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ABSTRACT Trajectory classification is a hot topic in the field of spatiotemporal data mining. Existing
models exert spatial or temporal computation on trajectory data, which require huge efforts and are often
time consuming and lack of efficiency. This article proposes a model to classify unknown ship trajectories
through a syntax recognition approach. By using the background semantic information in the rasterized sea
chart, the model transforms the ship trajectories into symbolic sentences containing both spatiotemporal and
semantic information, and reduces their scale. The class feature is expressed as a context-free grammar and
the data classification is implemented through syntax parsing. The parsing requires less computation and is
more efficient. Experiments are carried out to verify the model’s practicability, and the results show that it
is valid and effective.

INDEX TERMS Automatic identification system, spatiotemporal data mining, syntactic analysis, trajectory
classification.

I. INTRODUCTION
With the continuous development on the acquisition tech-
nology of spatiotemporal data, the data mining on mov-
ing objects trajectories has become a hotspot in related
research. There are two types of trajectory data according to
the data formats and purposes. The first type of trajectory data
is generated from tracking systems such as Automatic Iden-
tification System(AIS) or Global Positioning System (GPS),
which is a sequence of location coordinates and timestamps.
The second type of trajectory data is generated from image
data or video data, which is a sequence of pixels in consec-
utive frames. Some studies focused on the preprocessing of
these trajectory data including data cleaning [1], interpolation
[2], [3], compression [4], [5], and segmentation [6]. Other
works are devoted to explore the application of trajectory data
mining in route recommendation [7]–[10], motion prediction
[11], behavior understanding [12], [13], abnormal detection
[14], [15] and traffic monitoring [16]–[18].

Among related works, trajectory classification is an effi-
cient way to obtain information from trajectory data. Most of
the classification approaches requires a lot of computation on
the spatiotemporal data. However, the knowledge implied in
trajectory data (such as purpose, intention, habit, relations) is
hard to be utilized, and the computation on massive amounts
of spatiotemporal data generates huge overhead. There are
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also semantic trajectory classification models which add
semantic information into spatiotemporal trajectory to gen-
erate semantic trajectory that usually has less volume and
higher description ability. Although the semantic trajectory
model has advantages in classification, it still has some dis-
advantages. Some semantic models almost discard all the
spatiotemporal information and only use the semantic data in
classification computation. Whereas other semantic models
still use the distance measurement between trajectory seg-
ments when they want to classify objected from their spa-
tial or temporal features, which means heavy and inefficient
computation. In short, the integration between spatiotemporal
information and semantic information is still insufficient.

In this article, we propose a trajectory classification model
based on grammar parsing. Its contribution is the design of a
process using AIS data and geographic information to trans-
form ship trajectories into symbolic sentences containing
both semantic information and spatiotemporal information,
while reducing the data size. The class feature is expressed as
a context-free grammar, and the ship trajectory classification
is implemented through syntax parsing, which is simpler and
easier to implement. This is a preliminary study introducing
text data mining technology to solve the trajectory mining
problem.

II. RELATED WORKS
At present, the related trajectory classification models can
be divided into two categories: the distance-based trajectory
classification and the semantic trajectory classification.
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The distance-based trajectory classification model usu-
ally extracts features from the locational or temporal data
from trajectories to allocate the trajectories into cohesive
classes according to their mutual similarities. There are many
different distance-based similarity measurement approaches
in these models, such as Euclidean Distance [19], Haus-
dorff Distance [20], Bhattacharyya Distance [21], Frechet
Distance [22], Dynamic Time Warping (DTW) [23]–[25],
Longest Common Subsequence (LCSS)[26] and Spatial Net-
work Distance[27]. Based on the distance measurement
results, these models use corresponding clustering, statis-
tical, stochastic and deep learning algorithms in different
applications. The clustering algorithms classify the trajecto-
ries via unsupervised approaches including models [28]–[30]
derived from the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm and the hierarchical
clustering models [31], [32]. The statistical or stochastic
approaches in trajectory classification are the Nearest Neigh-
bor(NN) models [33], GaussianMixture Model (GMM) [34],
Bayesian models [35], [36] and Markov process models [37].
There are also models that use deep learning algorithms
such as the Deep Neural Network(DNN) [38] to construct
features of trajectory data which can improve classification
performance.

