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ABSTRACT Vehicle mass and road grade information is important to improve the control capability and
further intellectualization of vehicles. With the aim of real-time estimation of mass and grade without
additional sensors, a two-step estimator is proposed in this paper. In the first-step estimator, the recursive
least square with dual forgetting factors is used to estimate the vehicle mass with the consideration of the
time-varying rolling friction coefficient and system error. In the second-step estimator, the road grade is
estimated using an extended Kalman particle filter. Based on the data of CarSim/MATLAB co-simulation,
the proposed approach has faster convergence rate and better tracking accuracy on the premise of meeting the
real-time requirements by comparison with other estimation algorithms. The performance of the estimator
is finally validated by the vehicle road test, and the results show that the mass and grade are estimated with
great accuracy and robustness under different road conditions.

INDEX TERMS Vehicle mass, road grade, estimator, recursive least square, particle filter.

I. INTRODUCTION
With the improving demand of the market for vehicle safety
and the energy economy, the active safety and intelligent
control technology in vehicles have been widely developed
and applied [1]. Knowledge of vehicle parameters and road
conditions, especially vehicle mass and road grade, is of great
significance to achieve optimal control performance [2].

The vehicle mass will change depending on passengers
and payload, with variations in the mass of up to 50% for
passenger vehicles, and 400% for heavy-duty vehicles [3].
Since the vehicle mass indirectly affects the longitudinal and
lateral forces, active safety technologies such as direct yaw
control and anti-lock braking systems require mass informa-
tion to perform the primary system calibration [4]. Moreover,
the vehicle mass also significantly influences energy usage,
so the accuracy of distance-to-empty predictionswithout real-
time mass estimation cannot be guaranteed [5]. Road grade is
another important variable that needs to be estimated in real
time, which has a crucial impact on driving safety and energy
consumption [6]. The information of mass and grade plays
a critical role in transmission shift scheduling and power
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management strategy for hybrid vehicles [7], which can
improve power performance and reduce fuel consumption
and emissions. As the level of autonomous driving increases,
the control authority is gradually transferred from driver to
machine, and intelligent vehicles will face the situation of
human-machine coordinated control in the next period of
time [8]. Its representative Advanced Driver Assistance Sys-
tems’ control precision will benefit from a reliable and robust
estimation of vehicle mass and road grade [9], [10].

There have been a large number of studies in estimating
vehicle mass and/or road grade over the last two decades.
The early proposed sensor-based methods used the global
positioning system (GPS) and additional sensor information
to implement the estimation [11]–[13]. However, on account
of their limited estimation accuracy, high cost, and sensitivity
to environmental noise, the subsequent researches mainly
focused on model-based methods. Fathy et al. [14] pro-
posed an online mass estimation approach based on recur-
sive least square (RLS) algorithm and a fuzzy supervisor,
which was used to extract parameters of high-frequency
components when the vehicle has significant longitudinal
motion. Lin et al. [15] considered the system error as an
unknown parameter, and it was estimated together with the
vehicle mass using RLS. RLSwith multiple forgetting factors
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(RLS-MFF) was adopted in simultaneous estimation of mass
and grade to deal with the problem of different change rates
for the two parameters [16]. Kalman filter (KF) was first
applied in this field in 2002 [17], but it is unable to solve
the nonlinear estimation problems [18]. Extended KF (EKF)
was used in the estimation of both mass and grade based on
the longitudinal dynamic model [19] and in mass estimation
based on the lateral model [20]. The EKF inevitably has
the linearization error when calculating the Jacobian matrix,
while the unscented KF (UKF) can approximately obtain
the statistical characteristics of the nonlinear transformation
through the unscented transform, so it is more advantageous
in the estimation of strongly nonlinear systems [21]. Vehicle
mass and other inertial parameters were estimated using a
dual UKF [22], [23].

