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ABSTRACT This article elaborates a processing chain devised to recognize the ships existing on medium
resolution multispectral imageries (MSI). The chain consists of the following three steps. Firstly, an adaptive
local saliency mapping technique is instigated on open ocean regions to obtain all floating objects. Secondly,
to extract the ship candidates, two-step verification is applied based on specific spectral and geometric
information of the ships. Lastly, a calculation to determine the properties of the ships, including their
length, breadth, and heading, is then carried out. Furthermore, we propose a novel method for correcting
miscalculated ship heading; by combining wake segmentation and Radon Transform (RT) approaches to
locate the position and estimate the length of the wake generated by the ships. With the detected wake
length, ship velocity can also be assessed. The developed chain is then tested using imageries acquired by
LAPAN-A3 microsatellite, and the results are compared to those reported by the Automatic Identification
System (AIS). Experimental results indicate that the proposed chain achieves higher detection performance
and can produce better heading information compared to the existing methods.

INDEX TERMS LAPAN-A3, satellite, medium resolution, recognition, remote sensing, ship.

I. INTRODUCTION
The presence of remote sensing techniques unlocks the ability
to measure the properties of an object from a distance. The
term ‘object’ may refer to man-made objects such as vehicles,
ships, buildings, etc., or naturally existed objects, including
lakes, mountains, oceans, etc [1]–[3]. Such objects’ proper-
ties can be recognized by involving specific detection meth-
ods depending on the information desired to be extracted.
Object detection in a remotely sensed image is a core tool
that monitors environmental change, geographic information
system update, open ocean monitoring, and urban planning
can be continuously and automatically carried out [4]–[7].

One of the most popular applications of object recognition
on remote sensing imagery is for maritime domain aware-
ness. In this context, the imagery is used to precisely track
and monitor each ship by maritime authorities. As a result,
by combining fine quality imagery and a reliable developed
detection algorithm, suspicious activities such as illegal fish-
ing can be identified [8]–[12]. Another technology that can
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also be implemented for supporting maritime awareness ser-
vice is the Automatic Identification System (AIS). AIS is an
automated vessel tracking and monitoring technology oper-
ated via the electronic exchange of data with nearby vessels,
ground-based systems, and satellites [13]–[14]. Nowadays,
AIS is mandatory for ships with a gross tonnage of 300 or
more and all commercial passenger vessels, regardless of size
(based on the IMO’s International Convention for the Safety
of Life at Sea). As globally implemented, AIS capability is
further expanded tomonitor vessel activities both at sea and in
ports, with numerous other applications. Some of these appli-
cations include fishing vessel fleet monitoring and control,
ship traffic management, search and rescue, and maritime
security [15]–[17].

Although AIS technology is reliable enough to perform
ship monitoring and tracking tasks, some issues are related to
this system. Since vessel operators control this system, they
can manipulate the transmitted data, enlarge the transmission
interval, or even disable the transmission signal [18], [19].
As a result, currently-reported dynamic parameters reach-
ing the end-receiver side could be unrepresentative.
Consequently, using those parameters as the input of
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AIS-based tracking and monitoring activities will conduce
an imprecise result. According to this particular shortcom-
ing, ship recognition using remote sensing imagery is still
becoming a predominant choice since there is no hiding place
missed by the imaging device.

Generally, ship recognition in remote sensing imagery can
either be carried out by using machine-assisted or automatic
approaches. A machine-assisted approach is a viable option
for a system supplied by a large number of imagery datasets.
As demonstrated by the authors in [20], ship candidates on
Google Earth and GaoFen-2 imageries can be extracted by
employing a convolutional neural network (CNN). Another
machine-assisted approach has also been successfully imple-
mented by [21] after combining the AdaBoost classifier and
Haar-like feature detection.

The term ‘‘automatic recognition’’ refers to a fully unsu-
pervised process of detecting an object and calculating
its associated properties without involving any previous
ship-related knowledge. Compared to the machine-assisted
side, this approach is more likely to be developed and
delivered faster as neither the massive data collection nor
the time-consuming training stage is required. Even though
this approach may produce a less accurate result than the
machine-assisted one, its performance can still be improved
by finely optimizing the parameters involved.

