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ABSTRACT Electricity theft is one of the main causes of non-technical losses and its detection is important
for power distribution companies to avoid revenue loss. The advancement of traditional grids to smart
grids allows a two-way flow of information and energy that enables real-time energy management, billing
and load surveillance. This infrastructure enables power distribution companies to automate electricity
theft detection (ETD) by constructing new innovative data-driven solutions. Whereas, the traditional ETD
approaches do not provide acceptable theft detection performance due to high-dimensional imbalanced
data, loss of data relationships during feature extraction and the requirement of experts’ involvement.
Hence, this paper presents a new semi-supervised solution for ETD, which consists of relational denoising
autoencoder (RDAE) and attention guided (AG) TripleGAN, named as RDAE-AG-TripleGAN. In this
system, RDAE is implemented to derive features and their associations while AG performs feature weighting
and dynamically supervises the AG-TripleGAN. As a result, this procedure significantly boosts the ETD.
Furthermore, to demonstrate the acceptability of the proposed methodology over conventional approaches,
we conducted extensive simulations using the real power consumption data of smart meters. The proposed
solution is validated over themost useful and suitable performance indicators: area under the curve, precision,
recall, Matthews correlation coefficient, F1-score and precision-recall area under the curve. The simulation
results prove that the proposed method efficiently improves the detection of electricity frauds against
conventional ETD schemes such as extreme gradient boosting machine and transductive support vector
machine. The proposed solution achieves the detection rate of 0.956, which makes it more acceptable for
electric utilities than the existing approaches.

INDEX TERMS Electricity theft detection, smart grids, relational denoising autoencoder, electricity
consumption, TripleGAN.

NOMENCLATURE
X EC of consumer
xi(t+1) Next EC value
xi(t−1) Previous EC value
xi Current EC value
t Time interval
c Summation of previous and next EC values
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Q1 Lower quantile
Q3 Upper quantile
H Hidden representation of autoencoder
L Reconstruction of autoencoder
e(.) Encoding function of autoencoder
se(.) Activation function of encoder
sd(.) Activation function of decoder
W Weights of neural networks
b Biases of neural networks
X ′ Reconstructed input by autoencoder
d(.) Decoding function of autoencoder
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θ Hyperparameters of autoencoder
R(.) Associations’ function in relational autoencoder
X̂ Corrupted input by denoising autoencoder
X ′′ Reconstructed input by denoising autoencoder
α Scale variable of relational autoencoder

I. INTRODUCTION
Currently, over 80% of the world uses electricity [1]. There-
fore, secure, efficient and reliable distribution of electricity
is an important concern of power utilities. Generally, non-
technical losses (NTL) are the chief concerns for power
utilities because they cover the largest proportion of the total
electrical losses. Whereas, the technical losses (TL) include
a minor and unavoidable portion of electricity distribution
systems’ losses, e.g., line losses. Specifically, NTL cover
electricity frauds andmeters’ malfunctioning along with their
installation problems and billingmistakes [2]. The act of elec-
tricity fraud is the prime cause of NTL, which further leads to
power grid instability, inefficiency and poor reliability along
with a significant proportion of economic losses. Therefore,
the honest electricity consumers are penalized with heavy
electricity bills because of the per unit increase in electricity
price due to the energy scarcity caused by electricity theft.

Presently, electricity theft is a global issue, which is faced
by both developed and underdeveloped nations. For instance,
a report stated that a loss of $89.3 billion is recorded globally
on account of electricity theft [1]. Likewise, India and Brazil
lose approximately $4.5 billion annually [3], US has $6 bil-
lion per annum [4], UK suffers around $173 million/year [5],
Canada losses $100 million annually [6] and other emerging
nations lose around 50% of the power utilities’ revenue [1].
Hence, these statistics explain the necessity of electricity
theft detection (ETD). The electric companies require to
detect electricity frauds to ensure reliable and efficient energy
distribution and to reduce potential revenue loss.

The common ways of ETD are to conduct manual inspec-
tions of selected consumers and audit their previous electric-
ity bills. However, these approaches are inefficient because
they are both time and labor-intensive. The advancement of
traditional power grids with smart technologies and intelli-
gence gives rise to the concept of smart grids that provide a
two-way flow of energy and information [7]. Thus, enabling
efficient power management [8], real-time billing and load
surveillance [9]. Smart grids create large electricity usage
profiles of consumers by recording their energy consumption
at short intervals, typically, after every 30 minutes. More-
over, they help in designing and automating the data-driven
solutions.

A substantial amount of research is proposed to develop
hardware based, data-driven machine learning based and
game-theory based solutions for ETD [10]. Hardware based
solutions are also called state-driven solutions. These solu-
tions are aimed to design and utilize sensors or physical
components to identify the irregular behavior of electric-
ity thefts [11]–[13]. However, these approaches are costly

and vulnerable to seasonal effects. The game-theory based
solutions rely on the formation of a contest between the
power utility and the electricity fraudsters [14], [15]. The
design of a utility function in game-theoretic schemes is a
challenging and expensive task. Due to the limitations in
state-driven and game-theoretic ETD methods, the solutions
that rely on data-driven approaches are more practical and
cost-efficient. These solutions analyze the consumers’ large
electricity consumption (EC) records for the identification of
electricity fraudsters. Therefore, the prime intention of this
work is to focus on data-driven solutions. We characterize
these solutions into three groups: supervised solutions, unsu-
pervised solutions and semi-supervised solutions.

