaks formed of machine-generated sources, such as 60 Hz
line noise. In the models of 60 Hz noise, we set P = 6. The
partial derivatives w.r.t to the parameters are

∂h(box)

∂F
= h(box)

[
P (ω − F)(P−1)

2B

]
(17)

∂h(box)

∂A
= h(box)

[
A−1

]
(18)

∂h(box)

∂B
= h(box)

[
(ω − F)P

2B2

]
(19)

EXPONENTIAL-DECAY FUNCTION
Wemodel background spectral activity using an exponential-
decay function,

h(decay) (ω; a, r, o) = a (1− r)ω + o,

where the parameters a, r , and o represent the power scal-
ing, decay rate, and baseline offset, respectively. The partial
derivatives w.r.t. the parameters are

∂h(decay)

∂a
= (1− r)ω

∂h(decay)

∂r
= −ωa (1− r)ω−1

∂h(decay)

∂o
= 1

APPENDIX B
LINK FUNCTIONS AND THEIR DERIVATIVES
Some of the peak parameters are mathematically restricted
to a certain range of values, e.g., greater than zero.
Additionally, it often improves estimation, enhancing the
consistency and interpretability of the peaks, to place
physiologically-principled bounds on some parameters. We
use link functions to impose these restrictions.

ONE-SIDED EXPONENTIAL FUNCTION
A one-sided exponential link function,

lexp(x; s, o) = s exp(x)+ o, (20)

Algorithm 5: comboTransitionMatrix
Data: I, J , pon, poff, pstay
Result: 8
for i ∈ J do

for j 6= i ∈ J do
8j,i← 1
for k ∈ I do

if k ∈ I (j) & k /∈ I (i) then
8j,i← pon ·8j,i

else if k /∈ I (j) & k /∈ I (i) then
8j,i← (1− pon) ·8j,i

else if k /∈ I (j) & k ∈ I (i) then
8j,i← poff ·8j,i

else
8j,i← (1− poff) ·8j,i

end
end

end
8·,i←

(
1− pstay

)
·8·,i/

∑
j6=i8j,i

8i,i← pstay
end

Algorithm 6: referenceTrajectory—Max Filter Posterior

Data: x̂t|t−1, Pt|t−1, Nd , j, yt , hj, R
Result: ηjt,1
d j,1← x̂t|t−1
εj,1← yt − hj

(
d j,1

)
for i← 2 to Nd do

wj,i ∼ N
(
0,Pt|t−1

)
wj,i← only retain components relevant to j
d j,i← x̂t|t−1 + wj,i

εj,i← yt − hj
(
d j,i
)

end
i∗← argmini

(
εj,i
)T R−1εj,i +

(
wj,i

)T
P−1t|t−1w

j,i

η
j
t,1← d j,i

∗

restricts the value of a variable x to be strictly greater than or
less than a given offset value o, where the sign s ∈ {−1, 1}
determines the direction of the restriction. The first and sec-
ond derivatives are given by

dlexp
dx
=
d2lexp
dx2

= s exp(x). (21)

BOUNDED SIGMOID FUNCTION
A sigmoid link function,

lsig(x; a, b) = (b− a)
1

1+ exp (−x)
+ a, (22)

restricts the value of a variable x between upper and lower
asymptotic bounds, b and a, respectively. Denoting the stan-
dard sigmoid function by σ (x) = (1+ exp (−x))−1, the first
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Algorithm 7: filterUpdate—IEKF With 2nd Derivative

Data: x̂t|t−1, Pt|t−1, η
j
t,1, Niter, yt , hj, ∂xhj, ∂xxhj, R

Result: x̂ jt|t , P
j
t|t , LL

j
t

For ease of notation, ηk
.
= η

j
t,k and P

.
= Pt|t−1

for k ← 1 to Niter do
M ← ∂xhj (ηk)
∂xφ← MTR−1

[
yt − hj (ηk)

]
− P−1

[
ηk − x̂t|t−1

]
∂xxφ←−P−1 −MTR−1M +

∑
i
[
∂xxhj (ηk)

]
i

z← yt − hj (ηk)−M
[
x̂t|t−1 − ηk

]
ηk+1← ηk − [∂xxφ]−1 ∂φ

end
LLjt ←−

1
2 z
T
[
MPMT

+ R
]−1 z

−
1
2 ln det(MPM

T
+ R)− Ny

2 ln(2π )
x̂ jt|t ← ηNiter+1

M ← ∂xhj (ηiter+1)
∂xxφ←−P−1 −MTR−1M +

∑
i
[
∂xxhj (ηiter+1)

]
i

Pjt|t ←− [∂xxφ]−1

Algorithm 8: filterUpdate—2nd Order EKF

Data: x̂t|t−1, Pt|t−1, yt , hj, ∂xhj, ∂xxhj, R
Result: x̂ jt|t , P

j
t|t , LL

j
t

For ease of notation, η .
= x̂t|t−1 and P

.
= Pt|t−1

M ← ∂xhj (η)
2
.
= [�m], a Ny × 1 vector, where

2m←
∑Nx

k,l Pk,l
[
∂xkxlh

j
m (η)

