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ABSTRACT Methodologies that utilize Deep Learning offer great potential for applications that automati-
cally attempt to generate captions or descriptions about images and video frames. Image and video captioning
are considered to be intellectually challenging problems in imaging science. The application domains include
automatic caption (or description) generation for images and videos for people who suffer from various
degrees of visual impairment; the automatic creation of metadata for images and videos (indexing) for use
by search engines; general-purpose robot vision systems; andmany others. Each of these application domains
can positively and significantly impact many other task-specific applications. This article is not meant to be
a comprehensive review of image captioning; rather, it is a concise review of both image captioning and
video captioning methodologies based on deep learning. This study treats both image and video captioning
by emphasizing the algorithmic overlap between the two.

INDEX TERMS Deep learning, image captioning, video captioning, long short term memory, generative
adversarial network.

I. INTRODUCTION
Image processing has played and will continue to play an
important role in science and industry. Its applications spread
to many areas, including visual recognition [1] and scene
understanding [2], to name a few. Before the advent of
Deep Learning, most researchers used imaging methods that
worked well on rigid objects in controlled environments
with specialized hardware [3]–[12]. In recent years, deep
learning-based convolutional neural networks have positively
and significantly impacted the field of image captioning
allowing a lot more flexibility. In this article, we attempt to
highlight recent advances in the field of image and video
captioning in the context of deep learning. Since 2012, many
researchers have participated in advancing the deep learning
model design [13], applications, and interpretation [14]. The
science and methodology behind deep learning have been in
existence for decades, but an increasing abundance of digital
data and the involvement of powerful GPUs have accelerated
the development of deep learning research in recent years.
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Convenient software development libraries such as Tensor-
Flow and PyTorch, the open-source community, large labeled
datasets like MSCOCO, Flicker, TACoS, LSMDC [15], [16],
and splendid demonstrations simulate and model the explo-
sive growth of the deep learning field.

Describing a scene in an image or a video clip is a highly
demanding task for humans. To create machines with this
capability, computer scientists have been exploring methods
to connect the science of understanding human language with
the science of automatic extraction and analysis of visual
information. Image captioning and video captioning need
more effort than image recognition, because of the additional
challenge of recognizing the objects and actions in the image
and creating a succinct meaningful sentence based on the
contents found. The advancement of this process opens up
enormous opportunities in many application domains in real
life, such as aid to people who suffer from various degrees of
visual impairment, self-driving vehicles, sign language trans-
lation, human-robot interaction, automatic video subtitling,
video surveillance, and more. This article surveys the state of
the art approaches with a focus on deep learning models for
image and video captioning. The models and the generated
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FIGURE 1. The Taxonomy of the reviewed papers in this research.

captions are evaluated by using BLEU, METEOR, CIDEr
[17]–[19], and other evaluation metrics.

This article is a concise review of both image and video
captioning methodologies based on deep learning, focusing
on the algorithmic overlap between the two. This review
begins by introducing the Image and Video Captioning in
Section II. Then, a few recent methods of Image and Video
Captioning, their Datasets, and evaluation metrics are dis-
cussed in Section III. Required Software and Hardware Plat-
forms for implementing relevant models are mentioned in
Section IV. Finally, a Case Study is presented in Section V.
In order to facilitate the discussions about image and video
captioning, we use the taxonomy shown in Figure 1. Figure 1
shows the conventional methods currently utilized in image
and video captioning as well as the corresponding and rele-
vant publications. In summary, the main contributions of this
article include, a concise review of both image captioning and
video captioning approaches based on deep learning. More
specifically, the contributions include:
• A concise review of different architectures used for
image and video captioning;

• The utilization of image captioning methods as build-
ing blocks to construct a video captioning system -
i.e., Treating image captioning as a repetitive subset of
video captioning;

• Review of hardware requirements and software frame-
works for implementing an image/video captioning
architecture;

• A novel application (case study) of video captioning,
namely, the automatic generation of "titles" for video
clips.

II. IMAGE AND VIDEO CAPTIONING
Many impressive studies have been done about image
captioning [20]–[23]. Image captioning is often regarded to
be the process of generating a concise description of objects
and/or information about the scenes in an image. Some exam-
ples (images and their corresponding captions) are shown
in Figure 2. Often, captions of images are generatedmanually.
Automating this process would be a significant contribution.
A system that automatically generates image captions can be
utilized in many applications. Examples include: enhancing
the accuracy of search engines; recognition and vision appli-
cations; enriching and creating new image datasets; enhanc-
ing the functionality of systems similar to Google Photos; and
enhancing the optical system analysis of self-driving vehicles.
In image captioning, the main challenges include the process
of extracting visual information from the picture and the pro-
cess of transforming this visual information into a proper and
meaningful language. Captioning research started with the
classical retrieval [20] and template-based [29] approaches in
which Subject, Verb, and Object are detected separately and
then joined using a sentence template. However, the advent of
Deep Learning and the tremendous advancements in Natural
Language Processing have equally and positively affected
the field of captioning. Hence, the latest approaches follow

VOLUME 8, 2020 218387



S. Amirian et al.: Automatic Image and Video Caption Generation With Deep Learning: A Concise Review and Algorithmic Overlap

FIGURE 2. Some examples of image captioning. Each caption describes
the image above it. These captions are generated with the model
presented in [71] and the images are taken by the authors.

deep learning-based architectures that encode the visual fea-
tures with Convolutional Neural Networks and decode with
a language-based model, which translates the features and
objects given with an image-based model to a meaning-
ful sentence. We dissect the image captioning process and
models in Section III.