Many successfully-developed automatic ship recognition
on optical satellite imagery, including the work reported by
authors in [22]. In their work, sea surface analysis has been
employed to recognize ships existing in the various sea back-
ground, i.e., quiet, textured, and cluttered. Moreover, an auto-
matic ship detection chain for SPOT-5 imagery combining the
statistical analysis, mathematical morphology approach, and
signal-processing techniques such as the wavelet analysis and
Radon transform has also been successfully demonstrated by
the authors [23]. Furthermore, as reported in [24], even from
a geostationary distance, an automatic detection employing a
local saliency map is found capable of providing a satisfying
result.

This article elaborates on a processing chain developed to
locate the ships existing on multispectral imageries (MSI)
and to precisely determine their dynamic and static proper-
ties. The medium resolution MSI was concerned due to its
wide-swath advantage, enabling wide-area ocean monitoring
to become possible, even though it has limited resolution,
compared to the high-resolution one which has limited swath
for ocean monitoring. Therefore, in this work, we used a set
of 4-band (red, green, blue, near-infrared) medium resolution
MSI acquired by the LAPAN-A3 satellite for the testing
purpose.

LAPAN-A3, also known as LAPAN-IPB satellite, is the
third Indonesian microsatellite jointly developed by the
Indonesian National Institute of Aeronautics and Space and
Bogor Agriculture Institute (IPB). This satellite has been
injected into polar orbit (98◦ of inclination) at 505 km of
altitude in June 2016. One of the imaging payloads mounted
to this satellite is a push-broom sensor capable of capturing a

4-bandmedium resolutionMSI with 16m of ground sampling
resolution and 122.4 km of the swath width [25]–[27].

In designing the recognition chain, we divide the process
into two main stages, ship detection and properties determi-
nation of the detected ship.

FIGURE 1. The workflow of the developed ship recognition chain.

As given in Fig. 1, the detection stage consists of two
main parts, i.e., candidate extraction and verification. At the
beginning of extraction, we combined ocean segmentation
and a novel adaptive local saliency map approaches to locate
all ship candidates. Since the chain was designed to suit
the ocean input image containing cloud and land, the ocean
segmentation is required to constrict the area of interest.
In our work, parameters derived from the spectral charac-
teristic of water on LAPAN-A3 MSI are sufficient to supply
direct thresholding, the core of the segmentation. Meanwhile,
the adaptive local saliency map approach presented in this
work is the modified version of its predecessor in [24],
upgraded to be independent of any predefined threshold.
At the end of this stage, candidates are cropped and fed into
the verification stage.

We combined spectral-based and geometry-based verifi-
cation to ascertain whether a given candidate is real in the
verification stage. In the beginning, the candidate’s spectral
response is analyzed to check whether it matches with the
characteristics of reference ship spectral on LAPAN-A3MSI.
Afterward, the estimated length, breadth, and eccentricity of
each given candidate are used for the geometry-based verifi-
cation. A direct and fast methodology for ship recognition
developed by [28] has been employed in calculating such
geometries.

In addition to the recognition chain, we also proposed a
method for addressing the falsely-calculated heading issue
introduced by [28]. Since the method ignores the actual stern
and bow position, the estimated heading sometimes has a dif-
ference of 180◦ from the reference. Therefore, we employed
the Radon transform (RT) for detecting the wake generated
by a sailing ship so that the actual stern position can be
determined. Furthermore, we have also estimated the length
of the detected wake to determine sailing speed. Accord-
ingly, the RT-based correction enables the developed chain
to provide also velocity-related information. Finally, we used
a combined terrestrial and satellite-based AIS dataset for
assessing the performance of the chain. Moreover, since the
AIS dataset does not hold dimension-related information,
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we also compared the calculated dimensions to the online
database’s references.

