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ABSTRACT Smart home environments account to a major portion of the total energy consumption in
today’s world. The residents of smart home environments wish to find solutions that reduce the energy
costs along with providing an optimal indoor environment for the residents. Another significant aspect in
smart home systems is efficiency of tasks management and control commands’ execution for smart home
actuators. In this paper, we propose an optimal control solution for smart home environment based on smart
home energy optimization and control tasks’ load dispatching and scheduling. Optimal control is achieved
by first defining an objective function for minimizing energy cost which is implemented using VB-PSO
(velocity boost particle swarm optimization) algorithm. Next, the control tasks are generated using rule set
implemented in fuzzy logic; defined based on optimal values achieved fromVB-PSO.AMarkovmodel based
mechanism dispatches control tasks at scheduler, for efficient scheduling and optimal control. The results
show that the proposed optimization scheme saves up to 29.73% energy costs on average, in comparison to
baseline scheme. The proposed tasks’ load dispatching scheme of admission control, makes the job of load
balancing among the processors efficient while giving priority to the urgent tasks. The results for scheduler
evidently show the low dropping probabilities for urgent tasks along with showing 34.9% reduction in tasks’
starvation rate and 36.82% reduction in average tasks’ instances missing rates.

INDEX TERMS Optimal control, task scheduling, and smart home.

I. INTRODUCTION
An average household consumes 90 million BTUs of energy
yearly and a major chunk of this energy is wasted based
on survey conducted by U.S department of energy [1]. One
of the major reasons behind energy waste are lifestyle of
the residents of these households e.g. leaving the lights on
while exiting rooms, forgetting to turn off appliances after
use, keeping entertainment units on while no one is in room
etc., all these practices end in the wastage of energy. The
residential sector accounts to a major portion of the total
energy consumption. In the fig. 1, we can observe themonthly
energy consumption trends of the four major sectors such
as industrial, transportation, residential and commercial [2].
In residential sector, energy consumption distribution can
be seen at peak during the winter season. Hence, managing
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and optimizing the energy consumption based on peak and
off-peak strategies while also considering the variation in
energy costs based on time period is vital. Optimizing the
indoor smart home parameters in order to reduce energy con-
sumption; and maintaining the user comfort index inside the
smart home is one of the essentials in smart homes. A typical
smart home environment consists of sensor networks and
actuator networks. Sensing data from sensors is passed onto
the smart home system, where system performs optimization
mechanisms and makes actuator control decisions based on
the optimal values. The actuator control commands are then
sent to the actuator network where respective actuators are
controlled. The system involves two main types of tasks as
sensing tasks and control tasks. The efficient scheduling of
these tasks is also very significant for enhancing the smart
home’s system performance.

The main challenges for the energy management sys-
tems include collection of relevant data, forecasting energy
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FIGURE 1. Total energy consumption by end-use sector, monthly (unit: quadrillion Btu) [2].

consumption, reducing energy costs, continuous energy con-
sumption monitoring, maintaining user comfort index, envi-
ronmental conditions based rule design, smart control of
home appliances, and efficient scheduling [3], [4].

Recent years’ surveys [3]–[6] on energy consumption in
smart homes and smart buildings show that a lot of work has
been done in the field of energy consumption forecasting,
energy consumption optimization and energy consumption
scheduling. Based on the recent survey results, some of the
major limitations in the existing solutions are consideration of
efficient load scheduling algorithms with load balancing and
admission control measures, and optimal decision making in
order to prioritize existing appliances load.

In this paper, we propose a scheduling mechanism based
optimal control solution for smart homes. The proposed solu-
tion has two main phases. In the first phase, we design an
objective function for computing optimal energy consump-
tion for environment parameters of temperature and humidity.
The optimization algorithm used to implement our designed
objective function is VB-PSO. In the second phase, we focus
on presenting a solution for the above-mentioned limitations
of optimal decision making for optimal control, load prior-
itization, load balancing and admission control for efficient
load scheduling. A fuzzy logic-based solution is implemented
for optimal control decision making and generation of con-
trol tasks while a load dispatching algorithm using Markov
model is presented for load balancing, load prioritizing and
distributed load scheduling.

The rest of the paper is divided as followings.
Section 2 presents the literature review and comparisons;
section 3 presents the proposed scheduling based mechanism
for optimal control. In section 4, we provide the input tasks
modeling for simulations of the proposed system. Implemen-
tation environment is presented in section 5, results analysis
is presented in section 6 and section 7 concludes the paper.