Video description is the automatic generation of
meaningful sentences that describes the events in a video.
Many researchers present different models on video caption-
ing [24]–[28], mostly with limited success and many con-
straints. Video captioning can also be achieved by applying
image captioning methods to the video frames as images. The
advancement of video description opens up opportunities in
a wide range of applications like human-robot interaction,
automatic video subtitling, and video surveillance. Section III
provides a detailed discussion of the video captioning process
and recent models.

III. CAPTIONING METHODOLOGIES
Automatically generating natural language sentences describ-
ing an image or a video clip generally has two components:
Encoder and Decoder. Here we specifically explain the archi-
tecture of each part. The Encoder utilizes a convolutional
Neural Network, which extracts the objects and features from
an image or video frame. For the decoder, a neural network is
needed to generate a natural sentence based on the available
information.
Convolutional Neural Network: A model with a large

learning capacity to learn about thousands of objects from
a large number of images [14] is needed. Deep learning
presents computational models that are composed of multiple

FIGURE 3. Overall architecture of Convolutional Neural Network that
shows each Convolutional Block consists of n Convolutional layers and
each of these Convolutional layers is built up of convolutions with filters.

processing layers to learn representations of data in images
[13], [30]. Deep learning-based Convolutional Neural Net-
works plays a key role in many applications, one of which is
image recognition (See Figure 3). Image recognition is used
to perform a large number of visual tasks, such as understand-
ing the content of images. Several well-known models [13]
in the field of CNNs based on object detection [1], [31], [32]
and segmentation [33] exist that are heavily used in image
captioning and video captioning architecture to extract the
visual information.
Recurrent Neural Networks: Sequence models like recur-

rent neural network (RNN) [34] have widely been utilized
in speech recognition, natural language processing, and other
areas. Sequence models can address supervised learning
problems like machine translation [35], name entity recog-
nition, DNA sequence analysis, video activity recognition,
and sentiment classification. Gated recurrent unit (GRU) is
a gating mechanism in RNN, introduced by Cho et al. [35]
in 2014. The basic RNN algorithm runs into a vanishing
gradient problem (a difficulty in training artificial neural net-
works). The gated recurrent units are an effective solution for
addressing the vanishing gradient problem. They allow neural
networks to capture a much longer range dependencies [34].
The advantage of the GRU is that it is a simple model,
therefore it is easy to build a big network with GRU. Also,
it only has two gates, as a result, it computes quickly.
Long Short Term Memory: LSTM, as a special RNN

structure, has proven to be stable and powerful for mod-
eling long-range dependencies in various studies. LSTM
can be adopted as a building block for complex structures.
The complex unit in Long Short Term Memory is called a
memory cell. Each memory cell is built around a central
linear unit with a fixed self-connection [36]. LSTM is his-
torically proven more powerful and more effective than a
regular RNN since it has three gates (forget, update, and
output). Long Short TermMemory recurrent neural networks
can be used to generate complex sequences with long-range
structure [37], [38].
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FIGURE 4. The early attempts of image captioning as an active research area exploit the encoder-decoder architecture. A deep learning model encodes
the image into a feature vector. The language model takes the input vector to generate a sentence that describes the image, leading to promising results
for this task.

A. IMAGE CAPTIONING METHODOLOGIES
Many methods for image captioning are there. Earlier
methods, prior to deep neural networks (DNNs), were
retrieved-based [20] or template-based [29] models. Recent
methods are based on deep neural networks. Generating an
automatic caption for describing an image has two stages.
First, the information needs to be extracted from the image
and put it in a feature vector. This stage focuses on visual
recognition through deep learning models. Then the fea-
ture vector is fed into the second stage. The second stage
is caption generation which is describing what is extracted
in a grammatically correct natural language sentence
(See Figure 4). So, we classified DNN-based methods based
on the main framework into subcategories that they respec-
tively use. Here, a review of recent deep learning-basedworks
for automatic image captioning is discussed. All are summa-
rized with more details about the evaluation results in Table 2.

A breakthrough in image and video captioning occurred
in 2014 through the application of encoder-decoder models.
Kiros et al. [37] introduced an encoder-decoder pipeline
model in which an encoder network takes the image or video
as an input and extracts a fixed-size feature vector that a
decoder network maps to a sequence of words. They set new
best results when using the 19-layer Oxford convolutional
network. Then, a series of innovations such as attention
mechanism have been introduced to boost image caption-
ing by encouraging more interactions between the two dif-
ferent modalities. They were developing an attention-based
model that jointly learns to align parts of captions to images.
The generated descriptions are arguably the nicest ones to
date [37]. The attention model is one of the models used
in deep learning that got from one of the most curious
facets of the human visual system. The attention-based model
learns to focus on different parts of the image. This is cru-
cial when much clutter is in an image. However, this may
cause losing information which could be useful for richer
and more descriptive captions. Xu et al. [17] proposed the
attention-based approach that gives the state of the art per-
formance on three benchmark datasets using the BLEU and
METEOR metric (See section III-C). They showed how the
learned attention can be exploited to give more interpretabil-
ity to the model generation process and demonstrate that
the learned alignments correspond well to human intuition.