The rest of this article is organized as follows: First,
in Section II, we explained in detail the strategies used in
developing the chain. In Section III, the proposed RT-based
heading correction and velocity estimation are presented.
Finally, we provided the experimental details and results in
Section IV, followed by the conclusion in Section V.

II. SHIP RECOGNITION CHAIN
This section explains the details of ocean segmentation and
adaptive saliencymapping used in the extraction stage.More-
over, the explanation related to geometry and spectral-based
verification is also presented. As we used 4-band (red, green,
blue, near-infrared) MSI captured by the LAPAN-A3 optical
sensor, the R, G, B, and N notations are respectively assigned
to denote these bands in the rest of this article.

A. OCEAN SEGMENTATION
Ocean segmentation is necessary to constrict the area of
interest while locating the desired ships. In the beginning,
direct thresholding is applied to R band response to extract
coarse ocean regions. The binary imageW holding the ocean
and non-ocean pixels can be obtained by applying Eq. (1)
below:

W (i, j) =

{
1, R(i, j) ≤ Wth

0, else
(1)

where the Wth refers to an empirically-determined value.
If the value of R at a specific row and column (i, j) is not
greater thanWth, it will be assigned as an ocean pixel.
In addition to ocean segmentation, a thresholding step for

blocking out inadvertently segmented cloud blobs on W has
also been carried out. This step is required since ship-sized
clouds could be recognized as a real ship, raising the false
detection rate while included in subsequent processing. Since
the cloud reflectance index is relatively higher inN band than
that of other objects, we used this band for locating the blobs.
Eq.(2) below shows that the inverse of cloud binary image,
C , can be obtained by applying an empirically-determined
threshold Cth on N band.

C(i, j) =

{
0, N (i, j) ≥ Cth
1, else

(2)

Finally, a cloud-free ocean binary image, IWC , is obtained
by operating pixel-wise conjunction between the W and C
images.

IWC (i, j) = W (i, j)&C(i, j) (3)

In Fig. 2, it is shown that the ocean regions near Jakarta Bay,
Indonesia, are successfully segmented after implementing the
strategy as described.

FIGURE 2. Result of ocean segmentation; (1) RGB-colored image of
Jakarta taken by the LAPAN-A3 MSI optical sensor; (2) segmented ocean
binary image of (1).

B. ADAPTIVE LOCAL SALIENCY MAP FOR SHIP
CANDIDATE EXTRACTION
Detecting the ships on optical imagery as well as on
LAPAN-A3 MSI is a challenging task since complex sea
background noise could also present on the images. More-
over, in a different region of the same frame, it might be
possible that the intensity of sea background is unevenly
distributed; hence directly applying a global threshold for
the entire pixels is inefficient for locating the ship candi-
dates. Therefore, in this work, we introduced the adaptive
local saliency mapping, an approach designed to enhance
foreground objects without gaining the background noise.

The adaptive local saliency map approach introduced in
this article is a modified version of the method reported
in [24]. In calculating the saliency value of an individual pixel
of the input image, I (i, j), the neighboring pixels are involved.
These pixels are categorized into two regions, background
and foreground, as illustrated in Fig. 3.

FIGURE 3. Illustration of neighboring pixels involved in the saliency map
calculation.

The din and dout are the spatial windows covering the inner
and outer pixels centralized by I (i, j). The local saliency map,
S, can be obtained by following the Eq.(4) as follows:

S(i, j) =
I (i, j)− µb
σb + eps

(4)

the µb and σ b, respectively, are the mean and standard vari-
ance of background pixels. The eps is introduced to com-
pensate zero denominator cases in which is set to a small
floating-point. Finally, the binary image SB containing the
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ship candidates can be extracted by thresholding the S.

SB(i, j) =

{
1, S(i, j) > Sth
0, else

(5)

In our work, instead of manually assigning the
empirically-determined Sth as demonstrated by the previous
authors in [24], we proposed a new way to obtain this value.
As we already have the IWC designating the binary states of
the ocean and non-ocean, we then determined the Sth by aver-
aging all pixels in S that belong to the ocean. Mathematically,
the Sth can be obtained by following Eq.(6).