The hybrid algorithms for estimation of mass and
grade were proposed to make full use of their strengths.
Sun et al. [24] proposed a hybrid algorithm combining EKF
and RLS, in which the mass was estimated twice and
a weight coefficient was introduced to make a tradeoff.
Chu et al. [25] proposed an estimator based on a combined
kinematic and dynamic model to eliminate the influence of
different frequency noise. Furthermore, two-layer estimation
algorithms were proposed to alleviate the coupling effect
between the two parameters and improve the computational
efficiency [26]–[29]. In the first layer, the mass or grade
was estimated, and it was taken as a known parameter in
the second layer to estimate the other parameter. Besides,
the neural network approach has recently been applied to
estimate vehicle mass and road grade [30], which makes it
possible to estimate when braking. But a great deal of data
from drivers with diverse driving styles are needed to train
neural networks.

Recently, particle filter (PF) has been popular in the esti-
mation of vehicle state and parameter owing to its advantages
over EKF and UKF in solving the nonlinear estimation prob-
lems without the Gaussian distribution assumption of the pro-
cess and measurement noise [31]–[34]. Based on the Monte
Carlo method and recursive Bayesian estimation, a group of
discrete weighted random sample points (i.e. particles) in the
state space are used to approximate the posterior probability
density function of the estimated states. The value and weight
of particles are continuously adjusted on the basis of the
observation, and finally, the estimated value is represented
by the weighted sum. Nevertheless, the standard particle filter
has the defect of particle degeneracy [35]. With the increase
of iteration times, the weight of most particles decreases to
zero, which will lead to the waste of computing resources and
the decline of estimation accuracy. The common methods to
reduce the impact of particle degradation include the intro-
duction of resampling methods and the selection of appropri-
ate importance density function [36].

A two-step structure approach for vehicle mass and road
grade estimation is proposed in this paper. The information of
the acceleration sensor in Electronic Stability Program (ESP),
which is widely applied in vehicles nowadays, is used to

decouple mass and grade in the longitudinal dynamic model.
In the first step, vehicle mass is estimated by RLS with
forgetting factors, in which the time-varying characteristics of
rolling resistance and system error are considered to improve
the estimation accuracy. In the second step, with the mass
known, the extended Kalman particle filter (EKPF) algorithm
is used to estimate the road grade. The validity of the pro-
posed estimator is verified by comparisonwith RLS-MFF and
EKF algorithms, and the real-time performance is analyzed.
The effectiveness of the estimator is further verified by vehi-
cle road tests with a small SUV. Two major contributions that
clearly distinguish our endeavor from other studies: 1) A two-
step estimator structure is designed, and the coupling relation-
ship between mass and slope parameters is canceled by using
the longitudinal acceleration sensor information. The mass
estimated in the first step is used as the known parameter of
grade estimation in the second step. 2) In the mass estimation,
an equivalent resistance coefficient is proposed to eliminate
the influence of time-varying rolling resistance coefficient
and system error, and EKPF is applied to the field of road
grade estimation.

The remainder of this paper is structured as follows:
Section II introduces the vehicle longitudinal dynamicmodel.
In Section III, the proposed estimator for vehicle mass and
road grade is designed. Various simulations and comparisons
are provided in Section IV. The results of the vehicle road test
are presented in Section V, and the conclusion is summarized
in Section VI.

II. VEHICLE LONGITUDINAL DYNAMIC MODEL
The proposed estimator is available for vehicle mass and road
grade estimation when the vehicle is in longitudinal motion,
which is dominant in the daily driving process. As shown in
Fig. 1, driving force and various resistances acting on the
vehicle during longitudinal driving, and it is assumed that
there is no wheel slip. According to Newton’s Second Law,
the vehicle longitudinal dynamics equation as:

Fdrive = Facc + Faero + Froll + Fgrade + Ferr (1)

where Fdrive, Facc,Faero, Froll , Fgrade are the vehicle’s driv-
ing force, the inertia force, the aerodynamic drag force, the
rolling resistance, the grade resistance, respectively; Ferr is
the system error, which caused by uncertain environment
disturbance in longitudinal dynamics [15].

FIGURE 1. The longitudinal forces of the vehicle on the ramp.
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The torque Ttq from the engine or driving motor is deliv-
ered to the driving wheels through the driveline, generating
a circumferential force on the ground. Fdrive is the reaction
force of the ground to the driving wheel, which can be
expressed as:

Fdrive = Ttqigi0ηT /rw (2)

where ig is the transmission gear ratio; i0 is the final drive
ratio; ηT is the mechanical efficiency of the driveline; rw is
the wheel radius.