A. SUPERVISED SOLUTIONS
Here we discuss the supervised learning mechanisms that
require labeled EC data for ETD, which is obtained by on-
site inspections. Zheng et al. [16] implement an approach
that relies on the wide and deep convolutional neural net-
work (WD-CNN) for ETD. Hasan et al. [17] present the
combination of CNN and long short-term memory (LSTM)
where CNN is practiced to derive abstract features while the
LSTM is employed for theft detection. The authors in [18]
design a hybrid of LSTM and random under-sampling boost-
ing (RUSBoost) for the detection of dishonest consumers.
LSTM is employed to capture long term dependencies while
RUSBoost is employed for ETD. Likewise, Li et al. [19]
propose a hybrid technique that utilizes CNN and random
forest (RF) where RF acts as a classification layer of CNN.
A similar case is presented in [20] where authors execute the
extreme gradient boosting (XGBoost) tree method to rank the
electricity consumers. It uses the smart meters data together
with the auxiliary databases to improve ETD. In another
study [21], the authors present firefly optimization based
XGBoost for ETD in the smart grid environment. In the
system, the meta-heuristic technique is employed to tune the
hyperparameters of XGBoost. The authors in [22] apply three
variations of the gradient boosting theft detector to identify
the electricity misconducts by fraudulent consumers. Another
study [23] offers the hand-crafted feature extraction mecha-
nism alongwith the RUSBoost approach for the identification
of abnormality in the EC profiles of consumers. Furthermore,
Buzau et al. [24] introduce a methodology for sequential and
nonsequential data. The former is served to LSTM for long-
term dependencies and later is fed to the multi-layer per-
ceptron (MLP) for auxiliary information. Another work [25]
introduces a new data sampling mechanism to solve data
imbalance concerns together with the usage of bi-directional
gated recurrent unit for ETD. Likewise, in [26], an improved
sampling technique is presented to handle the imbalanced
data along with RF for ETD. Saeed et al. [27] present a new
decision tree based supervised classification mechanism for
the identification of NTL. However, supervised learning solu-
tions solely require a large amount of labeled EC data, which
is insufficient and sometimes infeasible in real life because
it demands expensive on-field inspections. Moreover, these
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approaches confront the model’s biasness issue due to the
imbalanced data.

B. UNSUPERVISED SOLUTIONS
Here we describe some recent advances made for ETD by
utilizing the unsupervised learning procedures that work with
unlabeled EC histories of consumers. In [28], the authors
employ the maximum information coefficient (MIC) together
with the fast search and find of density peaks clustering
for ETD. Similarly, the authors in [29] implement an unsu-
pervised learning mechanism, namely, density-based spatial
clustering of applications with noise to identify abnormalities
in smart grids. Likewise, Joaquim et al. [30] use an unsu-
pervised clustering technique, named as fuzzy Gustafson-
Kessel, for the identification of NTL in smart grids. In [31],
a mixture of clustering and deep learning based model is
proposed for theft detection in smart grids. In particular,
the authors employ K-means for grouping similar consumers
while deep learning is used for ETD. The authors in [32]
introduce the generative adversarial networks (GANs) based
model: VAE-GAN, for dimensionality reduction. Further-
more, they use K-means for the grouping of consumers using
extracted features by VAE-GAN. Cheng et al. [33] present
an approach that utilizes ensemble of autoencoders and also
provide a comprehensive study on autoencoders for abnor-
mality detection. Moreover, in [34], the authors execute a
clustering technique self-organizing maps to group similar
EC instances. Then, the MLP based model is used for the
identification of electricity fraudsters. The unsupervised solu-
tions widely consist of clustering based methods, which have
less capability to handle high-dimensional noisy data and
also fail to extract refined meaningful features. Similarly, few
of them are evaluated on synthetic data that do not provide
a realistic assessment. Moreover, clustering methods search
for centroids and group closer instances into a single cluster
where the misjudgment uplifts the misclassification rate.

C. SEMI-SUPERVISED SOLUTIONS
This section investigates the ETD methods that effi-
ciently utilize the supervised and unsupervised EC records.
Tianyu et al. [35] present a multi-tasking based semi-
supervised learning fraud detector for ETD in which authors
gain the benefits of both labeled and unlabeled informa-
tion. The authors in [36] introduce a semi-supervised mecha-
nism, which is a combination of CNN, LSTM and stacked
autoencoder (SAE). This mechanism uses the concept of
transfer learning. Another work done in [37] implements
a semi-supervised support vector machine (SVM), named
as transductive SVM (TSVM), for ETD by utilizing the
labeled and unlabeled information. Likewise, authors in [38]
design a deep generative model, termed as semi-supervised
autoencoder (SSAE), which makes use of semi-supervised
information for ETD. A similar case is presented in [39]
where a mean teacher based semi-supervised mechanism
is used for the identification of NTL. In [40], the advan-
tages of semi-supervised EC data is obtained by utilizing the

semi-supervised SVM for the detection of abnormal con-
sumers. From the aforementioned methods, it is learned that
the semi-supervised solutions combine the benefits of both
labeled and unlabeled information to improve the ETD. How-
ever, these methods require extensive involvement of human
experts for acceptable ETD performance by a model. In sum-
mary, the following problems are the focus of this paper.

1) The limited essence of labeled EC data and auxiliary
data makes it impossible to treat ETD as a fully super-
vised problem. Moreover, the performance of conven-
tional methods is examined using synthetic EC profiles
that do not provide a realistic assessment of a model.

2) The unbalanced EC data of consumers lead to the
model’s biasness problem. The majority class hides
the classification capabilities of the minority class
because the model learns more EC patterns of normal
consumers.

3) There exists noisy high-dimensional imbalanced data
with associations between its features. During the fea-
ture extraction phase, the conventional methods fail to
derive correlations between these features.

4) Existing methods require considerable involvement of
human experts during feature extraction and model
training phases for superior performance regarding
ETD. It shows the need for an automated mechanism.

We propose a new semi-supervised solution for ETD,
which is a combination of relational denoising autoen-
coder (RDAE) and attention guided (AG) TripleGAN,
termed as RDAE-AG-TripleGAN. In the proposed solution,
RDAE reduces both the noise and dimensionality of data.
It also derives the relationships between data features. After-
wards, the AG-TripleGAN is applied where AG dynamically
weights the extracted features and also guides the TripleGAN
to paymore attention to highly weighted features by adjusting
the model’s parameters. In this context, the proposed solution
takes the advantages of EC data in terms of both labeled and
unlabeled forms. The proposed solution is different from the
traditional approaches as follows.
• A deep semi-supervised mechanism is proposed, named
as RDAE-AG-TripleGAN, which utilizes the important
information present in unlabeled cases and labeled rep-
resentations. Therefore, it improves the model’s gener-
alization ability along with the improvement in ETD.

• A deep RDAE is presented that reduces the noise and
dimensionality of features from the data. It also cap-
tures the relationships between data features during
the feature extraction phase. Thus, it helps to improve
the model’s performance for ETD by maintaining the
presence of features’ associations.

• An AG-TripleGAN is proposed where the AG mech-
anism assigns weights to features and also acts as a
supervisor to dynamically supervise the TripleGAN.