II. RELATED WORKS
Han et al. propose a home energy consumption and gen-
eration management system [7]. The proposed architecture
monitors the smart home energy consumption of appliances

and lights; and monitors the energy generation of the renew-
able energies. The considered renewable energies are solar
and wind power. The system creates and profiles for energy
consumption and energy generation and decisions are made
based on the energy consumption to energy generation ratios.
A multi-objective energy-saving system for residential build-
ings based on simulated scenarios, aims to achieve a bal-
ance between the energy savings and user comfort based on
defined user constraints [8]. A multi-agent system consists
of multiple agents which interact with each other to make
decisions in a distributed way. In a smart home scenario,
the appliances are considered as agents which work together
in order to minimize the overall energy consumption and
maintain a balance between user comfort, energy cost and
energy savings [9].

An overview and survey of smart home energy manage-
ment systems (HEMS) is presented in [10]. The review
focuses on architecture and functionalities of HEMS, as well
as smart homes’ infrastructures, energy renewable resources
and energy utilization. Strategies on energy scheduling for
home appliances are also surveyed aiming at energy cost
reduction and efficiency.

An energy aware smart home control system aims to
reduce the packet loss due to the interventions triggered from
co-existence of wireless local area network and sensor net-
work. The system optimizes the energy consumption of smart
home appliances; and consideration of natural light source
while controlling the energy demand [11].

The work in [12] presents an approach based on dynamic
programming for optimal water heater control in smart home
by optimizing the heating schedules. The system aims at
reducing energy and maintaining heat levels to the users’
comfort. The work in [13], proposes a heuristic approach
for efficient home energy management controller to reduce
energy consumption and maximize the user comfort. A bat
algorithm and fuzzy logic-based energy consumption opti-
mization technique is proposed in [14], for user comfort
management in smart buildings. The work in [15] presents
an approach to optimize the energy consumption of house-
hold appliances based on retail electricity price. The work
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TABLE 1. Summary of approaches proposed in related works.

presented in [16], struggles to find a trade-off between
energy consumption cost and user comfort by implement-
ing a hybrid meta-heuristic optimization technique. In [17],
authors present a fusion of computational intelligence and
IoT resulting into intelligent IoT based system for optimizing
the smart homes’ residents’ comfort. The system studies
the users’ behavior and adjusts accordingly to improve user
comfort. The work in [18] presents a survey on narratives
of simple life, smart homes, smart homes comfort level
expectations and definitions and contradictions. The survey
aims to contribute towards better understanding of the current
market picture and the areas required to be focused in order
to optimize comfort level and save energy.

A comprehensive comparative analysis of optimization
techniques used in smart HEMS is presented in [19]. A com-
parison between mathematical optimization techniques and
heuristic optimization techniques is drawn with the conclu-
sion that both techniques have own advantages and limita-
tions. The suitable technique among the two can only be
decided based on the given scenarios and assumptions.

An integrated solution based onmulti-restricted scheduling
scheme and grey wolf optimization algorithm for scheduling
is presented in [20]. It aims at providing a cost-effective
energy management solution for smart home appliances.
An energy optimization solution for varying power cost sce-
narios is presented in [21]. An evolutionary algorithm for
demand response implementation is presented in [22]. The
solution balances load scheduling and optimizes energy con-
sumption. The work in [23] presents an integrated approach
smart HEMS based on the automated switching off system
for load balancing and a scheduling scheme for appliances.

The appliance scheduling scheme is based on least-slack time
while prioritizing user comfort. Another appliance schedul-
ing for optimal load balancing is proposed in [24], aiming to
reduce energy costs and managing peak load hours. The work
in [25] provides a literature survey for scheduling approaches
in the smart HEMS based on power demand, pricing strate-
gies for peak-periods and off-peak periods, electricity cost
reduction, peak-to-average ratio and maximizing user com-
fort index.