The distance-based trajectory classification models work
on the temporal or spatial attributes from the trajectory data.
The similarity measurement between trajectories requires
heavy computation on locational or temporal data, which
becomes a huge burden as the size of data set increasing.
The semantic trajectory usually has less volume and is more
descriptive. And it has been widely used in trajectory data
mining in recent years [39], [40].

The semantic trajectory is generated by adding semantic
information such as the states, contextual information, and
relationships of objects into spatiotemporal data sequences.
There are four types of semantic trajectory approaches
adopted in recent classification applications, the Stop/Move
model, the trajectory segment model, the event-based seman-
tic trajectory and the ontology-based semantic trajectory.
The Stop/Move semantic trajectory model is currently the
most widely used approach [41]–[43]. This model defines
two basic movement states of stay and movement [44], and
use the ‘‘stay’’ sub-trajectory and the ‘‘move’’ sub-trajectory
to express the spatiotemporal trajectory. The trajectory seg-
ment model [45], [46] organizes the movement segments and
their semantic relationships to form a trajectory semantic
sequence. The event-based semantic trajectory annotates the
changes of the state, position and attributes of the moving
object in the form of events, then the spatiotemporal trajectory
is transformed into a sequence of events for further process
[47], [48]. These annotation methods can inject semantic
information into spatiotemporal trajectories relatively freely,
but the definition of relationships between attributes is not
clear enough, which is not convenient for the inference,
analysis and mining. There are also ontology-based seman-
tic trajectory models that use ontology to formally describe

concepts such as stay, movement, time, place, and mode in
mobile behavior [49], so as to add semantic information to the
original trajectory. The ontology-based semantic trajectory
model can provide abundant and accurate semantic informa-
tion, but it cannot be actually applied in real systems without
an ontology library, which is still unavailable in most cases.

Comparing with the distance-basedmodels, these semantic
trajectory classification models have advantages in terms of
semantics, interpretation and feasibility. The models usually
reduce the amounts of computation on spatial and temporal
raw data and introduce semantic information to assist the
classification. However, the existing semantic trajectorymod-
els still have problems. On the one hand, there are still heavy
distance computation overhead in Stop/Move derivative mod-
els when measuring the similarity between move segments.
On the other hand, some semantic models almost discard
all the spatiotemporal information and only use the semantic
data in subsequent calculation.

As shown in Fig.1, the Stop/Move model is composed of
stop points and move segments, the semantic information can
be labeled on the stop points. However, when we are doing
the classification algorithms, distance measurement on move
segments which means huge computation on spatiotemporal
data is still inevitable. Other semantic models such as the
trajectory segments model and event-based model focus on
the semantic sequence generated from the original trajectory,
and some works even discard the locational and temporal
attribute data completely. As a result, these algorithms can not
accurately classify trajectories that have the same semantic
stop area but with different behavior during their traveling
stages. To cope with this problem, some trajectory segment
model retains the original spatiotemporal trajectory as well
as the semantic sequence, but the consequent classification
still need to do the same distance measurement task as we
mentioned above.

In this article, we propose a trajectory classification model
using grammar parsing. It can be categorized as semantic
trajectory model, but unlike the Stop/Move model or other
semantic trajectory approaches, trajectory is described as a
symbolic sentence and the pattern is a grammar. The classi-
fication is realized by syntactic parsing. Our motivation is to
implement spatiotemporal data classification in a structured
pattern recognition way.

III. MODEL FRAMEWORK
Since the construction of the AIS network, large amount
of vessel trajectory data has been accumulated, which con-
tains mainly the location data explicitly recorded in time
series. AIS ship trajectory and Vessel Traffic Service(VTS)
data records current or historical voyage data. These data
sources are the main data sources for analysis, which have
the characteristics of large amount, fragmented information,
low accuracy, and semi-structured. To effectively classify the
trajectories, it is not enough to use these data alone. It is
necessary not only to analyze the location data of the ship’s
movement, but also to use heterogeneous data from other
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FIGURE 1. The Stop/Move trajectory and semantic sequence.