Their model encourages future work in using visual attention.
Next, You et al. [21] proposed a model of semantic attention
that learns to selectively focus on the semantic attributes in
the image. The algorithm combines top-down and bottom-up
strategies to extract richer information from the image and
fuses them with an RNN that can selectively attend on rich
semantic attributes detected from the image. They performed
their method on different datasets, and the captioning system
was implemented based on the LSTM network. The image
feature vector is extracted from the last 1024 dimensional
convolutional layer of the GoogleNet [13] CNN model. Fur-
thermore, their framework employs attention at both input
and output layers to the RNN module. Their effort was
exploiting abundant fine-grain visual semantic aspects and
fusing global and local information for generating a better
caption. The results show that the algorithm significantly out-
performs the state-of-the-art approaches consistently across
different evaluation metrics. We see in the next research,
Fu et al. [39] proposed the image caption system that exploits
the parallel structures between images and sentences. One
contribution of this system is that it aligns the process of
generating captions and the attention shifting among the
visual regions. Another is that it introduces the scene-specific
contexts to LSTM that adapt language models for word gen-
eration to specific scene types. In that system, an image is
first analyzed and represented with multiple visual regions
from which visual features are extracted. The visual feature
vectors are then fed into an LSTM network which predicts
both the sequence of focusing on different regions and the
sequence of generatingwords based on the transition of visual
attention. The neural network model is also governed by a
scene vector, a global visual context extracted from the whole
image. Intuitively, it selects a scene-specific language model
for generating text. They evaluated captions in BLEU-n,
METEOR, ROUGE-L and CIDEr-D metrics by testing on
several popular datasets, including the MSCOCO, Flickr8K,
and Flickr30K (See Table 2). Either region-based attention
or scene-specific contexts alone improve performance but
combining the two provides a further improvement.

Researching more with CNN and LSTM models, in 2018,
Aneja et al. [40] developed a convolutional image captioning
technique with existing LSTM techniques and analyzing the
differences between RNN based learning and their method.
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TABLE 1. The summary of a few recent works for Image Captioning.

This technique contains three main components. The first
and the last components are input/output word embeddings
respectively. However, while the middle component contains
LSTM or GRU units in the RNN case, masked convo-
lutions are employed in their CNN-based approach. This
component is feed-forward without any recurrent func-
tion. Their CNN with attention (Attn) achieved comparable
performance. They also experimented with an attention
mechanism with attention parameters using the conv-layer
activations. The results on CNN+Attn method were

improved relative to the LSTM baseline. For better perfor-
mance on the MSCOCO they used ResNet features and the
results show that ResNet boosts the performance. The results
on the MSCOCO with Resnet101 and Resnet152 were com-
parable to previous works. Table 2 shows that the METEOR
and CIDEr results are outstanding, therefore better captions.
Then, we see Ding et al. [72] introduced the same architecture
of CNN by VGG-19 and LSTM on theMSCOCO dataset, but
with the theory of attention [17] in psychology to image cap-
tion generation with two types of attention mechanisms: The
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TABLE 2. The summary of a few recent works for Video Captioning.

stimulus-driven for monitoring salient information by Color
stimulus- driven, Dimension stimulus-driven and location
perception stimulus-driven for attention detection. And the
concept-driven that is a classical question-guided attention
mechanism. This approach enhances the encoder framework
to suit complex scenes.

At the same year, Luo et al. [66] presented a method that
has been trained with the COCO dataset for the Encoder part.
For the image encoder in retrieval and FC captioning model,
Resnet-101 is used. The spatial features are extracted from
the output of a Faster R-CNN with ResNet-101, trained with
an object and attribute annotations from Visual Genome [67].
The retrieval model uses GRU-RNN to encode text. The cap-
tions generated with this model describe valuable information
about the images. However, richer and more diverse sources
of training signal may further improve the training of caption
generators. For experimenting the output, we implemented
their method and some results are shown in Figure 5.
Also, Anderson et al. [58] proposed a combined bottom-up

and top-down attention mechanism that enables attention to
be calculated at the level of objects and other salient image
regions. The bottom-up attention uses Faster R-CNN with
ResNet-101 [13], which represents a natural expression of a
bottom-up attention mechanism. The top-down mechanism

FIGURE 5. These captions are generated with the model presented in [66]
and the images are scenes from the ActivityNet dataset.

uses a task-specific context to predict an attention distribution
over the image regions. The attended feature vector is then
computed as a weighted average of image features over all
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regions. Their results on the MSCOCO dataset present a
new state-of-the-art for the task, achieving CIDEr, BLEU-4
scores of 117.9, and 36.9, respectively. Demonstrating the
broad applicability of the method, they applied the same
approach to Visual Question Answering, and obtained first
place in the 2017 VQA Challenge. In a novel architecture,
Yao et al. [76] proposed Graph Convolutional Networks
plus Long Short-Term Memory (GCN-LSTM) model that
integrates both semantic and spatial object relationships into
image encoder which more remarkably increases CIDEr-D
performance on COCO testing set.