The inertial force during acceleration can be presented as:

Facc = mv̇ (3)

where m is vehicle mass; v is longitudinal velocity.
The aerodynamic drag force can be presented as:

Faero = CDAρv2/2 (4)

where CD is the drag coefficient; A is the frontal area; ρ is the
air density.

The rolling resistance is related to the road condition and
the vertical load of the wheel, which can be expressed as:

Froll = mgµ cosβ (5)

where g is the acceleration due to gravity; µ is the rolling
friction coefficient; β is the road grade angle.
The grade resistance is the component force of vehicle

gravity along the slope, which can be expressed as:

Fgrade = mg sinβ (6)

III. DESIGN OF THE TWO-STEP ESTIMATOR
Based on the model mentioned above, there is a strong
coupling relationship between vehicle mass and road grade.
Knowing one will facilitate estimation of the other, hence
mass and grade are independently estimated by a two-step
estimation approach. In the first step, the vehicle mass is
estimated by using the acceleration sensor information, and
the estimated value is taken as the known parameter in the
next step. In the second step, a nonlinear estimator is con-
structed to estimate the road grade. The structure of the two-
step estimator is presented in Fig. 2.

As the proposed estimator is based on longitudinal dynam-
ics, and persistent excitation of the input signal is required

FIGURE 2. The block diagram of the two-step estimator.

like other model-based methods, the following preconditions
for estimator activation are established:

a) The steering wheel angle does not exceed 15 degrees;
b) The brake pedal is not depressed;
c) The clutch is fully engaged.
When any of the above conditions are not met, the esti-

mator is suspended until all conditions are satisfied again.
During this interval, the estimated mass and grade maintain
the values at the time before the suspension.

A. VEHICLE MASS ESTIMATOR BASED RLS IN THE FIRST
STEP
The measurement asen_x of the longitudinal acceleration sen-
sor in ESP includes the information of vehicle acceleration
and component force of gravity along the slope, and their
relationship is:

asen_x = v̇+ g sinβ (7)

Substituting (2), (3), (4), (5), (6), (7) into (1), equation can
be written as:

asen_x = (Ttqigi0ηT /rw − CDAρv2/2)/m− gµ′ (8)

where µ′ = µ cosβ + Ferr/g, µ′ is defined as the equiva-
lent resistance coefficient, which contains the information of
rolling resistance coefficient and system error.

In the above equation, the vehicle mass will change with
the number of passengers and the weight of luggage. For
equivalent resistance coefficient, the rolling resistance coeffi-
cient is an unknown time-varying parameter, which is usually
regarded as a known constant, and its value is related to
the road condition, driving speed, and tire parameters. And
the existence of system error is mainly due to modeling
error and environmental noise. Other data and parameters
can be obtained from the controller area network (CAN)
Bus or provided by the automobile manufacturer. The equiv-
alent resistance coefficient and vehicle mass are estimated
simultaneously by RLS. Equation (8) can be rewritten in the
following form:

y = ϕTθ (9)

where
y = asen_x;

ϕ = [ϕ1, ϕ2] =
[
Ttqigi0ηT /rw − CDAρv2/2,−g

]
θ = [θ1, θ2]T =

[
1/m, µ′

]T
.

The vehicle mass will not change after the vehicle is started
and it can be considered as a constant parameter over the
course of a trip, while the equivalent resistance coefficient
will change with the vehicle driving situation and road con-
ditions. Therefore, RLS with dual forgetting factors is used to
estimate the parameters that change with different rates. The
equations of the RLS algorithm can be expressed as [16]:

θ̂(k) = θ̂ (k − 1)+ K ′(k)
(
y(k)− ϕT(k)θ̂ (k − 1)

)
(10)
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where K ′(k) is defined as:

K ′(k) =
1

1+ P1(k−1)ϕ1(k)2
λ1

+
P2(k−1)ϕ2(k)2

λ2

·


P1(k − 1)ϕ1(k)

λ1
P2(k − 1)ϕ2(k)

λ2

 (11)

Pi(k) =
(
I − Ki(k)ϕTi (k)

)
Pi(k − 1)/λi (12)

Ki(k) = Pi(k − 1)ϕi(k)
[
ϕTi (k)Pi(k − 1)ϕi(k)+ λi

]−1
(13)

where λ1 and λ2 are forgetting factors for the two parame-
ters respectively; Pi(k) is the covariance matrix; Ki(k) is the
update gain, and in (12) and (13), i = 1, 2.
To make full use of historical data to get an accurate

estimation of vehicle mass, the forgetting factor λ1 is set to 1.
In view of the time-varying characteristics of the equivalent
resistance coefficient, the forgetting factor λ2 is set to 0.9.