TABLE 1. Main Data Sources.

FIGURE 2. The framework of proposed model.

sources in computation, including the maritime geographic
data and ship activity data, shown in Table 1. The maritime
geographic data involves static data such as waterway data,
meteorological data, and hydrological data, the data format is
usually regular and the data changes slowly. Ship activity data
includes ship archives and ship registration data. Generally,
the data is heterogeneous and the data value density is low.

The framework of proposed model is shown in Fig. 2.
Using maritime geographic data and domain knowledge,
the background area is rasterized and semantically annotated.
Then the trajectory can be expressed as a string composed
of serial codes and semantic codes of the cell where mov-
ing object located at each sampling instant. The semantic
codes of grid cells come from the semantic dictionary, which
generated from port archive data and nautical sea chart. The
serial code of grid cell contains spatial information, and the

TABLE 2. Preliminary Semantic Dictionary D.

semantic code represents its semantic information. Although
there are differences in format and accuracy in various tra-
jectory data sources, their semantics and syntax are usually
consistent, which are described as symbolic sentences. The
grammar that characterizes the ship’s behavior pattern can
be obtained through syntax inference approaches or heuris-
tic knowledge of experts. Later, grammar parsing is used
to classify trajectories, or to measure the similarity of sub-
sequence patterns in ship trajectories. The advantage of
adopting this method is that the semantic grammar repre-
senting ship behavior is stable as the errors in the trajectory
data vary. Although the trajectories are not exactly the same
in time and space due to various measurement errors, their
behavioral semantics are consistent.

IV. RASTERIZATION AND CODING
The rasterization has two steps: firstly, the whole area is
divided into m∗m grid cells, and each cell gets a number
according to its serial order. Secondly, using regional geo-
graphic background data, each cell is annotated with seman-
tic information which is needed for subsequent sentences
generation. As shown in formula (1):

H = {(hij, gij)|i = 1..m, j = 1..m, hij = 1 : m2, gij ∈ D} (1)

Each grid cell is represented by a two-tuple, where hij is
the serial code, gij is the semantic code representing its
geographical background, and the code value comes from the
dictionary D, shown in Table 2.

In Fig. 3, a sea area is rasterized into 20∗20 grid cells. Each
cell has a serial number which refers to its spatial position.
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FIGURE 3. Rasterization of background area.

According to the geographic background information of the
area itself, the background semantics are added to each grid
cell. In order to reduce the number of effective grid cells
and to improve the efficiency of classification, cells with the
same semantic information can be merged according to the
requirement of classification. The cells ‘‘23-30, 33-40, and
43-50’’ in the figure can be merged into one area, which
is a fishing area, denoted by the serial number of the first
cell ‘‘23’’. The gray area is a channel, which is represented
by the code ‘‘73’’. In the nautical charts, the channels and
various sea areas are relatively fixed, and the navigation of
ships on these areas usually abide by certain fixed routines.
When a ship moves in a certain channel area, its behavior has
little to do with its specific location, but mainly related to the
type of the area. As shown in the Fig. 3, our model assumes
that the behavior semantics of ships located in all the cells
in grid ‘‘73’’ are same, but the ship at grid ‘‘72’’ or group
‘‘23’’ has a different behavior rather than just sailing on the
given channel. According to the information contained in
the nautical chart, combined with common ship navigation
routines, a preliminary background semantic dictionary D is
established, as shown in Table 2. And the rasterization, coding
and merging between grid cells on the area chart will be done
before the trajectory sentence generation.

V. GENERATION OF TRAJECTORY SENTENCE STRING
The trajectory sentence string S is generated by sampling
the position information of the ship trajectory on different
time instant. S is composed of the grid serial codes and the
its semantics codes. Given the original trajectory sequence
T and the grid H, the process of generating S is shown in
formula (2).

T = {
(
lat i, longi, ti

)
|i = 1..N}

S = s1s2..si..sn,
si = higi, Inside

(
lat i, longi, hi, ti

)
= true (2)

FIGURE 4. Trajectory sentence string generation on the raster.