In previous studies, we have observed that many proposed
systems lack the understanding of real world smart home
settings; also most of related works do not consider the
combination of modules involved in the smart home func-
tionalities and the flow of workings from one module to
next, keeping in target the efficient output from the overall
systemwhen integrating the modules. Table 1 shows the sum-
mary of related works; highlighting the solutions involved
in the proposed approaches. The literature review summary
exposes that most of solutions focus on combination of
optimal energy consumption and scheduling, while some
also include load balancing. Whereas, not much attention is
paid, on designing approaches with strategies for admission
control and minimizing tasks starvation rates. While, refer-
ence [11] in Table 1 includes a limited tasks dropping rate
reduction strategy; still it does not consider varying loads
among different priority tasks. Ignoring the properties of load
balancing, admission control and efficient scheduling with
minimizing tasks starvation rates can result in poor execution
of HEMS. Carefully designed HEMS, with all aforemen-
tioned properties can adjust to any given loads with varying
priorities.
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Hence, in this work we present a system that aims to
schedule control tasks for optimal energy consumption of
actuators in smart home environments. The system targets to
bring an integrated solution which optimizes the energy con-
sumption, generates the optimal control tasks, performs the
load balancing and admission control on processors, and also
makes attempt for further efficient scheduling by allocating
any possible free resources to starving tasks.

III. PROPOSED MECHANISM FOR OPTIMAL CONTROL
In this section, we present the proposed scheduling based
mechanism for optimal control in smart home.

A. OPTIMIZATION MECHANISM
The optimization module takes current temperature, current
humidity, energy cost based on temperature and humidity
values, user desired temperature ranges and user desired
humidity range. The optimization module aims to find opti-
mal temperature and humidity values based on user desired
ranges and with an aim to minimize the energy cost (Fig. 2).

FIGURE 2. System flow for optimization process.

The aim of minimizing the energy cost with best possible
(optimal) temperature and humidity values is achieved by
first defining an objective function and then implementing the
objective function using an optimization algorithm. In sub-
section 1, we present the development of defined objective
function. In subsection 2 we present the optimization algo-
rithm used for deploying objective function.

1) OBJECTIVE FUNCTION
Now, we design the objective function for the optimization
process. The objective function is designed to minimize the
energy consumption with optimal temperature and humidity
values settings. For simplicity, we consider a simple smart
home model with 2 sensors and 4 actuators. The consid-
ered sensors are temperature and humidity. The considered
actuators are heater, chiller, humidifier, and dehumidifier.

TABLE 2. Parameter notations.

The objective function will take three types of parameters as
user desired parameters, current environment parameters and
optimal parameters. The table 2 shows the involved parame-
ters and used notations.

User set temperature is given in a range which speci-
fies user’s most desired temperature UPTMD to user’s least
desired temperature UPTLD. User set humidity is given in a
range which specifies user’s most desired humidity UPHMD
to user’s least desired humidity UPHLD. In the case of
multiple users, the system will calculate the average of all
the users’ desired ranges and set the values of UPTMD,
UPTLD, UPHMD and UPHLD based on the calculated aver-
ages. DLDCT and DLDCH are the calculated desire level
differences between the current and user most desired tem-
perature and humidity values in the given user parameters
value ranges of [UPTMD, UPTLD] and [UPHMD, UPHLD]
respectively ((1) and (2)). DLDCOST calculates the unit cost
of energy based on the temperature and humidity values at
the current iteration, during the optimization process (3).
The energy consumption savings at each iteration are calcu-
lated by finding the difference between the energy cost of
current set parameter values and the energy cost of desired
level difference set parameters (4). Once the optimization
algorithm has found the optimal parameters of temperature
and humidity then the final optimal energy consumption
savings are given (5). Similarly, the final optimal energy
consumption can be calculated using the found optimal
parameters (6).

DLDCT = |UPTMD − TC | TC ∈ [UPTMD,UPTLD]

(1)
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DLDCH = |UPHMD − HC | HC ∈ [UPTMD,UPTLD]

(2)

DLDCOST =
(
DLDCT ∗ Ecost_T

)
+
(
DLDHT ∗ Ecost_H

)
(3)

ECSO = [ECT + ECH ]− DLDCOST (4)

ECSO = [ECT + EHT ]− [
(
|UPTMD − TO| ∗ EcostT

)
+
(
|UPHMD − HO| ∗ EcostH

)
] (5)

EO =
(
TO ∗ EcostT

)
+
(
HO ∗ EcostH

)
(6)

2) OPTIMIZATION ALGORITHM
The optimal values of temperature and humidity are achieved
by deploying the above proposed objective function using
optimization algorithm of VB-PSO (Velocity Boost Particle
Swarm Optimization), which a variation of PSO algorithm.