Sth =

IWC (i,j)=1∑
i,j

S(i, j)

=1∑
i,j
IWC (i, j)

(6)

Accordingly, the adaptive local saliency map approach is
totally independent of any empirically-determined parame-
ters. The only parameters used in this approach are the inner
and outer window size (din and dout ) in which depend on the
image resolution and desired size of ships to be detected.
Fig. 4 provides the result after implementing the steps as
explained above. It can be seen that ship candidates are
successfully extracted from a noisy background input.

FIGURE 4. The result of applying adaptive local saliency map approach;
(1) LAPAN-A3 MSI containing ships; (2) saliency image; (3)
adaptively-thresholded saliency image.

C. SPECTRAL-BASED AND GEOMETRY-BASED SHIP
VERIFICATION
In this section, we described the procedure for identifying and
blocking out falsely-detected ships. This procedure combines
spectral-based and geometry-based verification.

1) SPECTRAL-BASED VERIFICATION
In this type of verification, an analysis was performed on a
limited spectral sample of ships found on LAPAN-A3MSI to
determine the appropriate spectral-related thresholds. Based
on the analysis, only ships that meet at least one of the two
criteria below will be included in the next processing step.

(max(Gship)− Gwt ) > Gth (7)

(max(Bship)− Bwt ) > Bth (8)

The max (Gship) and max (Bship), respectively, are the max-
imum value of pixels found on G and B bands, while Gwt
and Bwt are the mean value of pixels for each of those bands.

Lastly, Gth and Bth are empirically-determined values used
for thresholding the G and B bands, respectively.
From the processes of ocean segmentation, candidate

detection, and spectral-based verification, several parameters
are empirically determined. To summarize, the definitions
and values of these parameters are provided in Table 1.

TABLE 1. Empirically-determined parameters used in spectral-based
verification.

All of the parameters in Table 1 were empirically-
determined from the limited datasets used in the experiment.
These parameters are sensitive to sensor setup and sun-related
factors such as illumination angle. However, in our case, these
values are relatively constant since theMSI used in the exper-
iment has already been preprocessed by in-house radiometric
calibration software. Satellite Technology Center of LAPAN
has developed this software to compensate for the variation on
digital number (DN) due to the change of sunlight intensity
and sensor sensitivity. Since the LAPAN-A3was placed in the
sun-synchronous orbit and its attitude is always maintained to
be in nadir during the acquisition, there is no slight change of
intensity on recorded LAPAN-A3 MSI. According to these
reasons, the parameters provided in Table 1 are considered to
be constant. Automation in determining appropriate thresh-
olds might be considered by involving the machine learn-
ing technique. However, this approach requires an extensive
amount of MSI, followed by a complex training phase that is
still not achievable in our case.

2) GEOMETRY-BASED VERIFICATION
The geometry-based verification is applied to include only
the ships having a specific range of geometry. In the begin-
ning, the length, breadth, and eccentricity of each candidate
successfully passing the previous verification (spectral-based
verification) are calculated. In calculating these properties,
a direct method proposed by [28] has been applied to the
cropped frame of the binary ship candidate image, SCB . To per-
form this method, firstly, the total number of pixels des-
ignating the ship (Nc) on SCB must be first calculated by
using Eq.(9).

Nc =
>0∑
i,j

ScB(i, j) (9)

Afterward, calculations to determine the center mass of the
ship in x and y coordinate are carried out by employing
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Eq.(10) and Eq.(11), respectively.

x̄ =
γ

Nc

>0∑
i,j

i.ScB(i, j) (10)

ȳ =
γ

Nc

>0∑
i,j

j.ScB(i, j) (11)

The γ refers to the spatial resolution of the input image, 16m
for LAPAN-A3 MSI. Moreover, the covariances, the cores
for geometry calculation, are also calculated by following
Eq.(12) through Eq.(14).