Sequence T is N trajectory points sampled from the original
trajectory, and each higi is the grid cell serial code and the
semantic codewhere the trajectory point is located at the sam-
pling time. Inside is the topological operation, which calcu-
lates the inclusion relationship between the point(lati,longi)
and the grid cell hi at the time instant ti.

Fig. 4 shows a trajectory passed through multiple grid cells
from the start point to the end point. The sampling number
N = 10. The grid serial code where each sampling point
located and its semantic code makes up the result sentence
string:‘‘1A1A1A21M43W43W43W43W63E77P’’. The sym-
bolsA,M,W,E and P come from the dictionaryD in Table 2.
It is beneficial for the algorithm to use the same sam-

ples number N for all trajectories. However, different ships
have different tasks, attributes and navigation capabilities.
It is not appropriate to equate the trajectories of ocean-going
ships with the trajectories of small ships operating offshore.
We only discuss the situation when the trajectories are in
the same scale here. The preprocessing of trajectory data
of different ship types and different trajectory scales can be
carried out using ship archive data or other algorithms, which
will not be discussed in depth here.

VI. CLASSIFICATION USING GRAMMAR PARSING
For each trajectory class, a context-free grammarG is used to
establish its behavior pattern features, that is:

G = {Vt,Vn,P, S} :

S is the start symbol grammar,

Vt = {hi, gi | ∀hi ∈ H ,∀gi ∈ D} ,

V n is the nonterminal symbol set,

P = {pi} is the Production Rule Set. (3)

In grammar G, S is the start symbol, and the terminal symbol
set Vt refers to the basic acceptable symbols that make up a
sentence. The symbols in Vt include the valid serial code of
grid cell hi and its corresponding grid background semantic
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FIGURE 5. The grammar spanning tree of the class ‘‘‘Ferries’’.

code gi. P is the production rule set. The nonterminal symbol
set Vn is the grammatical variables and intermediate symbols
generated in the production process. When a trajectory x is
to be identified, if x can be accepted by grammar G, that is:
x∈L(G), then x will be accepted by the classifier.

For example, the production rule set of the trajectory class
‘‘ferries’’ can be written as:

p1 : S→ T; p2 : T→ tT; p3 : T→ t; p4 : T→ ACB;

p5 : A→ aA; p6 : A→ a;

p7 : B→ bB; p8 : B→ b; p9 : C→ cC; p10 : C→ c;

a, b ∈ {E} , c ∈ {M,F,W} , t ∈ {P}

The grammar spanning tree is shown in Fig. 5:
According to this grammar pattern, if there is a string x =

‘‘23E23E67M89M89M46E’’, it can be accepted as a ferry.
The grammar production rule set P is a context-free gram-

mar. The inference of linear grammar and simple determinis-
tic grammar can be completed in polynomial time, whereas
the inference of natural language grammar is proved to be
a NP problem. It is a heavy task to infer the grammar from
the historical trajectory data directly, which require a new
article to discuss. In this article, we use expert knowledge to
manually define the grammar of each pattern.

VII. EXPERIMENTS
The experiments use the real AIS data near XiaMen Port
in July 2015, between the longitude 117o57E to 118o10E,
latitude 24o30N to 24o21N, on the east side of Shima Port in
Xiamen. Fig. 6 shows a schematic representation of this area.

The trajectory data set comes from the website
http://www.enclive.cn/Product/AISShipData.html, the data
are not original AIS messages, but decoded trajectory points
data. Only the MMSI number, timestamp, latitude and lon-
gitude fields are chosen, Table 3 shows a few records as
examples.

The experiment flowchart is shown in Fig. 7. The trajectory
data is preprocessed in a simple way, we first sort the data
records by theMMSI of each object, and discard the duplicate
records in it. If there exist blank fields in a record, we simply
discard it. A 5-days ship AIS trajectory data set in the area

FIGURE 6. Selection area of the experiments.

TABLE 3. Example Records in Trajectory Data.

FIGURE 7. The experiment flowchart.

was preprocessed for the experiments. They are stored in
five CSV files, each file contains around 350 trajectories of
various types of ships in one day, denoted as {D1, D2, D3,
D4, D5}.
In the rasterization stage, the selected area is rasterized

into 50∗50 grid cells. According to the background data in
the nautical chart, semantics codes denoting entry and exit
channels, diversion channels, shoals, impassable areas, etc.
are added to each grid cell, as shown in Fig. 8.