]
�
.
=
[
�m,n

]
, a Ny × Ny matrix, where

�m,n←
∑Nx

k,l,p,q

[
∂xkxlh

j
m (η)

]
Pl,pPk,q

[
∂xpxqh

j
n (η)

]
YG← MPt|t−1MT

+ R+ 1
2�

z← yt − hj
(
x̂t|t−1

)
−

1
22

x̂ jt|t ← x̂t|t−1 + Pt|t−1MT
[
YG
]−1 z

Pjt|t ← Pt|t−1 − Pt|t−1MT
[
YG
]−1MPt|t−1

LLjt ←−
1
2 z
T
[
YG
]−1 z− 1

2 ln det(Y
G)− Ny

2 ln(2π)

derivative is

dlsig
dx
= (b− a) σ (x) (1− σ (x)) , (23)

while second derivative is

d2lsig
dx2

= (b− a)
[
σ (x)− 3σ 2 (x)+ 2σ 3 (x)

]
. (24)

APPENDIX C
TRANSITION MATRIX FOR COMBINATION OF
ON/Off-PEAKS
The transition matrix 8 for the On/Off-combo jt ∈ J with
probabilities αt can be any viable discrete transition matrix.
In principle, 8 could be estimated, but here we use a fixed
value. It is reasonable for the combo transition probabilities
to be related to the probabilities of individual peaks to turn
on and off, pon and poff. Additionally, it is helpful to be able

TABLE 1. Model and parameter bounds used for sleep EEG analysis.

TABLE 2. Available On/Off-peak combos, J , and initial combo
probabilities, α̂0, used for sleep EEG analysis.

to specify the overall degree of ‘‘stickiness’’ in the combos
pstay. So the diagonal elements of8 are set as pstay, while the
remaining probabilities are determined by pon and poff, but
normalized to equal 1 − pstay. Pseudo-code is given below.
For the filter estimates and the random walk simulations we
use values pon = 0.2, poff = 0.2, and pstay = 0.9.

APPENDIX D
ALTERNATIVE INITIAL REFERENCE TRAJECTORIES
Alg. 6 is the alternative initialization of the reference trajec-
tory, used in the IEKF-dm, that selects the draw of maxi-
mum filter posterior density. For those filter variants without
draws—the EKF, IEKF, and IEKF-2—the reference trajec-
tory is initialized by the direct assignment of the prediction
estimate. This is achieved in either Alg. 2 or 6 by setting
Nd = 1.

APPENDIX E
ALTERNATIVE FILTER UPDATES
The general filtering algorithm of the proposed approach is
given in Alg. 1 in Sec. II-F, along with the EKF/IEKF filter
updates in Alg. 3. Two alternative filter updates were were
also implemented and tested: an IEKF that treats the filter
step as a mode optimization utilizing the 2nd-derivatives,
with filter updates given in Alg. 7; and a 2nd-order EKF with
Gaussian approximation, following [48], with filter updates
given in Alg. 8.
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FIGURE 5. Additional statistical measures of filter performances when applied to 5000 simulated spectrograms of 1–5 peaks on an exponential-decay
background with parameters varying pseudo-deterministically. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 (purple), IEKF-2d
(orange), EKF-2o (teal), IEKF-dm (magenta). (A) Maximum (over time and frequency) of the absolute value of the filter residuals. This is an alternative to
mean-square as a measure of the variability of the residuals. (B) Logarithm of the Wald statistic of the cross-frequency correlations of the filter residuals.
(C) Moran’s I statistic of the two-dimensional correlations of the filter residuals. The Wald and Moran’s I statistics are alternatives to the Box Q as a
measure of correlations in the residuals. (D) Cohen’s kappa of estimates of the On/Off-combos. This is an alternative to the probability of correct
On/Off-peak determination as a measure of the accurate identification of On/Off-peak combos. (E) Computation time of filter estimates.

APPENDIX F
MODEL, PARAMETERS, BOUNDS, AND INITIALIZATIONS
FOR SLEEP EEG ANALYSIS
Table 1 details the model used for the analysis of real EEG
data from sleep onset. This includes the peaks, their type,
whether they are allowed to dynamically switch on and