σ 2
xx =

γ 2

Nc

>0∑
i,j

i2.ScB(i, j)− x̄
2 (12)

σ 2
yy =

γ 2

Nc

>0∑
i,j

j2.ScB(i, j)− ȳ
2 (13)

σ 2
xy =

γ 2

Nc

>0∑
i,j

i.j.ScB(i, j)− x̄.ȳ (14)

Then, ship heading (θ) and eccentricity (ε) can be obtained
by substituting the covariances above to Eq.(15) and Eq.(16).

θ =
1
2
tan−1

(
2σ 2

xy

σ 2
xx − σ

2
yy

)
(15)

ε =
σ 2
xx − σ

2
yy

σ 2
xx + σ

2
yy

1
cos(2θ )

(16)

Finally, ship length (SL) and breadth (SB) can be calculated
using Eq.(17) and Eq.(18):

SB =
√
6(1− ε)(σ 2

xx + σ
2
yy) (17)

SL =
√
6(1+ ε)(σ 2

xx + σ
2
yy) (18)

Once the length and breadth are successfully calculated,
the following conditions are applied to categorize a given
image as a real ship.

SLmin
≤ SL ≤ SLmax (19)

SBmin
≤ SB ≤ SBmax (20)

εmin
≤ ε ≤ εmax (21)

Limiting the range of length and breadth is intended to
exclude relatively large objects such as small islands that are
still detected if the ocean segmentation fails. This limitation
can also be used for removing defected pixels detected as the
objects during the saliencymapping.Moreover, by specifying
the desired limit of eccentricity, the classification of elon-
gated ship-like objects can be made. This limitation is also
useful for discriminating the ships from other less-elongated
objects such as icebergs, ice floes, and wind turbines. The
details of the parameters and their respective values used in
geometry-based verification are given in Table 2.

To be convenient with the symbol for the subsequent
usages, each frame of the cropped ship successfully passing

TABLE 2. The parameters used in geometry-based verification.

the spectral-based and geometry-based verification will be
denoted as the SBF .

III. HEADING CORRECTION AND VELOCITY ESTIMATION
This section describes a method for determining true ship
heading based on Radon transform (RT). This method has
been developed to tackle the problem introduced as the exist-
ing method implemented in medium-resolution MSI. More-
over, an approach for estimating the ship velocity using its
wake component is also presented.

A. RT-BASED METHOD FOR DETERMINING TRUE SHIP
HEADING
Although the direct method introduced by [28] can determine
ship’s heading properly, it sometimes fails. Since the calcula-
tion is made based on binary pixel distribution only, the ship’s
bow and stern cannot be distinguished. Hence, the resulted
heading (θ) could be its ambiguous pair, i.e., θ± 180◦. There-
fore, an improvement in detecting and correcting this ambi-
guity is required.

The proposed strategy for detecting false heading requires
both the frames of verified ship binary image (SBF ) and
segmented ship-and-wake image, ISW . As the SBF is already
provided by the verification chain, the main challenge lies in
extracting the ISW itself. We have found that the wake compo-
nent and its associated ship can be extracted by thresholding
the blue band response of SBF image (BS ).

ISW (i, j) =

{
1, BS (i, j) ≥ TB
0, else

(22)

TB =

SBF (i,j)=0∑
i,j

BS (i, j)

=0∑
i,j
SBF (i, j)

CB (23)

In this case, the TB is the mean value of ocean pixels on BS
multiplied by aweighting factorCB. TheCB factor is included
to control the sensitivity of ship-and-wake segmentation.
In our work, the optimum CB was obtained by considering
the trade-off between this value and the accuracy of heading
and velocity resulted. The segmentation on blue response is
aimed to extract the quiet sea region reflecting less amount of
blue wavelengths from other objects, including the ship and
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its wake. Finally, the detection of falsely-calculated heading
can be made by involving both the segmented ship-and-wake
(ISW ) and the extracted ship candidate binary image (SBF ).
The result of ship-and-wake segmentation is shown in Fig. 5.

FIGURE 5. Images to be used in heading correction; (1) RGB image
containing ship and wake; (2) segmented ship-and-wake binary image,
ISW ; (3) verified ship binary image, SBF .