• Extensive simulations are conducted over the real EC
data that examine the proposed methodology’s sig-
nificance against existing schemes. The simulation
results demonstrate that the proposed solution gains
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FIGURE 1. Overview of the proposed methodology.

superior results for ETD as compared to conventional
approaches.

The remainder of this paper is as follows. Section II reports a
detailed description of the proposed methodology. Whereas,
the examination to show the significance of our proposed
solution against other methods is presented by conducting
simulations in Section III. Lastly, we conclude this paper in
Section IV.

II. PROPOSED METHODOLOGY
This section describes the structure and components of the
proposed methodology presented in this paper. The proposed
methodology is constructed and evaluated using the real-
time smart meters’ data. It begins with the preprocessing of
data. Afterwards, its subsequent modules are constructed to
form a complete solution. The proposed methodology has
three main stages: feature extraction, attention guidance and
ETD, as shown in Fig. 1. It can be seen that the proposed
semi-supervised RDAE-AG-TripleGAN solution addresses
the limitations of conventional ETD schemes. The proposed
solution uses semi-supervised data that solves the scarcity of
labeled EC data, which is costly in real life due to expen-
sive on-field inspections. Afterwards, the proposed solution
employs deep RDAE for noise reduction and feature extrac-
tion. It also maintains the relationships between features dur-
ing the feature extraction phase that fail to do the traditional
feature extraction techniques. Furthermore, the proposed
solution practices AG, which performs feature weighting and
also acts as a guider to dynamically supervise the semi-
supervised TripleGAN. The dynamic supervision of proposed

TripleGAN via AG overcomes the expensive requirement
of experts, which is required in conventional ETD schemes
for better ETD results. The proposed RDAE-AG-TripleGAN
for ETD is a deep learning based semi-supervised solution
that efficiently deals with high-dimensional imbalanced data.
Moreover, it also has the characteristic to generate fake sam-
ples and labels that solve the model’s biasness problem due
to imbalanced data. The following sub-sections describe the
detailed description of each component.

A. DATA PREPROCESSING
The proposed solution is implemented on the smart meters
data of daily electric power consumption of consumers,
which is made available by the state grid corporation of China
(SGCC) [41]. The dataset contains real on-field inspected
honest and dishonest consumers. The dishonest consumers
are considered as the ground truth in this work. The infor-
mation about the dataset is provided in Table 1. The smart
meters are present at consumers’ end where they keep track
of the power consumption of consumers and forward it to
the electric utility over the communication network. This can
lead to the presence of the missing and outliers/erroneous
values in the dataset due to failure of meter components,
memory issues or any other malfunctioning. Consequently,
we need to apply the data preprocessing techniques to refine
the dataset. The data preprocessing phase has three sub-tasks
that handle the missing values, recover outliers and perform
normalization. Therefore, the missing values are computed
first using the concept of linear interpolation that uses the
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TABLE 1. Information about the dataset.

following formula:

f (xi) =


c
2
, xi ∈ NaN , xi(t−1), xi(t+1) /∈ NaN ,

0, xi ∈ NaN , xi(t−1) or xi(t+1) ∈ NaN ,
xi, xi /∈ NaN ,

(1)

where c = xi(t−1) + xi(t+1). xi is the current EC value at time
t (i.e. a day). NaN indicates that xi is not a numeric character.
Besides, outliers are also present in data that negatively affect
the model’s performance. Therefore, we imply the notion of
interquartile range [38], which is a statistical method to find
and recover the erroneous instances, as given in Equation 2.

Z (xi) =

{
m, xi > m,
0, xi < 0,

(2)

where m = Q3(X ) + [Q3(X ) − Q1(X )] × 3. In addition,
Q3(X ) and Q1(X ) denote the upper (75th) and lower (25th)
quantiles for each consumer’s profile (X ), respectively. After-
wards, we normalize the data throughmin-max normalization
because deep learning approaches are more susceptible to
diverse data.

B. RELATIONAL DENOISING AUTOENCODER
This sub-section describes the noise and dimensionality
reduction procedure by applying RDAE. In ETD, the first
step is to obtain the most appropriate feature set due to
the increasing size of EC data, i.e., high-dimensional data.
Therefore, we utilize the idea of autoencoder due to its
great success, which mainly consists of a neural network
based unsupervised learning structure. A plain autoencoder’s
structure typically consists of an encoder and a decoder
with the prime intention of dimensionality reduction. The
reduced features cover important information of original
high-dimensional data, which is obtained by minimizing the
reconstruction loss [42]. In general, the encoder part maps
the given input X over the hidden representation H , which is
expressed as:

H = e(X ) = se(WX + bX ), (3)

where se is the encoder’s activation function, W signifies
the weights and b expresses the bias vector. Likewise, for l
number of stacked layers, the encoder function is defined as:

H = el(. . . e2(e1(X ))). (4)

Furthermore, the decoder part maps back the hidden repre-
sentationH to obtain its reconstruction X ′, which is specified
as:

X ′ = d(H ) = sd(W ′H + bH ), (5)

where sd is the activation function of decoder. W ′ and bH
denote the weights and bias vector of decoder, respectively.
For l number of stacked layers, the decoder function is stated
as:

X ′ = dl(. . . d2(d1(X ))). (6)

whereas, a simple autoencoder achieves its objective by min-
imizing the reconstruction loss L, which is described as:

obj = min
θ
L(X ,X ′) = min

θ
L(X , d(e(X ))). (7)

In this work, we exploit RDAE due to its great success,
which is the type of relational autoencoder (RAE). It is
an improved version of traditional deep autoencoders [42].
Therefore, we employ it to overcome the limitations of con-
ventional autoencoders [32], [33], [36], [43], which do not
maintain the relationships between features during the fea-
ture extraction mechanism. Consequently, this loss of fea-
tures’ associations affects the ETD results. A simple RAE
achieves its purpose by minimizing the data reconstruc-
tion loss L(X ,X ′) and their associations’ reconstruction loss
L(R(X ),R(X ′)) [42], which is explained as:

obj = (1− α)min
θ
L(X ,X ′)+ αmin

θ
L(R(X ),R(X ′)), (8)