B. ROAD GRADE ESTIMATOR BASED EKPF IN THE
SECOND STEP
Taking the estimated vehicle mass in the first step as a known
parameter, the state-space model of the system is established.
Longitudinal velocity and road grade are defined as state
parameters in the estimating process. To simplify the model
to ensure the real-time estimation and avoid introducing new
unwanted errors into the second-step estimator, the rolling
resistance coefficient is set to a constant value with Ferr = 0.
Since road grade is generally small, it is assumed that sinβ ≈
tanβ = i, cosβ ≈ 1, where i is the road grade. The grade
changes slowly, so the derivative of time is approximately
zero. The differential equations can be given as:

v̇(t) = Ttq(t)igi0ηT /mrw − CDAρv2(t)/2m
− gµ− gi(t)

i̇(t) = 0

(14)

The Euler approximation is used to discretize (14), and the
discretized difference equations are expressed as:{

v(k) = v(k − 1)+1t · v̇(k − 1)
i(k) = i(k − 1)

(15)

where

v̇(k) = Ttq(k)igi0ηT /mrw − CDAρv2(k)/2m− gµ− gi(k)

(16)

In this paper, the EKPF algorithm with the introduction of
the systematic resampling algorithm is used to estimate road
grade. EKPF algorithm is to approximate the optimal impor-
tance density function using EKF after the initialization stage
of the PF algorithm, which makes the particle distribution
closer to the real posterior probability distribution. Then, the
generated particles are transferred to the likelihood function

to complete the calculation. The systematic resampling algo-
rithm is chosen because of its excellent performance in resam-
pling quality and computational efficiency [37]. To apply the
EKPF algorithm, the discrete state space equation is formu-
lated as: {

xk = f (xk−1, v̇k−1)+ ωk
yk = Hxk + νk

(17)

where xk = [vk , ik ]T is the state vector; yk is the measurement
vector; f (xk , v̇k ) = [vk+1t ·v̇k , ik ]T is the nonlinear mapping
function, reflecting the relationship between the state at the
current time and the previous time; H = [1, 0] is the state
observation matrix; ωk and νk are process noise and mea-
surement noise, and their covariance matrices are Q and R,
respectively.

The basic steps of the EKPF algorithm are expressed as
follows:

1) INITIALIZATION
A set of particles are generated randomly based on the prior
probability distribution p(x0). The number of particles is set
to N , and their values x+0,i, covariance matrix P+0,i, and weight
w+0,i are initialized.

x+0,i ∼ p(x0), P+0,i = var(x0), w
+

0,i = 1/N (18)

where the subscript i refers to the i-th particle.

2) UPDATE OF PARTICLES
The value and covariance of each particle are calculated by
EKF, and the particle set is updated.

Prediction) priori particles x−k,i and their covariance P−k,i
are predicted using the particles’ value x+k−1,i at instant (k−1)
as:

x−k,i = f (x+k−1,i, v̇k−1) (19)

P−k,i = Fk−1,iP
+

k−1,iF
T
k−1,i + Q (20)

where Fk−1,i is the Jacobian matrice of the process model.

Fk−1,i =
∂f (x, v̇)
∂x

∣∣∣∣
x=x+k−1,i

(21)

Correction) According to the observation and Kalman
gain Kk,i, posteriori particles x

+

k,i and their covariance P+k,i
are updated as:

x+k,i = sx−k,i + Kk,i
[
yk − Hk,ix

−

k,i

]
(22)

P+k,i = (I − Kk,iHk,i)P
−

k,i (23)

where

Kk,i = P−k,iH
T
k,i(Hk,iP

−

k,iH
T
k,i + R)

−1 (24)