In PSO, a particles’ population (typically between
12 to 20), with each particle having its current position
(present) and velocity (v), iterate the search space for opti-
mal solution. The aim of PSO particles is to find positions
(temperature and humidity values) that result in minimum
calculated energy cost. Within the given range. In PSO each
particle maintains local best (pbest) and global best (gbest),
where pbest is particles’ best values till current iteration and
gbest is the population’s best values till current iteration.

v = v+ c1× rand × (pbest − present)+ c2

× rand × (gbest − present) (7)

present = present + v (8)

Equation (7) and (8) are used to update the velocity and
position of particles in each iteration.Where, rand is a random
number generated between 0 and 1, and c1, c2 are the learning
factors; usually both c1 and c2 are kept 2.

In the VB-PSO, each particle’s performance is maintained
via a predefined threshold, and if no improvement in pbest of
the particle is observed then velocity of the particle is boosted
using a new inertia weight (equation (9)).

New Inertia Weight = c1+
Rand()

3
(9)

Once the global best values are found, the optimization
algorithm returns the optimal values for temperature and
humidity along with the calculated energy consumption using
objective function.

B. FUZZY CONTROL LOGIC
Once the optimal parameters of temperature and humidity
are found, then these optimal parameters are passed onto the
fuzzy control module as input. At fuzzy control module,
the fuzzy rules for chiller and heater are defined based on the
optimal temperature and fuzzy rules for humidifier and dehu-
midifier are defined based on optimal humidity.

The constraints associated with the fuzzy rules set are
given in the table 3. Where, Tc is current temperature, Tmin
is minimum temperature, Tmax is maximum temperature
and To is optimal temperature; and Hc is current humidity,

TABLE 3. Constraints for actuators actions.

Hmin is minimum humidity, Hmax is maximum humidity and
Ho is optimal humidity.
Fuzzy control module takes the optimal values as input

from optimizationmodule and it takes the current sensing val-
ues as input from smart home environment. It then defines the
antecedents and consequents for temperature and humidity
values. Next, it populates the membership functions. It then
defines the fuzzy rule sets of heating and cooling for tempera-
ture values and it defines the fuzzy rule sets of humidification
and dehumidification for humidity values. The fuzzy rules
sets are used to evaluate the fuzzy output for input values
(Fig. 3). There are four actuator actions to be performed in
the considered smart home environment scenario as chilling,
heating, humidification and dehumidification. The output of
fuzzy control module is control tasks, which represent the
triggered control commands for actuators.

FIGURE 3. Fuzzy control flow diagram.

A task is represented as {T-ID, AT, ET, D, P, PB/U, Val}
where T-ID is the unique identifier of task, AT is arrival time
of task, ET is execution time of task, D is deadline of the task,
P is period of the task, PB/U is priority bit or urgency factor
of the task, and Val defines the starvation threshold count for
the task.
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C. CONTROL TASKS SCHEDULING MECHANISM
In this subsection, we present the control tasks scheduling
mechanism. In fig. 4, we present the scheduling flow from
the control tasks generation module. The scheduling scheme
used is a combination of load balancing at processors, tasks
admission control at processors and UM (urgency measure)
function-based scheduling.

FIGURE 4. Scheduling scheme for tasks execution.

Tasks admission control is developed using one-
dimensional Markov chain model [26]. The tasks admission
control mechanism is presented in detail in next subsubsec-
tion. The UM function used is introduced in FEF (Fair Emer-
gency First) scheduling algorithm [27]. The FEF scheduling
algorithm is designed to maximize the machine resources
and minimize the tasks starvation rate. The primary focus
of FEF algorithm is to meet the tasks’ deadlines based on
their priorities; in parallel, saving the starving tasks by rightly
utilizing any free resources. The starving tasks can be defined
as any tasks which are in waiting state for a long period,
due to system priorities, load or unexpected events. We have
modified the FEF scheduling to current number of tasks types
and their priorities.

The control tasks are categorized into two types; urgent
control tasks and normal control tasks. The urgent control
tasks have high priority and should be executed as they arrive;
while normal control tasks have low priority as compared
to urgent control tasks. The scheduler selects the processor
for task dispatching based on the current tasks load among
processors and admission control thresholds. Then at each
processor, the tasks scheduling is performed using tasks prior-
ity while maintaining an effort to minimize tasks starving rate
by implementing UM function among urgent control tasks
and normal control tasks. UM function returns safe, if the
execution of starving task does not risk the safe execution of
urgent task, else it returns not safe.