We also have Cornia et al. [73] which proposed a
Transformer-based architecture. The architecture composed
of a stack of memory-augmented encoding layers and a
stack of decoder layers. Image regions and their rela-
tionships are encoded in a multi-level fashion, in which
low-level and high-level relations are taken into account.
The model can learn and encode a priori knowledge by
using persistent memory vectors. The generation of the sen-
tence, done with a multi-layer architecture, exploits both
low-level and high-level visual relationships instead of hav-
ing just a single input from the visual modality. This is
achieved through a learned gating mechanism, which weights
multi-level contributions at each stage. They name this model
Meshed-Memory Transformer as this creates a mesh connec-
tivity schema between encoder and decoder layers. Based on
their results, this approach achieves a new state of the art on
COCO, ranking first in the on-line leaderboard.

The same year, Pan et al. [74] presented a unified attention
block or X-Linear attention block, that employs bilinear pool-
ing to selectively capitalize on visual information or perform
multimodal reasoning. In addition, they present X-Linear
AttentionNetworks that novelly integrates X-Linear attention
block(s) to leverage higher order intra- and inter-modal inter-
actions. The experiments on COCO benchmark shows that
their X-LAN obtains the best published CIDEr performance
of 132.0% on COCO Karpathy test split so far. By endow-
ing Transformer with X-Linear attention blocks, CIDEr is
boosted up to 132.8%.

The models mentioned above are all heavily utilized in
image caption generation. Many other deep learning models
have the potential to be used for applications such as image
caption generation; one such model is Generative Adversarial
Network. In 2014, for the first time, Goodfellow et al. pro-
posed a new framework for estimating generative models via
an adversarial process, inwhich they simultaneously train two
models: a generative model G that captures the data distribu-
tion, and a discriminative model D that estimates the proba-
bility that a sample came from the training data rather than G.
GAN has been successfully used in image generation. They
can produce natural images almost indistinguishable from
real photos [60], [61], [61], [68]. Dai et al. [62] presented
a new framework based on Conditional Generative Adver-
sarial Networks (CGAN), which jointly learns a generator to
produce descriptions conditioned on images and an evaluator
to assess how well a description fits the visual content. This

work proposed a different task for the GAN method. They
have a strategy stemming from Reinforcement Learning,
which allows the generator to receive early feedback along the
way. In their method, they implemented G-MLE: a generator
trained based onMLE that is used to produce the descriptions
and G-GAN, the same generator, which is based on the con-
ditional GAN formulations. For both G-MLE and G-GAN,
VGG16 is used as the image encoder. They considered mul-
tiple evaluation metrics, including six conventional metrics
BLEU-n, METEOR, ROUGE L, CIDEr, SPICE, and two
additional metrics relevant to their formulation: E-NGAN
and E-GAN, particularly using their framework. This method
was the first to apply GAN. We believe GAN has significant
potential in image captioning. In 2019, Nezami et al. [63]
proposed the ATTEND-GAN model. Their contribution is
to generate human-like stylistic captions in a two-stage
architecture, with ATTEND-GAN using both the designed
attention-based caption generator and the adversarial train-
ing mechanism on the SentiCap dataset. The architecture
of the ATTEND-GAN model uses spatial-visual features
that are generated with ResNet-152 network and the cap-
tion discriminator is inspired by the Wasserstein GAN
(WGAN).

So far, we briefly reviewed a fewmethods, according to the
common approaches that they have used. For a fair compari-
son of themodels, Table 2 shows the results of attention-based
methods on the MSCOCO dataset, the common dataset that
they have utilized. With this comparison, we could state that
Anderson et al. performed well on the MSCOCO dataset.
Their method outperformed previous works. The reason is
that it uses the attention mechanism which focuses only on
relevant objects of the image. Also, We found that the per-
formance of a technique can vary across different metrics,
parameters, and datasets. Here, we tried to analyze them
based on the different methods they have used. However,
image captioning still remains an active research and it has
a long way to go in improving the accuracy of captioning the
information in images (See Figure 6).

A.1 IMAGE CAPTIONING DATASETS
A few datasets arewidely used to evaluate and compare image
captioning methods: Flickr8K [23], Flickr9K [17], Flickr30k
[17], [23] and Microsoft COCO [17], [18].

1) Flickr
The Flickr8K, 9k, and 30k datasets contain more than 8000,
9000, and 30000 images, respectively. Each image is anno-
tated using Amazon Mechanical Turk with 5 independent
sentences. The Flickr8K dataset mainly contains human and
animal images, while the Flickr30k dataset contains humans
involved in everyday activities and events. For each image,
five sentences are provided [17], [23].

2) COCO
Lin et al. [41] presented a new dataset for detect-
ing and segmenting objects found in everyday life in
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FIGURE 6. Examples of poor image captioning generated by
state-of-the-art systems. These captions are generated with the model
presented in [71] and the images are taken by the authors.

their natural environments. Microsoft Common Objects in
COntext (MSCOCO) dataset contains a total of 2.5 million
labeled instances in 328k images, 91 object categories with
82 of them havingmore than 5,000 labeled instances, and five
assigned captions to each image [17], [18].

B. VIDEO CAPTIONING METHODOLOGIES
Describing a video in natural language is a trivial task for
most people, but a challenging one for machines. From
the methodological perspective, categorizing the models or
algorithms is challenging because it is difficult to assert the
contributions of the visual features and the adopted language
model to the final description.