Then, by sampling from the proposal distribution, particles
are updated as:

x̂+k,i ∼ q(xk,i
∣∣x0:k−1,i, y1:k ) = N (x+k,i,P

+

k,i) (25)

whereN (x+k,i,P
+

k,i) is a normal distribution with mean x+k,i and
variance P+k,i.
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3) IMPORTANCE WEIGHT CALCULATION
The importance weight of each particle is calculated.

w+k,i ∝
p(yk

∣∣xk,i )p(xk,i ∣∣xk−1,i )
q(xk,i

∣∣x0:k,i, y1:k ) (26)

where

p(yk
∣∣xk,i )

=
1
√
2πR
· exp(−

(yk − Hk,ix
+

k,i)(yk − Hk,ix
+

k,i)
T

2R
) (27)

p(xk,i
∣∣xk−1,i )

=
1

√
2πQ

· exp(−
(x̂+k,i − f (xk−1,i, v̇k−1))(x̂

+

k,i − f (xk−1,i, v̇k−1))
T

2Q
)

(28)

q(xk,i
∣∣x0:k,i, y1:k )

=
1√

2πP+k,i
· exp(−

(x̂+k,i − x
+

k,i)(x̂
+

k,i − x
+

k,i)
T

2P+k,i
) (29)

Then, the importance weights are normalized.

w̃k,i =
w+k,i
N∑
i=1

w+k,i

(30)

4) RESAMPLING
To obtain a new particle set x̃+k,i, the systematic resampling
algorithm [38] is used to copy and eliminate the particles
according to the normalization weight w̃k,i.

5) ESTIMATION
The state estimation is calculated.

_xk =
1
N

N∑
i=1

x̃+k,i (31)

IV. VERIFICATION RESULTS OF SIMULATION DATA
The validity of the proposed estimator was first verified by
the simulation data based on the vehicle model in CarSim.
The estimator was developed in Matlab, and Gaussian noise
was added to make the data closer to the actual situation.
A docking road and two sloping roads were constructed, and
the vehicle was driving in a straight line with a constant
throttle control of 0.15.

A. DOCKING ROAD
Since the time-varying rolling resistance coefficient is con-
sidered in the first-step estimator, its estimation effect can be
verified by the docking road experiment in which the rolling
resistance coefficient changes suddenly. A docking road with
a grade angle of 0 is constructed, as shown in Fig. 3. The
beginning section is a good asphalt pavement, which turns
into a dirt road at 20 meters.

FIGURE 3. Docking road in CarSim.

FIGURE 4. Mass estimation results on docking road.

In this case, the comparison between the first-step estima-
tor and RLS without µ′ was conducted. The latter is a similar
mass estimator based on acceleration sensor information, but
the system error and time-varying rolling resistance coeffi-
cient are not considered. As can be seen from Fig. 4, the
convergence speed of the first-step estimator is faster than that
of RLSwithoutµ′, and the first-step estimator is significantly
less affected when the road surface changes.

B. SLOPING ROAD 1
Sloping Road 1 includes a flat section and an uphill section
with a constant grade, and there is a mild transition section
between them. Two widely accepted simultaneous estima-
tion approaches, RLS-MFF and EKF were implemented as
a direct comparison of the estimation results to verify the
accuracy of the proposed estimator.

Fig. 5 shows the mass estimation results and relative
errors of RLS-MFF, EKF, RLS without µ′, and the first-
step estimator in this paper. It can be seen that the estimated
mass of all approaches converge quickly, and the errors of
mass estimation based on acceleration sensor information are
smaller. Moreover, the first-step estimator takes into account
the system error and the time-varying characteristics of the
rolling resistance coefficient, so it can be adaptive to the
system disturbance and show a better estimation effect than
RLS without µ′.

The grade estimation results and errors of RLS-MFF, EKF,
RLS-PF, and the second-step estimator in this paper are
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FIGURE 5. Mass estimation results on Sloping Road 1.

FIGURE 6. Grade estimation results on Sloping Road 1.

shown in Fig. 6. In RLS-PF, a similar but slightly different
two-step estimator, the standard particle filter is used to esti-
mate the grade based on the mass results of the first-step
estimator. From the figure, the jump phenomenon is found
at the beginning for all approaches, which is caused by the
large deviation between the set initial mass value and the
actual value. But the estimated grade converges to the actual
value in a short time. The second-step estimator shows better
performance in the tracking accuracy when the grade changes
and has a more stable estimation when the grade becomes
constant than other approaches.