where R(X ) and R(X ′) capture associations among features
in X and X ′, respectively. Particularly, θ indicates the three
parameters of an autoencoder, includingW , bH and bX , which
have an influential impact on the minimization of L. There-
fore, α is a scale variable that maintains the L of both features
and their associations by controlling the W . Furthermore,
RAE also provides an extension of denoising autoencoders
(DAE), named as RDAE, which is employed in this paper
for noise and dimensionality reduction, as shown in Fig. 1
(red dashed block). RDAE simply corrupts the given input X ,
called corrupted input X̂ and also reconstructs X ′′ as the cor-
rupted input. In this work, we corrupt X by adding the Gaus-
sian noise, i.e., X̂∼ G(0, σ ), where σ represents the standard
deviation of X . Thus, the prime intention is to better learn
and generate the feature representations along with the noise
reduction to improve the ETD performance. The objective
function of RDAE is computed by minimizing L between
X̂ and X ′′ together with their features’ associations XXT and
corrupted features’ associations X̂X̂T with rectifier function
t [42], which is stated as:

obj = (1− α)min
θ
L(X , X̂ )+ αmin

θ
L(TtXXT ,Tt X̂ X̂T ), (9)

where the data associations are described according to their
similarities like R(X ) demonstrates the multiplication of X
and XT . We employ RDAE for the first time in this paper for
ETD. It extracts features and keeps their relationships. The
simulation results prove the importance of features’ associa-
tions, which are necessary to improve the ETD performance.
RDAE significantly reduces noise, execution time, overfitting
problem and also improves ETD results. The RDAE’s struc-
ture used in this work is based on the stack of three hidden
layers in each of its encoder and decoder sections. Moreover,
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it utilizes binary cross-entropy as a loss function along with
Adam optimizer.

C. MIC BASED AG FOR DYNAMIC LEARNING
In this sub-section, we express the AGmodule, which applies
MIC for features’ weighting and model’s guidance to focus
on significant features, as shown in Fig. 1. More specifically,
it takes the extracted features by RDAE and performs fea-
ture weighting according to the presence of associations and
redundancy between them. Afterwards, the weighted features
are served as unsupervised inputs to AG-TripleGAN. Where,
AG acts as a supervisor to dynamically guide the TripleGAN,
which keeps its focus on highly weighted features to better
learn the complex representations. In particular, AG updates
the TripleGAN’s parameters according to the weights asso-
ciated with features, which represent the feature importance.
In this way, the proposed AG-TripleGAN efficiently learns
the most difficult EC patterns of consumers, which results
in accurate identification of electricity fraudsters. The pro-
posed AG mechanism is different from other methods in the
sense that it weights the extracted features in the range of 0
and 1 and also dynamically adapts TripleGAN’s parameters.
The weights near to 0 show no associations (independence)
between features and near to 1 point the highest correlation
between them.

This mechanism is the core part of the proposed solu-
tion that highly improves ETD performance, as validated
in Section III-C. The proposed AG mechanism is based on
the most recent and powerful approach, MIC, which uses
the concept of information theory. It finds the degree of
correlation and similarity between features and also weights
them accordingly [28]. Traditionally, the Pearson correlation
coefficient (PCC), mutual information (MI) and Spearman
correlation coefficient (SCC) were employed to find the asso-
ciations between features. However, PCC and SCC cannot
find the complex nonlinear associations between data fea-
tures. Whereas, MIC relies on the MI, which has the benefits
of generality, equitability and better performance [29]. The
mathematical illustration of MIC is expressed as:

MIC(v, z) = max(I (v, z)/log2min(av, az)), (10)

where I (v, z) is the MI between two random variables v and
z. av and az indicate the number of bins where v and z are
partitioned.

D. SEMI-SUPERVISED AG-TRIPLEGAN FOR
CLASSIFICATION
Here we describe the last phase of the proposed methodology
for ETD. A new semi-supervised learning procedure, AG-
TripleGAN, is introduced to overcome the limitations of
traditional techniques [16], [20], [36]–[38]. These techniques
work on labeled EC data and auxiliary data, which is lim-
ited in the real world due to expensive on-field inspections.
Therefore, we use a semi-supervised mechanism, Triple-
GAN, for ETD due to the rapid success of GAN [44]. The
conventional GAN models are typically based on two neural

networks, known as generator and discriminator [45].
Whereas, the TripleGAN comprises three neural networks
with the incorporation of a classifier to enhance the per-
formance of traditional GANs. Therefore, its architecture
is mainly composed of generator G, discriminator D and
classifier C, as shown in Fig. 1 (blue dashed block). It plays
a three-player minimax game, in which the generator syn-
thesizes fake instances that meet the statistics of the actual
data to fool the discriminator. Likewise, the classifier takes
the real EC data as input and generates fake labels. In this
context, the fake generated samples and labels minimize the
data imbalance problem that negatively affects the ETD. The
authors in [43] solved this problem by applying a GAN based
approach.

The discriminator appears as a classification technique that
discriminates among the real and fake generated sample-
label pairs as well as classifies the electricity fraudsters.
TripleGAN plays a three-player minimax game in the sense
that if the discriminator accurately identifies the fake gener-
ated samples and labels, then no parameters’ refinement is
required for the discriminator. Hence, the changes are made
to the parameters of the generator and classifier to generate
more tricky fake samples and labels. On the other hand, if the
generator and classifier succeed to fool the discriminator, then
no parameter updation is required for generator parameters.
Thus, the parameter tuning is performed for the discriminator
to enhance its discrimination power.

In this paper, the AG-TripleGAN for ETD is constructed
using the structure formerly defined in [44]. In which,
the dynamic adaptation of parameters with respect to the
weighted features by AG is incorporated. Hence, we propose
an AG-TripleGAN for ETD. It is served with the weighted
unsupervised features along with the labeled EC profiles to
take the advantages of both unlabeled and labeled informa-
tion. It also learns the weights associated with each weighted
feature and updates its network parameters dynamically
according to these weights. Hence, the dynamic adaption of
parameters enables the AG-TripleGAN to efficiently max-
imize the ETD’s objective. Therefore, the proposed mech-
anism obtains more reliable results for theft detection as
discussed in Section III-C.

III. SIMULATION RESULTS
In this section, the effectiveness of the proposed RDAE-
AG-TripleGAN for detecting electricity frauds is analyzed.
In addition, we demonstrate the efficiency and usefulness
of the proposed solution as compared to the existing ETD
techniques. The proposed solution is simulated over the real
smart meters’ data using the most well-known and powerful
libraries of Python, identified as TensorFlow and Keras.