Video captioning can be achieved by applying image cap-
tioning (as discussed in Section III-A) to the video keyframes
and a small sample of the frames in-between the keyframes
(See Figure 7). The encoder-decoder framework discussed for
image captioning can also be extended to video captioning
(compare Figure 4 and 8). Overall, generating natural lan-
guage sentences describing the video content automatically

has two stages. The first stage is understanding the objects.
This focuses on visual recognition with deep learning models
and extracts the performer, action, and the object of the action
(e.g. human and activity detection) from the video clip. The
video clip is fed as a series of frames that are considered
as images. So, we have a series of frames in each clip that
are input images. Then the extracted information from the
clip is put in a common feature vector. This vector is fed
into the second stage. The second stage is caption generation
which is describing what is extracted in a grammatically
correct natural language sentence, thus mapping the objects
identified in the first stage. Here, we bring a combination
of deep learning architectures for the encoding and decoding
stages (See Table 2).
One of the most common architectures in deep learning

that is used for video captioning is a combination of CNN
and RNNmodels. Donahue et al. proposed Long-term Recur-
rent Convolutional Networks (LRCNs), a model for visual
recognition and description which combines convolutional
layers and long-range temporal recursion and is end-to-end
trainable. They considered three vision problems: activity
recognition, image description, and video description. LRCN
processes the variable-length visual input with a CNN, whose
outputs are fed into a stack of recurrent sequence models,
which finally produce a variable-length prediction. They eval-
uated the image architecture on the COCO and Flickr30k
datasets, using BLEU as a measure of similarity of the
descriptions. They evaluated the video description approach
on the TACoS multilevel dataset, using the BLEU-4 metric
for scoring the results. The advantage of using LSTM here
is that it allows them to model the video as a variable-length
input stream. Although the LSTM outperformed the statisti-
cal model-based approaches, it was still not trainable in the
end-to-end fashion [24]. We see that Venugopalan et al. [25]
used the S2VT method (a sequence to sequence approach
for a video to text), which is a combination of CNN and
LSTM models. The S2VT architecture encodes a sequence
of frames and decodes them to a sentence. They com-
pared their model on the YouTube dataset, MPII-MD, and
M-VAD (See Table 3). They evaluated the performance using
METEOR and BLEU to compare the machine-generated
descriptions to human ones. The results show significant
improvements in human evaluations of grammar. The contri-
bution of language alone is considerable; hence, it is impor-
tant to focus on both language and visual aspects to generate

FIGURE 7. Video: Keyframes and Frames in-between the Keyframes (Keyframe is a frame used to indicate the beginning or end of a change made to
a parameter).
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FIGURE 8. This is a basic structure for video captioning models. Each DCNN takes a frame of the video as an image, then encodes the frame into a
common feature vector between all the other video frames. The language model takes the vector to generate a sentence or a paragraph that
describes the video.

better descriptions. Later methods have adopted a similar
framework, including attention mechanisms [26].

Deep learning has achieved much better results compared
to previous models, and most methods aimed at produc-
ing one sentence from a video clip containing only one
bold event. Krishna et al. [27], however, presented Dense-
captioning, which focuses on detecting multiple events
that occur in a video by jointly localizing temporal pro-
posals of interest and then describing each with natu-
ral language. This model introduced a new captioning
module that uses contextual information from past and
future events to jointly describe all events. They imple-
mented the model on the ActivityNet Captions dataset
(See Table 3 and Section III-B). The captions that came
out of ActivityNet shift sentence descriptions from being
object-centric in images to action-centric in videos. It does
not aim to solve the single-sentence generation scenario,
though.

The most similar work to Krishna et al. in using dense
video captioning model is Zhou et al. [75] model. However,
this model proposed an end-to-end transformer model for
dense video captioning, and is composed of an encoder and
two decoders. The captioning decoder employs a masking
network to restrict its attention to the proposal event over
the encoding feature which converts the event proposal to
a differentiable mask to ensure the consistency between the
proposal and captioning during training. Furthermore, this
model employs a self-attention mechanism.

Another line of work is deep reinforcement networks,
a relatively new research area for video description.
Wang et al. [28] presented the Hierarchical Reinforcement
Learning method that aims to generate one or more sentences
for a sequence of one or more continuous action. In this
model, both the encoder and decoder are equipped with an
attention module. The novel HRL method outperformed all
the other algorithms on all metrics. Hence, the HRL agent
needs more exploration in terms of attention space and utiliz-
ing features from multiple modalities.

In 2019, Ding et al. [59] proposed novel techniques for the
application of long video segmentation, which can effectively
shorten the retrieval time. Redundant video frame detection
based on the spatio-temporal interest points (STIPs) and a
novel super-frame segmentation are combined to improve the
effectiveness of video segmentation. After that, the super-
frame segmentation of the filteblue long video is performed
to find the interesting clip of a long video. Keyframes from
the most impactful segments are converted to video cap-
tioning by using the saliency detection and LSTM vari-
ant network. Finally, the attention mechanism is used to
select more crucial information to the traditional LSTM.
This method is benchmarked on the VideoSet dataset and
evaluated with the BLEU, Meteor, and Rouge on the image
captioning part. However, the language model still has a
large performance gap from humans in cases such as small
object recognition or object recognition at lower resolutions.
Similar to Krishna et al. [27] work, Mun et al. [64] proposed
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TABLE 3. Some of the Video Caption Datasets.