1) LOAD BALANCING AND ADMISSION CONTROL
MECHANISM
In this subsubsection, we present the admission control mech-
anism aiming for load balancing and admission control of
tasks in the scheduling processor.

FIGURE 5. Load dispatching mechanism for admission control.

In fig. 5, we present the proposed load dispatching mecha-
nism for admission control, with aim of load balancing based
on system priorities. At first the tasks arrive at the system
module of task load dispatcher. The arriving tasks are mod-
eled and the task priority tags of normal sensing task (STN),
urgent control tasks (CTU) or normal control tasks (CTN)
are labeled. Next, all the existing processors are sorted based
on current tasks load at each processor. The dispatching unit
maintains four parameter states for each processor as shown
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TABLE 4. Processor parameters at dispatching unit.

in Table 4. The threshold for urgent control tasks is considered
as the total available capacity at the processor (CTOTAL).

The processing capacity reserved for a type of tasks can be
determined by calculating the difference between CTOTAL of
a processor and threshold value set for the said type of task.
We have two types of tasks at the system; normal tasks and
urgent tasks. Normal tasks include normal sensing task (STN)
and normal control tasks (CTN). Urgent tasks include urgent
control tasks (CTU).

A new arriving task is iterated through the available pro-
cessors list. For each processor iteration,

- If the task arrived is CTU and CUSED is less than the
TUC, then the task is accepted to be processed and
hence dispatched to the current processor. If CUSED is
greater or equal to TUC then the task is forwarded to the
next processor. We set TUCequal to CTOTAL.

- If the task arrived is STN or CTN and the CUSED is less
than the set value of TNC,then the task is accepted and
dispatched to the current processor; else it is blocked at
this processor and passed onto next processor.

The action of load dispatching, results in two responses;
normal tasks’ blocking and urgent tasks’ dropping. The sys-
tem will have two probabilities; probability for urgent tasks’
dropping rate (PUTD) and probability for normal tasks’ block-
ing rate (PNTB). Where, PUTD shows the dropping (missing)
rate of urgent tasks at the given system state and PNTB shows
the blocking rate of normal tasks at the given state.

At first, we consider a scenario where no admission control
for the tasks is implemented. The transition rates for the no

task admission control scheme are as follows:

q (i, i+ 1) = (CTU + CTN + STN )

× (TNC ≤ i < CTOTAL) (10)

q (i+ 1, i) = i+ 1

× (TNC ≤ i < CTOTAL) (11)

px =
(CTU+CTN+STN )x

x!∑CTOTAL
n=0

(CTU+CTN+STN )n

n!
× (0 ≤ x < CTOTAL) (12)

For the no task admission control scheme, the stable state
probabilities of PUTD and PNTB are thus obtained as:

PUTD = PNTB =
(CTU+CTN+STN )CTOTAL

CTOTAL !∑CTOTAL
n=0

(
CTU+CTN+STN

)n
n!

(13)

The transition rates for task admission control scheme for
load balancing while prioritizing the tasks is given as follows:

q (i, i+ 1) = (CTU + CTN + STN ) (0 ≤ i < TNC )

(14)

q (i+ 1, i) = i+ 1 (0 ≤ i < TNC ) (15)

q (i, i+ 1) = (CTU ) (TNC ≤ i < CTOTAL) (16)

q (i+ 1, i) = i+ 1 (TNC ≤ i < CTOTAL) (17)

Now, the steady state probabilities of PUTD and PNTB for
the admission control scheme can be expressed as follows,
(18)–(21), as shown at bottom of the page.

IV. INPUT TASK MODELING
In this section we present our smart home’s input tasks mod-
eling for simulated tasks dataset and the simulation setup.

The input tasks for simulated tasks dataset are generated
based on sensor values inputs and system thresholds to gen-
erate control tasks set to be simulated. The tasks generated
have initial parameters as tasks ID, arrival time, execution
time, and deadline and period. Next the system computes
the tasks parameters as start time and finish time based on
initially generated parameters. Table 5 shows the list of tasks
parameters generated for the tasks.

px =

(
CT

x−TNC
U

)
.(CTU+CTN+STN )

x

x!∑TNC
n=0

(
(CTU+CTN+STN )n

n!