C. SLOPING ROAD 2
Sloping Road 2 is a continuous variable grade road to sim-
ulate mountainous highways. Fig. 7 and Fig. 8 show the
estimated results and errors of vehicle mass and road grade
respectively. Due to the continuous change of grade, the esti-
mated mass based on RLS-MFF and EKF fluctuates slightly.
The first-step estimator can converge quickly without the
influence of grade change and maintain a good estimation
level.

For grade estimation, the curve of the second-step esti-
mator is relatively smooth in the whole estimation process
compared with other approaches. And the tracking accuracy

FIGURE 7. Mass estimation results on Sloping Road 2.

FIGURE 8. Grade estimation results on Sloping Road 2.

is better when the road grade changes greatly, especially at the
peak of the curve. So the superiority of the EKPF algorithm
in nonlinear system state estimation is proved.

To quantify the estimation accuracy of these approaches,
root mean square error (RMSE) and mean absolute
error (MAE) are selected as evaluation indexes. RMSE and
MAE are calculated by the following equation respectively:

RMSE =

√√√√ 1
N

N∑
i=1

(αi − α̂i)2 (32)

MAE =
1
N

N∑
i=1

∣∣αi − α̂i∣∣ (33)

where α̂i and αi represent the actual value and estimated value
at the i-th moment respectively.

The RMSE and MAE of vehicle mass and road grade for
both sloping roads are shown in the histogram of Fig. 9.

D. ANALYSIS OF PARTICLE NUMBER
Computational complexity has always been a major draw-
back of the particle filter algorithm. To balance precision
and real-time, it is very important to choose the appropriate
number of particles. The relationship between the number
of particles and the calculation time and estimation error
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FIGURE 9. Histogram of estimation errors of the estimators.

TABLE 1. Algorithms performance with different particle numbers.

is analyzed. In this paper, the mean single iteration time is
selected as the quantitative evaluation index of the compu-
tational burden. The mean single iteration time denotes the
average value of the time consumed in a single iteration of
state estimation. The simulation was carried out in Matlab
R2019b environment on a desktop computer equipped with
Intel Xeon (R) silver 4110 processor (2.1GHz).

The calculation results of grade estimation based on PF and
EKPF algorithms are listed in Table 1. For PF, if the number
of particles is too small, there will be a serious divergence
phenomenon caused by the lack of particles. In this study, the
divergence phenomenon appeared when the particle number
was less than 40. The estimation accuracy of PF and EKPF
was improved with the increase of particle number, but the
computation time became longer. For EKPF, the estimation

FIGURE 10. Schematic diagram of data acquisition.

accuracy will not be significantly improved when the particle
number exceeds 30. Thus, the number of particles is set as 30,
and the mean single iteration time is 0.00121s, which meets
the real-time requirements of the estimator.

V. VERIFICATION RESULTS OF ROAD TEST DATA
To further verify the feasibility of the proposed estimator,
the off-line simulation was carried out based on the data
of the vehicle road test. The test vehicle is a small SUV
equipped with a seven-speed double-clutch transmission, and
experiments were conducted on expressway andmountainous
highway to validate the robustness of the estimator under
different road conditions.

The data from the CAN Bus were collected using Racel-
ogic VBOX3i through the on-board diagnostics (OBD) inter-
face and stored in a laptop computer. Fig. 10 shows the
schematic diagram of the data acquisition of the vehicle road
test. Only the data of straight-line driving were collected,
including vehicle velocity, longitudinal acceleration, engine
torque and speed, transmission gear, and brake master cylin-
der pressure, etc. The sampling frequency is 100Hz.
A Dual GPS antenna, which has high positional precision

using multiple satellites, was installed at the front and rear
of the vehicle roof centerline to obtain the relative elevation
information [39]. The actual value of road grade was obtained
through preprocessing, differential calculating, and removing
the abnormal points. And the actual value of vehicle mass is
1812kg, including the weight of one driver, three passengers,
and test equipment. Fig. 11 shows the installed test equipment
and the test road.

A. EXPERIMENT 1
In Experiment 1, a period of 60 seconds of data in the
expresswaywas selected, and the grade valuewas small, close
to 0. During this driving process, the master cylinder pressure
was 0 and the transmission was in 7th gear.