a dense video captioning framework, that models temporal
dependency across events in a video explicitly and leverages
visual and linguistic context from prior events for coher-
ent storytelling. They have used Single-Stream Temporal
Action model to get some proposals at a single scan, then
by implying PtrNet, the highly correlated events that makeup
an episode fed into a sequentional captioning network to
produce a caption by RNN systems. The proposed technique
achieves outstanding performances on the ActivityNet Cap-
tions dataset in terms of METEOR. By injecting GAN to DL,
Sung Park et al. [65] applied Adversarial Networks in their
framework by designing a discriminator to evaluate visual
relevance to the video, language diversity, fluency, and coher-
ence across sentences. GAN helps to generate more accurate,
diverse, and coherent multi-sentence video descriptions. The
task of discriminator (D) is to score the descriptions generated
with the generator (G) for a given video. They propose to
compose D out of three separate discriminators, each focus-
ing on one of the above tasks. They denote this design as a
hybrid discriminator.

In this section, we reviewed a fewmethods ordered chrono-
logically according to the recent methods of CNN, LSTM,
and attention-based that they have used. Table 2 shows the
performance of these methods. We do not intend to compare
them because they are using different approaches, techniques,
and datasets. Nevertheless, the performance and accuracy are
getting better each year due to themethods, extensive datasets
and captions that are assigned, and also the advancements in
hardware.

B.1 VIDEO CAPTIONING DATASETS
Many datasets are used to evaluate video captioning methods.
Here, we mention just a few of them and classify them into
five domains based on the video contents: People, Open
Subjects, Social Media, Cooking, and Movie (See Table 3).
People: The Charades dataset [42] is built up by combining

40 objects and 30 actions in 15 scenes. Sigurdsson et al.
proposed Charades, which contains 9,848 videos (7,985 for
training and 1,863 videos for test purposes) with an average
length of 30 seconds of people’s daily activities. The dataset
comprises of 66,500 annotations describing 157 actions.
It also provides 27,847 descriptions covering all the videos.
Open Subject: The Microsoft Video Description dataset

(Chen and Dolan, 2011) contains 1,970 YouTube clips
(1,200 videos for training, 100 videos for validation, and
670 videos for testing) with human-annotated sentences. The
duration of each video in the MSVD dataset is typically

between 10 to 25 seconds. On average, 41 descriptions for
each video [43] are there. Krishna et al. [27] presented the
ActivityNet Captions dataset, a large-scale benchmark for
dense-captioning events, which contains 20k videos amount-
ing to 849 hours with 100k total descriptions. Xu et al. [44]
presented the MSR-VTT dataset (standing for MSR-Video
to Text). This is created by collecting 257 popular queries
from a commercial video search engine, with 118 videos for
each query. MSR-VTT provides 41.2 hours of 10Kweb video
clips with 200K clip-sentence pairs in total, covering a list
of 20 categories.
Social media: VideoStory [45] is a dataset for telling the

stories of social media videos. It contains 20k videos amount-
ing to 396 hours of video with 123k sentences.
Cooking: Max Plank Institute for Informatics (MPII)

Cooking dataset [46] presents 65 fine-grained cooking activ-
ities. The dataset is comprised of 44 videos with an average
length of 600 seconds per clip. Regneri et al. [15] presented
Textually Annotated Cooking Scenes (TACoS), which pro-
vides coherent textual descriptions for high-quality videos,
and contains 26 fine-grained cooking activities in 127 videos.
In 2018, Zhou et al. [47] collected a large-scale procedure
segmentation dataset with procedure segments temporally
localized and described; they used cooking videos and named
the dataset YouCook2. It contains 176 hours of runtime com-
prised of 2000 videos that are nearly equally distributed over
89 recipes from Africa, America, Asia, and Europe.
Movie: The Large Scale Movie Description Challenge

(LSMDC, Rohrbach et al., 2017) dataset [16], which provides
transcribed and aligned Audio Description and script data
sentences, is based on 200 movies and has 128,118 sen-
tences with aligned clips (around 150 hours of video in total).
LSMDC is based on the MPII-MD dataset and the M-VAD
dataset, which were initially collected independently but are
presented jointly in this work. The MPII Movie Description
(MPII-MD) [48] dataset contains a parallel corpus of over
68K sentences and video snippets from 94 HD movies. The
Montreal Video Annotation dataset (M-VAD) [26] includes
over 84.6 hours of paired video and sentences from 92 DVDs.

C. IMAGE AND VIDEO CAPTIONING EVALUATION
METRICS
Captions are evaluated using the BLEU, METEOR, CIDEr,
and other metrics [17]–[19]. These metrics are common
for comparing the different image and video captioning
models and have varying degrees of similarity with human
judgment [42].
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1) BLEU
BiLingual Evaluation Understudy is a method of automatic
machine translation evaluation that is a precision-based met-
ric, correlates highly with human evaluation, and has a little
marginal cost per run [17], [49]. BLEU has different n-grams
based versions for candidate sentences concerning the refer-
ence sentences.

2) METEOR
Metric for Evaluation of Translation with Explicit ORdering
is an automatic metric that evaluates translation hypothe-
ses. It is based on a generalized concept of unigram
matching between the machine-produced translation and
human-produced reference translations [17], [18], [50], [51].