A. SIMULATIONS SETTING
The proposed methodology is trained and assessed using
the smart meters dataset of SGCC on HP Intel core
i5-2310M machine having 4GB RAM and 500GB hard-
drive. The dataset contains the EC of consumers from JAN
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2014 to OCT 2016. The information about the dataset is
stated in Table 1. Moreover, SGCC has explicitly stated the
ground truth of 3615 electricity thieves, validated through the
on-field inspections. Furthermore, to get effective simulation
results, this work begins with data preprocessing. In which,
linear interpolation, interquartile range and min-max normal-
ization are applied to preprocess the dataset, as mentioned
in Section II-A. After that, the preprocessed dataset is dis-
tributed into three sets: training set, validation set and testing
set. The training ratio is defined to be 80% and the remaining
20% is assigned to testing and validation sets, 10% each. Fur-
thermore, each set contains the proportion of 90% unlabeled
consumers while 10% of labeled consumers. Afterwards,
RDAE is trained to perform denoising and feature extraction.
Its structure consists of three fully connected layers in each of
its encoder and decoder parts. In the encoder part of RDAE,
the fully connected layers have neurons in an increasing
order, i.e., 64, 128 and 256 while the layers of decoder have
them in decreasing order, i.e., 256, 128 and 64. The struc-
ture of AG-TripleGAN is already defined in Section II-D.
Furthermore, RDAE and AG-TripleGAN are trained by min-
imizing the binary cross-entropy as their cost functions
using 60 training iterations (epochs). Specifically, we did
not employ any special mechanism to tune the hyperparam-
eters of the proposed solution. Rather, the proposed solution
is trained and tested using the commonly used grid-search
approach for finding the best hyperparameters’ configuration
where the proposed model efficiently minimizes the loss and
improves the ETD results using real EC data.

B. PERFORMANCE INDEXES
Essentially, ETD is a highly complex anomaly detection
mechanism due to imbalanced data of majority (regular)
and minority (fraudsters) class. Therefore, there is a need to
select the most suitable performance evaluation indexes to
measure the performance of the proposed methodology. For
classification, these performance indexes are obtained from
the confusion matrix, which returns four possible outcomes,
particularly, true positive (TP), true negative (TN), false posi-
tive (FP) and false negative (FN). We use six most useful and
suitable performance metrics that are based on the outcomes
of the confusion matrix. These metrics include area under the
curve (AUC), precision, recall, Matthews correlation coef-
ficient (MCC), F1-score and precision-recall area under the
curve (PR-AUC) [23], [28], [46]. In particular, accuracy is the
most common performance measure for classification prob-
lems. We do not consider accuracy as a performance measure
in this work because the overall accuracy will always be
high even if the proposed solution fails to identify electricity
theft. The mathematical expressions of F1-score and MCC
are described in Equations 11 and 12:

F1 = 2×
Precision× Recall
Precision+ Recall

, (11)

MCC =
C1

√
C2 × C3 × C4 × C5

, (12)

FIGURE 2. RDAE based loss analysis.

where C1 = (TN × TP) − (FP × FN ), C2 = (FP + TP),
C3 = (FN + TP), C4 = (FP + TN ) and C5 = (FN + TN ).
Specifically, recall, also known as detection rate (DR) and
true positive rate (TPR), is used to measure how perfectly the
proposed solution detects the electricity fraudsters. Whereas,
precision is applied to assess the performance of the pro-
posed mechanism regarding FP. Moreover, F1-score derives
the balance of precision and recall to obtain more realistic
assessment of the proposed methodology. Likewise, AUC,
also known as the area under the receiver operating charac-
teristic curve (ROC-AUC), is a graphical description of TPR
against the false positive rate (FPR) over the varying thresh-
old. A higher ROC-AUC score, typically, more than 0.5,
depicts better distinguishing capability of the model while
less than 0.5 shows its inverse case. Furthermore, PR-AUC
is obtained by representing the precision against recall score
over the varying threshold. It shows that a perfect classifier
for ETD is the one who which achieves accurate TP with a
less number of FP and FN. It enables the model to appear at
the top of other models. Lastly, MCC is the most suitable and
appropriate performance measure. It finds the associations
between four outcomes, i.e., TP, FP, TN and FN.

In summary, the prime intention of this work is to effi-
ciently maximize DR and minimize FPR. The cost of FN
is pretty high and significant because it shows the price
of electricity used that is not paid by dishonest consumers.
Whereas, the cost of FP is much lower than FN because
it shows the cost of on-field inspections against the cost of
energy stolen. Therefore, in ETD, more attention is given to
recall than precision.

C. PROPOSED SOLUTION EVALUATION RESULTS
This sub-section interprets the performance evaluation results
of the proposed RDAE-AG-TripleGAN methodology for
ETD using the above-mentioned performance indicators. The
proposed method begins with the process of denoising and
extraction of features using RDAE, as shown in Figs. 2 and 3.
The values of these plots depict the loss and accuracy of
RDAE verses epochs during training. Fig. 2 shows the
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FIGURE 3. RDAE based accuracy analysis.

FIGURE 4. AUC based analysis of Proposed solution.

convergence of loss during the training and validation phases
of RDAE. It demonstrates that RDAE consistently learns the
power consumption patterns throughout feature extraction
and uniformly minimizes the loss. In Fig. 3, we demonstrate
the analysis of the proposed RDAE in terms of accuracy.
It efficiently performs feature extraction and also derives fea-
tures’ associations. Afterwards, the weights are assigned to
the extracted features by the AG and served as the unlabeled
feature representations to AG-TripleGAN. On the other hand,
the limited amount of labeled EC cases are also supplied
as input to the AG-TripleGAN to train in a semi-supervised
fashion. Figs. 4 and 5 depict AUC and PR-AUC performance
analysis of the proposed solution on training and validation
sets verses training iterations, respectively. As it is seen that
the proposed semi-supervised solution efficiently improves
AUC and PR-AUC score throughout the training phase. This
improvement depicts the dynamic detection capability of the
proposed solution.

Likewise, Figs. 6 and 7 demonstrate the proposed solu-
tion’s performance regarding MCC and F1-score, respec-
tively. It is evident that the proposed model efficiently
obtains excellent results for ROC-AUC, PR-AUC, MCC and
F1-score, i.e., closer to 0.98, as the number of training

FIGURE 5. PR-AUC based analysis of Proposed solution.

FIGURE 6. MCC based analysis of Proposed solution.