)
+
∑CTOTAL

n=TNC+1

((
CT

n−TNC
U

)
.(CTU+CTN+STN )

TNC

n!

) (TNC ≤ i < CTOTAL) (18)

px =
(CTU+CTN+STN )x

x!∑TNC
n=0

(
(CTU+CTN+STN )n

n!

)
+
∑CTOTAL

n=TNC+1

((
CT

n−TNC
U

)
.(CTU+CTN+STN )

TNC

n!

) (0 ≤ i < TNC ) (19)

PUTD = pCTOTAL (20)

PNTD =
∑CTOTAL

x=TNC
pCTOTAL (21)
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TABLE 5. Generated task parameters list.

The execution time for sensing tasks is set to be 20 mil-
liseconds (ms) and the priority is set to be normal periodic
tasks. The execution time for all the control tasks is set to
be 520 milliseconds (ms) and the priorities for environmental
conditions control actuator (heater, chiller, humidifier, and
dehumidifier) are set to be either urgent control task or normal
control task (Table 6).

TABLE 6. List of tasks execution times and priority type for tasks.

V. IMPLEMENTATION ENVIRONMENT
We have used python for implementing the core pro-
gramming logic of the optimization, admission control
and task scheduling algorithms. Python is a very popular
general-purpose programming language; widely used for
developing desktop based and web-based applications. The
development environment for the system is shown in table 7.

TABLE 7. List development environment.

In order to simulate our testing scenarios, we have used
online available data of energy consumption, temperature and
humidity [28].

VI. PERFORMANCE ANALYSIS
In this section, we present the performance analysis for
energy costs optimization process; fuzzy logic member-
ship functions classification and control for temperature and
humidity; tasks’ admission control approach comparisons
with no admission control approach; and tasks starvation rate
and missing rates comparisons at the scheduler.

Fig. 6 shows the optimal energy cost for a scenario of
tuning humidity and temperature values using optimization
algorithm and objective function to strike a balance between
user desired range and total energy cost. Two actuators are
controlled to optimize the user desired settings; dehumidifier
and chiller. Fig. 6 shows the clear difference between the
energy costs for actuator control using fuzzy logic with no
optimization scheme in comparison to proposed optimization
scheme. We can observe 22.8371% energy savings in case of
dehumidifier control and 36.06648% energy savings in case
of chiller control.

FIGURE 6. Energy cost comparisons for with and without optimization
scheme.

Fig. 7 shows the energy optimization results for test run of
200 iterations. The test run iterations are performed based on
varying sensing values of input parameters. The optimization
with different sensing values’ scenarios shows an average
of 29.73% savings in energy costs.

We compare our proposed objective function’s VB-PSO
based implementation with GA (Genetic Algorithm) based
implementation, for energy optimization. We have selected
GA, as it is one of the most popular algorithms for energy
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FIGURE 7. Percentage of savings in energy costs from optimization.

optimization problems. The number of epochs taken to reach
optimal solution in PSO scheme are 94 whereas GA takes
131 epochs to reach optimal solution. The average energy
savings using PSO is 29.73% while using GA is 28.59%.
The average energy saving with PSO is 1.14% higher with
respect to GA. We can witness a major difference in number
of epochs required to get optimal solution, where PSO takes
37 less epochs in comparison to GA (Table 8).

TABLE 8. Optimization scheme comparisons.

Fig. 8 shows the custom membership function for tem-
perature and humidity with fuzzy logic. Fig. 8 (a) shows
the temperature membership function for the temperature
classification using fuzzy logic. The temperature is divided
into five classes as too-low, low, average, high and too-high.
Fig. 8 (b) shows the humidity membership function for the
humidity classification using fuzzy logic. The humidity is
divided into five classes as too-low, low, average, high and
too-high.

Fig. 9 shows the custom membership function for tem-
perature control and humidity control with fuzzy logic.
In fig. 9 (a), it can be observed that the temperature controls

FIGURE 8. Degree of membership for parameter classification (a) for
temperature; (b) for humidity.

are divided as cool temperature, no-change in temperature
and heat temperature. The black bar shows the final set tem-
perature with fuzzy logic after getting optimal parameter val-
ues. In fig. 9 (b), it can be observed that the humidity controls
are divided as decrease humidity, no-change in humidity and
increase humidity. The black bar shows the final set humidity
with fuzzy logic after getting optimal parameter values.