Fig. 12 shows part of the data from Experiment 1 and the
comparison results of three approaches. The mass estimated
by all approaches converge to the actual value within 10s,
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FIGURE 11. Test equipment and test road.

FIGURE 12. Estimation results for Experiment 1.

and there are some deviations after the convergence, among
which the proposed estimator is the smallest. In addition,
there are some small fluctuations, especially for EKF, which
is owing to the sudden drop of engine torque caused by the
driver releasing the accelerator pedal to avoid other vehicles
when driving on the expressway. The estimated grade begins
to converge to the actual value when the mass estimation
error is less than 10% (about 2 s). For grade estimation, the
proposed estimator shows better tracking and robustness than

FIGURE 13. Estimation results for Experiment 2.

other approaches as a result of the existence of environmental
noise.

B. EXPERIMENT 2
In Experiment 2, a period of 50 seconds of data in the
mountainous highway was selected, and the road grade was
relatively large, about 9◦. During this driving process, the
master cylinder pressure was 0 and the transmission was in
2nd gear.
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TABLE 2. RMSE of mass and grade in two experiments.

TABLE 3. RMSE of grade estimation with different mass errors.

Fig. 13 shows part of the data from Experiment 2 and
the estimation results. The estimated mass also converge
within 10s with a relative error of less than 3%, and the
proposed estimator shows better convergence stability. As the
mass approache the actual value, the grade estimated by all
approaches converge rapidly from the initial value of 0 to the
actual value. The proposed estimator still performs better, but
the advantage is not so prominent as Experiment 1. This is due
to the fact that the engine torque remained constant most of
the time in this case, while changed greatly when driving on
expressway.

Table 2 shows the RMSE results of vehicle mass and road
grade estimation in two experiments. Since there is a big gap
between the initial value and the actual value, the data of the
first 2 seconds are ignored. The results show that the proposed
estimator has better estimation performance than RLS-MFF
and EKF.

C. SENSITIVITY ANALYSIS
Furthermore, the potential defect of the two-step estimator
was examined, that is, the sensitivity of the second-step esti-
mator to the first-step estimated results. In this paper, it is the
sensitivity of road grade estimation to the error of estimated
vehicle mass. The estimated mass with errors of 5% and 10%
were introduced into the grade estimator respectively. Table 3
shows the RMSE of grade estimation under different mass
estimation errors, and the data of the first 2 seconds are also
ignored.

It can be seen from the table that the estimation perfor-
mance of the second-step estimator will become worse with
the errors of the first-step estimator under the two road con-
ditions. The impact of the mass estimation results on grade
estimation in mountainous highway is less, compared with
the expressway with a small grade. In general, when the
relative error of the estimated mass is less than 10%, the
accuracy of grade estimation is acceptable.

VI. CONCLUSION
In this paper, a two-step estimator for estimating vehicle mass
and road gradewas proposed. RLSwith forgetting factors was
used to firstly estimate vehicle mass along with the equivalent

resistance coefficient, which has a great influence on mass
estimation. Then, the estimated mass value was used as a
known parameter in the second-step estimator to implement
the nonlinear estimation of road grade using EKPF. In terms
of algorithm verification, the proposed estimator was com-
pared with two commonly used estimation approaches based
on simulation data, and the results indicate that it has a better
estimation accuracy. Vehicle road tests were carried out on
expressways andmountainous highways respectively, and the
feasibility of the algorithm is further verified. Moreover, the
sensitivity of grade estimation to mass error was analyzed,
and it turned out to show a satisfactory performance of the
second-step estimator when the error of the first-step estima-
tor is less than 10%.

The information on estimated vehicle mass and road grade
can be used for active safety control and power management.
And the estimator likely gets a more ideal effect for battery
electric vehicles, it is attributed to the precise measurement of
motor torque. The proposed estimator will not be activated in
the downhill road where the braking operation is dominant,
because the braking force cannot be accurately obtained.
However, the braking safety of vehicles, especially heavy-
duty commercial vehicles, is greatly affected by vehicle mass
and road grade. Consequently, the estimation of mass and
grade on the downhill road as well as the braking control
based on the estimated results will be the future research.
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