FIGURE 7. F1-score based analysis of Proposed solution.

iterations increase. These results clarify that the proposed
solution efficiently captures irregularities from the dataset by
taking the advantages of both labeled and unlabeled EC pro-
files. Furthermore, these results define the significance of the
proposed RDAE and AG mechanism for high-dimensional
imbalanced data.

RDAE-AG-TripleGAN creates a contest (minimax
game) for its generator, classifier and discriminator parts,
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FIGURE 8. Generator based loss analysis.

FIGURE 9. Generator based accuracy analysis.

as described in Section II-D. In this context, Figs. 8 and 9
show the loss and accuracy analysis of generator during the
training phase, respectively, using training and validation
sets. As it is evident in Fig. 8 that the loss of the generator
increases with the increase in epochs. It synthesizes the fake
samples to fool the discriminator. Therefore, Fig. 8 shows the
remarkable discrimination capability of the discriminator to
efficiently detect the fake samples, which increases the loss
of generator sub-model. Similarly, Fig. 9 depicts the accuracy
analysis of generator sub-model, which also demonstrates the
excellent capability of the discriminator. In a similar manner,
Figs. 10 and 11 analyze the performance of the classifier
for generating fake labels to mislead the discriminator. It is
evident that the discriminator accurately predicts the fake
labels generated by the classifier. Afterwards, Figs. 12 and 13
show the loss and accuracy of the discriminator, respectively,
while distinguishing the real and fake generated examples
and labels. It is clear that the discriminator smoothly reduces
the loss up to 0.08, together with the improvement in accuracy
covering 0.99 over the training and validation sets. Therefore,
the proposed semi-supervised solution gives remarkable per-
formance for ETD during the training process.

FIGURE 10. Classifier based loss analysis.

FIGURE 11. Classifier based accuracy analysis.

FIGURE 12. Discriminator based loss analysis.

In Figs. 14 and 15, we illustrate the graphical represen-
tation of ROC-AUC and PR-AUC of the proposed semi-
supervised mechanism for ETD. In particular, Fig. 14 shows
that the proposed solution achieves excellent scores in terms
of ROC-AUC using training, validation and testing sets.
Similarly, Fig. 15 depicts that it also obtains reliable results
for PR-AUC performance measure using the same sets.
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FIGURE 13. Discriminator based accuracy analysis.

FIGURE 14. ROC-AUC based analysis of proposed solution.

FIGURE 15. PR-AUC based analysis of proposed solution.

Furthermore, Fig. 16 justifies the competency of the pro-
posed semi-supervised mechanism while demonstrating the
effects of both labeled and unlabeled EC instances using F1-
score, MCC and AUC. It depicts that with the increasing
number of labeled cases, the proposed scheme uniformly
uplifts its ETD results. Moreover, even with a few num-
bers of labeled instances, i.e., 500 and 1000, the proposed
solution also proves to be perfection for ETD. Furthermore,

FIGURE 16. Effects of labeled and unlabeled data.

TABLE 2. Optimal hyperparameters’ selection for TSVM and XGBoost
using grid-search.

using 1500 labeled EC histories make the proposed semi-
supervised mechanism to touch its peak values.

D. BENCHMARK MODELS
This sub-section describes the performance comparison of
the proposed solution with conventional approaches for ETD.
It validates the uniqueness, effectiveness and appropriateness
of the proposed RDAE-AG-TripleGANmethodology for real
practices over traditional techniques. Following are the fun-
damental and conventional approaches for ETD.

1) TSVM
SVM is a well-known classifier used in many
works [47], [48], for ETD. It creates a boundary between
classes for class separation. The authors in [37] design a
semi-supervised SVM, named as TSVM, to make use of both
labeled and unlabeled information. Therefore, we consider
it as a baseline. In [49], authors present the significance
of hyperparameters’ tuning in the smart grid environment.
Therefore, the optimal hyperparameters’ selection of TSVM
is defined in Table 2.

2) XGBoost
It is a supervised learning approach that is widely used in
recent works, [20], [22], for abnormality detection in smart
grids. It employs the concept of gradient boosting decision
trees in which a strong learner is produced by applying
the ensemble of weak learners. In [20], the authors employ
XGBoost over the real-time smart meters data together with
the auxiliary databases to enhance the ETD performance.
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Furthermore, the hyperparameters of XGBoost play an
important role to optimize the detection performance. There-
fore, their optimal values are selected using grid-search,
as given in Table 2.

3) LSTM-MLP
Another approach, LSTM-MLP, is presented in [24] for NTL
detection. The authors train LSTM over sequential EC his-
tories to derive long-term associations between them while
MLP is employed to capture non-sequential information from
the auxiliary information. This work considers LSTM-MLP
using the same hyperparameters’ setting, which is given
in [24].

4) CNN-LSTM-SAE
A new semi-supervised solution, CNN-LSTM-SAE, is pro-
posed in [36] for NTL detection. It practices the concept
of transfer learning to utilize the knowledge of labeled and
unlabeled EC instances. Therefore, we use it as a baseline
scheme.

5) SSAE
A semi-supervised learning based deep autoencoder, termed
as SSAE, is proposed in [38] for the identification of NTL.
This work considers it as a benchmark model for the perfor-
mance comparison.

6) AG-TripleGAN
In order to show the importance of features’ relationships
during the feature extraction process, we remove RDAEmod-
ule of the proposed methodology and consider it as a vari-
ant. Now, the AG-TripleGAN’s training process begins with
features’ weighting mechanism where weights are assigned
to the original unlabeled EC data and forwarded to the
AG-TripleGAN for ETD.

7) RDAE-TripleGAN
It is considered as another variant of the proposed
RDAE-AG-TripleGAN. In which, we simply remove the
AG module to show its significance for better ETD results.
RDAE-TripleGAN begins with the noise reduction and fea-
ture extraction phase. Afterwards, the extracted features and
labeled samples are passed as inputs to TripleGAN for ETD.