Fig. 10 and fig. 11 show the comparison between schedul-
ing approach with no admission control for tasks’ dispatching
to processor in comparison to scheduling scheme with admis-
sion control. The system states with no admission control are
presented from equation (10) to (12) while the system states
for proposed admission control are given from equation (13)
to (21) in section 3. The threshold for acceptance of normal
control tasks (TNC) is set to be 40with total capacity (CTOTAL)
of processor set as 50.

In fig. 10, the dropping probability of urgent tasks is
given with respect to varying rate of urgent tasks load at the
scheduler. We can observe that as the load of urgent tasks
at the scheduler increases, the dropping probability of urgent
tasks increases in both the approaches; as it is the worst case
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FIGURE 9. Degree of membership for control (a) for temperature; (b) for
humidity.

FIGURE 10. Dropping probability of urgent tasks w.r.t varying load of
urgent tasks.

scenario for the scheduler to handle. Still, we can also clearly
observe that the admission control approach gives almost
50% less dropping probability of the urgent tasks as compared
to the no admission control scheduling scheme.

FIGURE 11. Dropping probability of urgent tasks w.r.t varying load of
normal tasks.

In fig. 11, the dropping probability of urgent tasks is
given with respect to varying rate of normal tasks load at
the scheduler. In this scenario, as the load of normal tasks
is varying and the scheduler’s tasks dispatching unit has
set a threshold to spare enough slots for urgent tasks to be
processed for admission control, hence the dropping rate of
urgent tasks is very low for admission control scheme in
comparison to the no admission control.

Once the tasks are dispatched to the processors from sched-
uler’s tasks dispatching unit, next is aiming to minimize
any unnecessary starvation of a low priority task or missing
of a high priority task. At each processor FEF scheduling
algorithm calculates the urgency measure for the available
tasks and sends the alert if a slot to accommodate a starving
task or about to miss task can be managed; without missing
the deadline for any currently queued tasks. Table 9 shows
the average percentages for tasks starvation rates and the
tasks average missing rate at the scheduler for admission
control with UM (FEF) scheduling scheme in comparison to
admission control with baseline priority scheduling scheme.
In baseline priority scheduling scheme, the tasks are executed
based on priority set from dispatching unit; and urgency
measure from FEF scheduling algorithm is not calculated.
Task starvation rate is the percentage of tasks that are deprived
of processor time for long durations and tasks missing rate is
the percentage of tasks missing their deadline.

TABLE 9. Average tasks starvation rate and tasks missing rate.

VII. CONCLUSION
In this work, we have proposed an integrated solution for
smart home’s efficient control and task management based
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on optimization and scheduling techniques. The main con-
tributions of this work include the designed objective func-
tion for optimal energy consumption and development of
efficient scheduling scheme for optimal control of smart
home environments. The efficient scheduling scheme is based
on admission control, load balancing and reducing tasks’
starvation.

The proposed objective function aims for saving energy
costs by setting optimal parameters of temperature and
humidity. The optimal values for temperature and humidity
are then sent to fuzzy logic module where the fuzzy control
rules are generated based on the calculated optimal values
and the control tasks commands are generated at fuzzy logic
module. At scheduler, first the tasks are dispatched following
the load balancing and admission control strategy and then
at each processor UM based scheduling is performed for
minimizing tasks’ starvation.

It is evident from the results that the proposed optimization
scheme saves energy costs drastically as compared to baseline
scheme where no optimization is performed. We have run
200 iterations of optimization with different sensing val-
ues’ scenarios resulting in various combinations of actuators’
control and found an average of 29.73% savings in energy
costs. The proposed tasks dispatching scheme of admission
control usingMarkov model makes the task of load balancing
among the processors efficient while also giving priority to
the urgent tasks. It drastically reduces the dropping rate of
urgent tasks with better management of task load distribution.
The results for scheduler evidently show almost 50% less
dropping probabilities for urgent tasks along with the 34.9%
improvement in the tasks starvation rates and 36.82% in the
tasks missing rates.

The limitations of proposed admission control scheme for
scheduling include the probability of blocking more normal
tasks when the arriving load of urgent tasks is high. As,
system is set to prioritize the urgent tasks over normal tasks.
Also, in case of multi-user scenario, in this work our scope
is limited to consider the average ranges of user set require-
ments. In the future works, one important direction can be
learning of multi-user activity patterns and optimize based on
the user history.
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