3) CIDEr
Consensus-based Image Description Evaluation [19] enables
an objective comparison of machine generation approaches
based on their human-likeness, without having to make arbi-
trary calls on weighing content, grammar, saliency, etc. con-
cerning each other. CIDEr was first developed specifically for
evaluating image captioning tasks, but it is also used in video
captioning methods.

4) ROUGE
Recall-Oriented Understudy for Gisting Evaluation [52]
determines the quality of a summary by comparing it to other
summaries created by humans. ROUGE, similar to BLEU,
has different n-grams based versions.

5) SPICE
Anderson et al. [53] introduced Semantic Propositional
Image Captioning Evaluation, a novel semantic evaluation
metric that measures how effectively image captions recover
objects, attributes, and the relations between them. It corre-
lates more with the human judgment of semantic quality as
compared to previously reported metrics.

6) WMD
Word Mover’s Distance [54] measures the dissimilarity
between two text documents. Therefore, the sensitivity of this
metric when compared to BLUE, ROUGE, and CIDEr, is low
about word order or synonym swapping, but, like CIDEr
and METEOR, it provides a high correlation with human
judgments.

IV. THE REQUIRED PLATFORM FOR IMPLEMENTATION
Deep Learning has dramatically improved the accuracy of
image recognition. Image recognition is considered to be
one of the most challenging problems in image science.
In recent years, deep learning-based convolutional neural
networks have positively and significantly impacted the field
of image recognition allowing much flexibility. Deep Learn-
ing is responsible for many of the recent breakthroughs in
image science, such as image and video captioning. Despite

Deep Learning’s popularity, it is difficult to accurately predict
the time that it takes to train a deep learning network to
solve a given problem. The training time can be seen as the
product of the training time per epoch and the number of
epochs that need to be performed to reach the desired level of
accuracy. We define the features which could influence the
prediction of execution time while performing the training.
We categorize these features into layer, implementation, and
hardware features. Each of these categories can contain
almost an endless list of features. Layer (Algorithm or model)
Features include Activation Function like ReLU, Softmax,
and Tanh; Optimizer (e.g. Gradient Descent, Momentum,
Adam); Batch Size (the number of training samples which
are processed together as part of the same batch); Number
of inputs to the layer, the neurons within the layer, Matrix,
Kernel, Stride, and Padding size. Hardware Features include
CPU, GPU, or TPU technology (regarding memory, clock,
speed, and bandwidth) [55].

A. SOFTWARE REQUIREMENT
1) TENSORFLOW
TensorFlow is an end-to-end open-source platform for
machine learning. TensorFlow is developed by Google and
has integrated the most common units in deep learning frame-
works. It supports many up-to-date networks such as CNN
and RNN with different settings. TensorFlow is designed
for remarkable flexibility, portability, and high efficiency of
equipped hardware [56].

2) PyTorch
PyTorch is a Python-based scientific computing package that
serves two purposes: as a replacement for NumPy to use the
power of GPUs and as a deep learning research platform that
provides maximum flexibility and speed1 [40].

3) KERAS
Keras is a high-level neural network API, written in Python,
and capable of running on top of TensorFlow, CNTK,
or Theano. It was developed with a focus on enabling fast
experimentation. Being able to go from idea to result with
the least possible delay is the key to doing good research.
Keras allows for easy and fast prototyping (through user-
friendliness, modularity, and extensibility). Keras supports
both convolutional networks and recurrent networks, as well
as a combination of both. Keras runs seamlessly on CPU and
GPU.2

B. HARDWARE REQUIREMENT
The science andmethodology behind deep learning have been
in existence for decades. In recent years, however, a sig-
nificant acceleration in the utilization of deep learning has
been due to an increasing abundance of digital data and the
involvement of the powerful hardware.

1https://pytorch.org/tutorials/beginner/blitz/tensor-tutorial.html
2https://keras.io/
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1) GPU
Compared to CPU, the performance of matrix multiplication
on the Graphics Processing Unit is significantly better. With
GPU computing resources, all the deep learning tools men-
tioned achieve much higher speedup when compared to their
CPU-only versions [56]. GPUs have become the platform
of choice for training large, complex Neural Network-based
systems because of their ability to accelerate the systems. For
example, it used to take a few days to train AlexNet (the work
of Krizhevsky et al. [14] which outperformed all other image
recognition approaches at the time [13]) on the ImagetNet
dataset with an NVIDIA K40 machine. Now with DGX-2,
the NVIDIA group can train AlexNet in a few minutes.3

Shi et al.worked to evaluate the running time performance of
a set of modern deep learning software tools and see how they
perform on different types of neural networks and different
hardware platforms. They showed that all tested tools can
make good use of GPUs to achieve significant speedup over
their CPU counterparts. No single software tool exists that
can consistently outperform others. However, we have some
opportunities to further optimize performance [56].