Table 3 contains the summarized performance compari-
son results of the proposed solution and other conventional
benchmark schemes using the SGCC dataset. It is clear
that the proposed solution gains better results over exist-
ing schemes in terms of AUC, PR-AUC, precision, recall,
MCC and F1-score. More specifically, the proposed model
obtains 0.987, 0.956, 0.952, 0.958, 0.967 and 0.943 for
precision, recall, AUC, PR-AUC, F1-score and MCC over
the given dataset, respectively. Whereas, the DR for TSVM,
SSAE, CNN-LSTM-SAE, LSTM-MLP and XGBoost is
quite similar to each other, i.e., 0.657, 0.801, 0.824, 0.832 and
0.802, respectively. The proposed semi-supervised mecha-
nism achieves the highest DR among all other conventional

FIGURE 17. SGCC dataset based ROC-AUC comparison.

FIGURE 18. SGCC dataset based PR-AUC comparison.

techniques, i.e., 0.956. Consequently, it efficiently optimizes
the ETD results. Moreover, the two variants,
RDAE-TripleGAN and AG-TripleGAN, of the proposed
methodology have also achieved better results than the
traditional TSVM, SSAE, XGBoost, LSTM-MLP and
CNN-LSTM-SAEmodels. Although, RDAE-TripleGAN and
AG-TripleGAN have inferior performance than the pro-
posed RDAE-AG-TripleGAN. It is seen from Table 3 that
RDAE-TripleGAN gives values of 0.956, 0.914, 0.901,
0.896, 0.924 and 0.908 for precision, recall, AUC, PR-AUC,
F1-score and MCC, respectively. These results are less
than the proposed model’s results, which prove that with-
out using the AG module, the proposed solution requires
attention for the complex representations. This also proves
the significance of the proposed AG mechanism. Further-
more, AG-TripleGAN has values of 0.904, 0.895, 0.859,
0.886, 0.896 and 0.885 for precision, recall, AUC, PR-AUC,
F1-score and MCC, respectively, without using the RDAE
module. These results demonstrate that it is important to
perform feature extraction and derive features’ relationships.

Furthermore, Figs. 17 and 18 show the performance
comparison of the proposed solution as compared to the
conventional schemes using the SGCC dataset. It is clear
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TABLE 3. Proposed model performance comparison.

that the proposed methodology achieves more superior
results for ROC-AUC and PR-AUC performance mea-
sures against benchmark schemes using the real-time smart
meters’ dataset. These results depict the significance of semi-
supervised data and the dynamic attention of the model.

E. PERFORMANCE ANALYSIS USING IRISH
SMART METER DATASET
We have also evaluated the performance of the proposed
semi-supervised mechanism using the Irish smart energy
trails (ISET) dataset [50], which contains data of 5000 con-
sumers during 2009 and 2010. It is a real-time smart
meters’ dataset that contains EC records with a frequency
of 30 minute intervals. Moreover, it contains EC data of only
regular consumers. Therefore, for ETD, we need to inject
electricity frauds in the dataset where we first transform the
half hourly data into hourly data, i.e., xt = {x1, . . . , x24}.
Where, t denotes the time interval ranging from 1 to 24. Next,
we employ the following six types of malicious attacks given
in [4].
• A1(xt ) = rxt , r = random(0.1, 0.8),

• A2(xt ) = btxt , bt =

{
0 for t
1 else

• A3(xt ) = yxt , y = random(0.1, 0.8),
• A4(xt ) = mean(x),
• A5(xt ) = ymean(x),
• A6(xt ) = x24−t .
In the first malicious attack, i.e., A1(xt ), the dishonest

consumers return the malicious EC values by multiplying
the original EC readings with some random number. In the
second attack, i.e., A2(xt ), the electricity fraudsters either
return or do not return the EC readings of a particular day.
Likewise, in the third malicious attack, i.e., A3(xt ), the dis-
honest consumers multiply each EC reading with a unique
random number. A4(xt ) and A5(xt ) attacks describe the actual
mean of a particular day and a mean value multiplied with a
random number, respectively. In the sixth attack, i.e., A6(xt ),
the meter readings are reversed by the theft consumers.
Therefore, by injecting these attacks in the ISET dataset,
we generate 30% malicious data for the period of one year.
Now, the ISET dataset contains EC records of both honest
and fraudulent consumers. Afterwards, the dataset is parti-
tioned into three sets: training, validation and testing, follow-
ing the same proportion of the SGCC dataset. In the ISET
dataset, we randomly designate 70% as unlabeled consumers
and 30% as labeled consumers. In addition, similar data

FIGURE 19. AUC, PR-AUC, F1-score and MCC based performance
comparison on SGCC dataset.

FIGURE 20. AUC, PR-AUC, F1-score and MCC based performance
comparison on ISET dataset.

preprocessing steps are used for the ISET dataset as for the
SGCC dataset (mentioned in Section II-A). Fig. 19 shows
the performance comparison of the proposed semi-supervised
solution with conventional approaches in terms of F1-score,
MCC, PR-AUC and AUC over the SGCC dataset. Likewise,
Fig. 20 displays the performance comparison in terms of
F1-score, MCC, PR-AUC and AUC using the ISET dataset.
It is clear in the figures that the proposed solution gives
excellent results using both datasets. In the ISET dataset,
we inject synthetic theft cases, which depicts the malfunc-
tioning with meters’ readings. Therefore, it is quite obvious
that the proposed solution is also effective for cyber-attacks
(data attacks) where electricity fraudsters change the actual
energy consumption readings with fake ones. RDAE-AG-
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FIGURE 21. ISET dataset based ROC-AUC comparison.

FIGURE 22. ISET dataset based PR-AUC comparison.

TripleGAN achieves excellent results using both real and
synthetic data. Thismakes it acceptable for power distribution
utilities to detect electricity fraudsters. Furthermore, Figs.
21 and 22 depict the performance comparison of the proposed
solution with the standard benchmark schemes using the
ISET dataset in terms of ROC-AUC and PR-AUC. In Fig. 21,
it is seen that the proposed methodology achieves superior
results than other techniques using the dataset with synthetic
theft cases. Moreover, it is depicted that in terms of ROC-
AUC, the proposed solution obtains excellent results for ETD
where it demonstrates the highest TPR and less misclassifica-
tion rate, i.e., FPR, against standard benchmark techniques.
Besides, Fig. 22 shows the performance of the proposed
methodology in terms of PR-AUC as compared to the con-
ventional schemes for ETD. Where, the proposed solution
obtained the highest values for precision and recall. These
results demonstrate the excellence of the proposed solution
for both honest and dishonest consumers using synthetic
dataset. In particular, the proposed RDAE-AG-TripleGAN
shows better performance for real on-field inspected SGCC
dataset. The obtained results of the proposed solution are
effective for ETD and reducing the cost of on-field inspec-
tions. Furthermore, in order to evaluate the scalability of
the proposed semi-supervised RDAE-AG-TripleGAN solu-
tion, we conduct extensive simulations using two different

datasets, i.e., SGCC and ISET. The former dataset consists
of 42372 consumers’ data whereas, the latter comprises data
of 5000 consumers. Moreover, SGCC dataset covers data
from Jan 2014 to Oct 2016while ISET consists of data of only
2 years, i.e., 2009 and 2010. The simulation results depict that
the proposed solution efficiently performs ETD using both
datasets with a slight difference in the results obtained for
different performance metrics. It implies that the proposed
model is scalable and has the potential to handle both low-
dimensional and high-dimensional data.