Not all grid cells have background semantics, there are also
cells with undefined semantics between regions, denoted as
the semantic code ‘‘#’’. The selected area contains 42 areas of
various types. We sampled the AIS trajectory with a 24-hour
time span and take T as the sampling time interval to generate
semantic trajectory sentence strings. The sentence strings are
stored in JASON format files.

We established three trajectory grammars, corresponding
to three classes such as ferries, cargo ships and passing ships.
The parsing approach we used here is the regular expressions
match method provided in Javascripts, and Table 4 shows the
grammar pattern for three classes. Experiments are done to
verify the practicability and to simulate the impact of different
sampling interval T on the model correctness.

218420 VOLUME 8, 2020



B. Lei: Trajectory Classification Model Using Grammar Parsing

FIGURE 8. Rasterization of part of selected sea area.

TABLE 4. The Grammar for 3 Classes.

Table 5 shows the experimental results of the classification
correctness of three trajectory classes.

In our experiments, due to the relatively fixed and simple
behavior pattern, ferries C1 can be recognized at highest
accuracy. However, for cargo ships C2, because the selected
background area is small and the semantic information is
poor, the distinction between passing ships and cargo ships
leaving or docking is limited. The semantic of its berthed
region affect the results. For the same reason, as well as the

TABLE 5. The Result of Trajectory Classification.

FIGURE 9. The classification accuracy under sampling interval T
(5 minutes, 10 minutes, 20 minutes).

relatively free style behavior pattern, a certain amount of
misjudgment has occurred on passing ships C3, but the result
is generally acceptable.

Through our experiments, it is found that the sampling
interval T has a large impact on the classification accuracy.
When the sampling interval is too large, the semantics of the
trajectory will be lost, resulting in classification errors. When
generating trajectory sentence strings, selecting a suitable
time granularity for sampling is an important factor. Within
a suitable granularity range, the classification algorithm is
not sensitive to the position error and time error of the orig-
inal trajectory data, but once the granularity chosen is bad,
the classification accuracy will deteriorate rapidly. Further-
more, the grammar describing trajectory pattern should be
adjusted according to the change of granularity too. The low
classification accuracy is due to the lost of class features as
the time granularity changing.

In order to improve the classification accuracy, more
sophisticated data preprocessing technologymust be adopted.
Our experiments present here are to verify if the algorithm
can classify trajectories properly, not how efficient it is. The
data set we used is relatively small and comparison on the
efficiency with other baseline algorithms need to be done in
the future.

VIII. CONCLUSION
This article presents a trajectory classification model based
on grammar parsing. It converts trajectories into sentences
composed of symbolic codes from rasterization and semantic
annotations. The class features are expressed as context-free
grammars and the data classification is implemented through
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syntax parsing. Experiments were done and results verified
the model effectiveness.

However, the following aspects need further studying:

A. ADAPTABILITY TO TIME AND SPACE GRANULARITY
The algorithm shows large performance differences under
different sampling time intervals, reflecting its sensitivity
to the time granularity. Similarly, it can be found that the
algorithm will also produce performance differences under
different spatial granularities. The model proposed does not
have the ability to adapt different granularities. It should
use heuristic information in preprocessing, or adopt certain
multi-scale adaptive processing technology.

B. GRAMMAR TRAINING AND AUTOMATIC INFERENCE
The trajectory grammar given in the article is pre-defined,
and it is a difficult task to infer the grammar through training
data, we can’t implement automatic reasoning algorithm yet.
However, different from the grammar of natural language,
the grammar of ship behavior pattern is relatively simple.
There are already some feasible learning and training algo-
rithms for simple deterministic grammar and linear grammar.
Generation of the classifier from a large amount of training
data should be a direction for future works.

C. IMPLEMENTATION ON BIG DATA ARCHITECTURE
AIS data is a source of big data. After selecting the appropri-
ate analysis granularity, the corresponding parallel computing
architecture and stream processing architecture should be
adopted for the design of future classification algorithms.
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