2) TPU
Tensor Processing Unit (Domain-Specific Architecture) is a
custom chip that has been deployed in Google data centers
since 2015. DNNs are dominated by tensors, so the architects
created instructions that operate on tensors of data rather than
one data element per instruction [57]. To reduce the time of
deployment, TPU was designed to be a coprocessor on the
PCI Express (PCIe) I/O bus rather than be tightly integrated
with a CPU, allowing it to plug into existing servers just as
a GPU does. The goal was to run whole inference models
in the TPU to reduce I/O between the TPU and the host
CPU. Minimalism is a virtue of domain-specific processors.
Jouppi et al. show in their paper that the TPU leverages its
advantages to run 15 times as fast as the K80 GPU, resulting
in a performance/ Watt advantage of 29 times. While future
CPUs and GPUs will surely run inference faster, a redesigned
TPU using circa-2015 GPU memory would go three times
faster and boost the performance/ Watt advantage to nearly
70 over the K80 and 200 over Haswell CPU [38], [57].

V. CASE STUDY: REAL-WORLD APPLICATION
In our earlier research, we proposed the use of deep learning
models, image captioning, and NLP in an integrated man-
ner for generating meaningful ‘‘titles’’ for videos. We now
refer to this proposed system as DTVC (automatic generation
of Descriptive Titles for Video Clips using deep learning).
DTVC uses many different components - some of these
components are presented in [13] and [68] and others are
discussed in this article. For a more detailed discussion about
DTVC, refer to [70]. To the best of our knowledge, our work
reported in [70] is the first attempt in automatic generation of
‘‘titles’’ for videos.

3https://devblogs.nvidia.com/tensor-core-ai-performance-milestones/

FIGURE 9. An overall example of the proposed system, DTVC (automatic
generation of Descriptive Titles for Video Clips using deep learning).
illustrated architecture consists of two different, complementary
processes: Video Captioning and Text Summarization.

In this research, we are proposing DTVC that could be
applicable for the cinema industry, search engines, supervi-
sion cameras, etc. The framework with an example of the
proposed system, DTVC is presented in Figure 9. The archi-
tecture consists of two different, complementary processes:
Video Captioning and Text Summarization [69]. During the
first process (Video Captioning), the system gets a video
as its input. The keyframes of the video are selected. Each
key-frame is captioned [66]. The collection of these captions
results in a ‘‘story’’ describing the video. During the second
process (Text Summarization), this generated ‘‘story’’ is fed
into a process as a document. The document is summarized to
one sentence using Text Summerization method. The manual
generation of captions for video would involve a user/viewer
to watch the whole video and take notes. Because of this,
the manual generation of captions is considered to be a
time-consuming task. The purpose of the proposed system
is to automatically generate a title and also an abstract for
a video clip without manual intervention. In this article,
we have provided results based on our experimentation using
video clips available from publicly.

VI. CONCLUSION AND FUTURE WORK
In recent years, many models have been proposed and pre-
sented to generate captions for images and short videos.
Although, these models are helping to advance the tech-
nology, they suffer from inaccuracies due to fundamental
constraints; resulting in limited use in practical situations.
Many of the earlier models proposed, treat image caption-
ing and video captioning differently using different algo-
rithms and methodologies. In this article, we have focused
on methodologies that perform video captioning by using
image captioningmethods as building blocks. Thus, the video
captioning process is considered to be a compilation of the
summarization of image captions. It is for the above reason
that in this article, we only focused on the algorithmic overlap
between image and video captioning. Therefore, this article is
not meant to be a comprehensive review of image and video
captioning; rather, it is a concise review of the algorithm over-
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lap between the two. Furthermore, this article only considered
those algorithms that used deep learning.

In general, comparing different deep learning models used
for image and video captioning is difficult. This is due to the
fact that researchers use different image datasets, different
parameters, different classification methods, different pre-
processing, different combinations of structures, and others.
Despite the vast differences, in this study, we focused on the
general overlap between these methods.

A reliable, accurate, and real-time video and image
captioning method can be used in many applications.
Researchers attempt to give sight to the machines. First,
machines learn to see. Then, they help us to see better.
We will not only use the machines because of their intelli-
gence, but we will also collaborate with them in ways that
we cannot even imagine. Image and video captioning systems
can be used as an important part of Assistive Technologies
that would help people with hearing or sight impairments.
The captions can be used as meta-data for search engines
which would take the search engine’s functionality to a new
dimension. Captions can be used as part of recommendation
systems in many applications.
Future Research Direction and Broader Impact: As men-

tioned earlier, the current technologies used for image and
video captioning often generate captions that are not very
accurate. There is much room for improvement and enhance-
ment. The fusion and processing of image, video, and audio
would provide more accurate captions. Audio-to-Word con-
verters are available, and they are quite reliable. Integrating
an Audio-to-Word converter with a video and combining the
captions/words generated via audio and video would gen-
erate more accurate and meaningful captions even though,
an elaborate text/sentence summarization would have to be
performed.

Another challenge with video captioning is the very com-
pute intensive nature of the problem. With the current tech-
nology, only very short videos can be captioned (videos that
are only a few seconds long). The use of the next generation
of GPUs and with explicit algorithm parallelization (targeted
at the GPU machine architectures), we can get closer to
real-time performance for longer videos. A great opportunity
in the area of video captioning is to design and develop a
strategy that would permit users to request video captions at
varying levels of detail. However, we believe that the most
fundamental and challenging research problem with video
captioning is the fact that different captions based on different
interpretations can be generated for the same video - in the
same way as two individuals can come-up with two different
views/description by watching the same video. We believe
that this fundamental problem can be addressed by studying
relevant concepts and making the process more interactive.
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