However, there is a trade-off between scalability and com-
putational cost. To reduce the computational cost of the pro-
posed solution, we employ RDAE that efficiently performs
dimensionality reduction. The conventional approaches for
ETD, such as TSVM and XGBoost, have high computational
cost for high-dimensional data and poor ETD performance.
Moreover, they require hand-crafted feature extraction to
obtain the potential features and reduce computational time.
Therefore, the proposed solution utilizes deep learning tech-
niques, i.e., RDAE and TripleGAN, to automatically extract
the potential features and reduce the computational time.
Furthermore, the proposed solution gives more accurate and
reliable results as compared to conventional machine learning
techniques for ETD, such as TSVM and XGBoost. However,
the proposed solution still inhibits high computation cost,
given in terms of computational time complexity, i.e., 1.5h.
It is due to the hardware constraints and not using the graph-
ical processing unit. If the proposed solution would have
been implemented using graphical processing unit, the com-
putational time would have been reduced. However, in ETD,
the computational time is not as crucial as FPR, i.e., mis-
classification rate. The primary objective of this work is to
obtain more accurate ETD performance as compared to exist-
ing benchmark schemes. The simulation results proved that
the proposed solution achieved the aforementioned objective
efficiently.

In order to summarize this paper, we present the mapping
between identified problems, proposed solutions and their
validation in Table 4. The problems identified in traditional
ETD approaches are mapped over the proposed solution of
this paper. Afterwards, the validation is discussed to validate
the problems against the proposed solutions. The proposed
solution solves the scarcity of labeled EC data as this paper
presents a semi-supervised solution that requires less number
of labeled samples, as validated in Fig. 16. Furthermore, it is
a deep learning based solution that effectively deals with the
high-dimensional EC data, as shown in Figs. 2-7. Traditional
feature extraction techniques fail to derive features’ associ-
ations, as discussed in Section II-B. Therefore, we employ
RDAE, which is a deep feature extraction technique to deal
with the reduction of noise and dimensionality of features.
Moreover, it also captures the features’ associations during
feature extraction and has the potential to efficiently deal with
high-dimensional data, as illustrated in Figs. 2 and 3. The
issue of model’s biasness that occurs due to the imbalance
between electricity honest and dishonest consumers is effi-

VOLUME 8, 2020 221779



Z. Aslam et al.: AG Semi-Supervised Learning Mechanism to Detect Electricity Frauds in the Distribution Systems

TABLE 4. Mapping of the problems identified and suggested solutions.

ciently solved by the AG-TripleGAN’s generator and clas-
sifier sub-models. These sub-models have the capability to
generate more plausible fake samples-labels to fool the AG-
TripleGAN’s discriminator. Thus, the synthetic generation of
sample-label pairs to avoid themodel’s biasness problem. It is
seen in Figs. 8-13 that the generator and classifier generate
fake sample-label pairs and the discriminator accurately iden-
tifies the real and fake instances. Furthermore, the traditional
approaches for ETD require costly experts’ engagement dur-
ing the identification of electricity frauds, as discussed in
Section I (3). To avoid this problem, AG is designed that
dynamically supervises the proposed solution and improves
ETD, as validated in Figs. 12 and 13. Consequently, this
mapping of problem, solution and validation proves that the
proposed semi-supervised RDAE-AG-TripleGAN solves the
limitations of traditional ETD models in a systematic way.
Moreover, the performance analysis of the proposed solution
shows that it learns useful information from both labeled
and unlabeled EC records. The above-mentioned simula-
tion results prove that the proposed solution is efficient and
has better ETD results than conventional approaches, which
makes it more effective and appropriate for electric utilities.

IV. CONCLUSION
This paper proposes a semi-supervised mechanism, RDAE-
AG-TripleGAN, for ETD in smart grids. It considers the most
significant EC information in both labeled and unlabeled
instances. RDAE is used for noise reduction and feature
extraction together with maintaining features’ relationship.
The maintenance of the relationship plays a very impor-
tant role in ETD. Afterwards, AG acts as a supervisor and
assigns weights to the features extracted and forwarded by
RDAE. It dynamically guides the AG-TripleGAN to pay
more attention to the highly weighted features by adjusting
its parameters. This mechanism significantly improves the
generalization ability of the proposed solution along with its
ETD capability. Furthermore, we conduct extensive simu-
lations using the real EC dataset to prove the effectiveness
of the proposed solution against conventional schemes. The
simulation results validate that the proposed methodology
achieves better results for ETD as compared to conventional
schemes. The proposed solution obtains a DR of 0.956,
which is a greater value than the conventional schemes.

Whereas, the DR for TSVM, SSAE, XGBoost, LSTM-MLP,
CNN-LSTM-SAE, RDAE-TripleGAN and AG-TripleGAN
is 0.657, 0.801, 0.802, 0.832, 0.824, 0.914 and 0.895, respec-
tively. Moreover, simulation results prove that RDAE-AG-
TripleGAN achieves excellent performance gains for ETD
over the real on-field inspected and synthetically injected
theft cases. Therefore, simulations are performed for both
the datasets, which ensure the proposed model’s scalability.
Hence, this makes RDAE-AG-TripleGAN a more practi-
cal and acceptable solution for power distribution compa-
nies. Furthermore, our prime intention in this paper is to
achieve better and reliable ETD results than the conventional
schemes using EC records. Therefore, in the future, we will
take into account privacy preservation and auxiliary features,
such as temperature and number of appliances. Moreover,
we also intend to consider the heavy-tailed non-Gaussian
noises like Laplace noise and Cauchy noise in future to
evaluate the performance of our proposed model and further
improve it.
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