off (Dyn.), their parameters (Param.), the parameter bounds
(Min and Max), the parameter state variances (Q), and the
initial parameter expected values (x̂0) and variances (P0).
Table 2 lists the set of available On/Off-peak combinations,
indicates their approximate sleep stage representation, and
specifies the initial On/Off-combo probabilities (α̂0).
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FIGURE 6. Random walk example. (A) Simulated spectrogram of three peaks—two Gaussian (one with harmonics) and one gamma—on an
exponential-decay background, with peak parameters following hard-bound random walks. (B) Filter estimate of the spectrogram obtained from IEKF-d.
(C) Residual spectrogram, i.e., the difference between the spectrogram and the filter estimate. (D) Indicators of true On-peaks (black lines) and estimated
On-peaks (colored lines). (E)–(H) IEKF-d filter state estimates of peak parameters. True parameter values are shown in black (solid when peak is On,
dashed when peak is Off). Filter estimates and the 95%-confidence intervals are indicated by the colored lines and regions.
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FIGURE 7. Statistical measures of filter performances when applied to 5000 simulated spectrograms of 1–5 peaks on an exponential-decay background
with parameters following random walks. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 (purple), IEKF-2d (orange), EKF-2o (teal),
IEKF-dm (magenta). (A.i) Mean (over time and frequency) of the filter residuals. Most of the filters appear zero-mean, as expected. The exceptions are the
EKF and EKF-2o, which do not utilize draws or iterations and show a slight negative bias, likely due to the ‘‘model mis-specification’’ of the 0.9 state
transition factor. It is also clear the draws greatly reduce the variance of the filter residuals. (A.ii) Logarithm of the mean (over time and frequency) of the
square filter residuals. Again, the draws alone produce a greater reduction in residual variance than the iterations alone (e.g., EKF-d vs. IEKF), but the
iterations do add further improvement (e.g., IEKF-d vs. EKF-d) (A.iii) Logarithm of the two-dimensional Box Q statistic of the filter residuals.
(B.i) Logarithm of the mean (over time and peak parameters) of the filter state errors, restricted to times when the respective peaks are On.
(B.ii) Probability of the true state values lying within the 95%-confidence interval of the filter state estimates. (B.iii) Probability of correctly determined
On/Off-status of all peaks at all times.

APPENDIX G
ADDITIONAL RESULTS AND FIGURES
This subsection contains additional results and figures.

Fig. 5 shows alternative statistical measures for the
filter estimates of the sets of pseudo-deterministic simu-
lations. Like the mean-square of the observation residu-
als in Fig. 2(A.ii), the maximum of the absolute values
in Fig. 5(A) is a measure of the extent of the variability
of the observation errors. Like the two-dimensional Box-Q
statistic of the observation residuals in Fig. 2(A.iii), the Wald
statistic of the instantaneous correlation across neighbor-
ing frequency bins in Fig. 5(B) and the Moran’s I statistic
in Fig. 5(C) are measures of correlations in the observa-
tion errors. And like the probability of correct On/Off-peak
identification in Fig. 2(B.iii), the Cohen’s kappa statistic of

the On/Off-combos selection in Fig. 5(D) is a measure of
successful determination of the discrete state.

The patterns of relative filter performance are compara-
ble to the analogous statistics, with the draws providing the
most improvement in estimation accuracy and the iterations
offering further improvement. The use of second derivatives
provides a small improvement in observation errors, but with
greater variability and somewhat worse performance on state
and combo estimation.

Fig. 6 shows the results for a single random walk simula-
tion with three peaks on an exponential-decay background—
the true simulated spectrogram Fig. 6(A), the spectrogram
estimated from the IEKF with draws Fig. 6(B), the resid-
uals Fig. 6(C), the true and estimated On-peaks Fig. 6(D).
Because the simulation is nearly within the underlying
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FIGURE 8. Additional statistical measures of filter performances when applied to 5000 simulated spectrograms of 1–5 peaks on an exponential-decay
background with parameters following a random walk. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 (purple), IEKF-2d (orange),
EKF-2o (teal), IEKF-dm (magenta). (A) Maximum (over time and frequency) of the absolute value of the filter residuals. This is an alternative to
mean-square as a measure of the variability of the residuals. (B) Logarithm of the Wald statistic of the cross-frequency correlations of the filter residuals.
(C) Moran’s I statistic of the two-dimensional correlations of the filter residuals. The Wald and Moran’s I statistics are alternatives to the Box Q as a
measure of correlations in the residuals. (D) Cohen’s kappa of estimates of the On/Off-combos. This is an alternative to the probability of correct
On/Off-peak determination as a measure of the accurate identification of On/Off-peak combos. (E) Computation time of filter estimates.

model class, the performance is even better than for the
pseudo-deterministic simulation, with excellent agreement
between the true and estimated spectrograms, white resid-
uals, and the correct determination of the combination
of On/Off-peaks at each time. The true and estimated
peak parameters are shown in Figs. 6(H)–6(G), where the

estimated states (dark colored lines) track the true states (solid
black lines) almost exactly. The true states are almost always
within the very narrow 95%-confidence intervals (colored
regions), and the points of discrepancy occur when a peak
is off (dashed black lines) and the estimates revert toward the
center of the bounds.

218276 VOLUME 8, 2020



P. A. Stokes, M. J. Prerau: Estimation of Time-Varying Spectral Peaks and Decomposition of EEG Spectrograms

Figs. 7 and 8 show the statistical measures for the filter
estimates of the sets of randomwalk simulations. The patterns
of relative filter performance are comparable to those for the
pseudo-deterministic simulations, with the draws providing
the most improvement in estimation accuracy and the itera-
tions offering further improvement. The use of second deriva-
tives provides a small improvement in observation errors, but
with greater variability and somewhat worse performance on
state and combo estimation.
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