FIGURE 6. Comparison of RT responses generated using the falsely and
correctly calculated ship heading; (1)-(2) RGB image containing the
falsely and correctly calculated ship heading; (3)-(4) the RT responses on
Radon space at θ − 90◦.

At the beginning of RT-based heading correction, the head-
ing calculated using Eq.(15), θ , is used as the initial RT angle.
The RT is then performed both on the ISW and SBF image at
a certain angle perpendicular to the initial heading, θ − 90◦.
If the RT is applied on a correctly-calculated heading ISW ,
the wake response will always be detected on the right-hand
side of the ship’s center on the Radon space. On the con-
trary, if the same schema is applied on a falsely-calculated
heading ISW , the wake response will appear on the other side.
By overlaying the RT responses generated using SBF and ISW ,
the actual side of wake can be spotted since there are offsets
between these responses on both sides. As illustrated in Fig. 6,
the offsets can be recognized by calculating the distances
between the outermost non-zero response of ISW and the SBF .
Both of these distances, respectively, are the margin width on
the left and right-hand side of the ship denoted byDL andDR.
In this case, the higher distance side indicates the stern loca-
tion as the existence of wake contributes to the higher margin.

Finally, the corrected headings θ ′ can be calculated based on
the DL and DR values by following Eq.(24).

θ ′ =

{
θ, DL ≤ DR
(θ + 180◦) mod 360◦, DL > DR

(24)

The first term of Eq. (24) tells that if the wake pattern
is detected on the right-hand side of Radon space, the
previously-calculated heading is already correct; hence, the
correction is unnecessary. On the other hand, the correction
is required to convert the heading to its ambiguity pair as the
wake is detected on the left-hand side. Finally, the length of
the wake λ generated by the ship is equal to the highest value
between DL and DR multiplied by MSI spatial resolution γ .
This multiplication must be carried out since the resulted DL
and DR are stated on the pixel unit.

λ = max([DLDR])γ (25)

In the next section, the λ is used for determining the ship
velocity.

B. VELOCITY ESTIMATION BASED ON WAKE LENGTH
This section explains the steps of estimating ship velocity
based on wake length in which has been obtained in Eq.(25).
In general, a sailing ship generates turbulent wake and Kelvin
waves, as illustrated in Fig. 7. However, in LAPAN-A3 MSI,
the Kelvin waves are entirely unobservable. Due to the
absence of this wave, we used a simplified approach to esti-
mate the transverse component of Kelvin waves (Z ) from the
detected turbulent wakes.

FIGURE 7. Illustration of turbulent wake and Kelvin waves generated by a
sailing ship.

Fortunately, since the Kelvin waves are always bounded by
cusp-lines separated by a fixed angle of 19.47◦ [29], the Z can
be estimated by following Eq.(26).

Z = λ tan(19.47◦) (26)

Furthermore, the equation relating the Z and ship velocity,
Vship, is given below [30]:

Vship =

√
Zg
2π

(27)
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where g is the gravitational constant. According to Eq.(27)
above, the accuracy of the estimated velocity entirely depends
on the capability of the ship-and-wake segmentation stage
in extracting the wake component. Therefore, an experiment
aimed to find the optimum segmentation parameter CB is
conducted and reported in Section IV.B.2.

IV. EXPERIMENTS
A. EXPERIMENTAL DATA
In order to test the developed ship recognition chain, we used
three sceneries of LAPAN-A3MSI as the input images. These
imageries have been acquired in three different active ports.
The details of these imageries are provided in Table 3.

TABLE 3. List of LAPAN-A3 MSI used in the experiment.

Furthermore, satellite-based AIS datasets associated with
these imageries are also used to verify the dynamic param-
eters resulted from the chain. The satellite-based AIS
was gathered from the same satellite, LAPAN-A3. Since
the AIS dataset does not hold dimension-related infor-
mation, we also compared the calculated lengths and
breadths to references freely available on an online database,
www.vesselfinder.com.

B. EVALUATION CRITERIA
In order to objectively evaluate the performance of the devel-
oped chain, we employed the Precision and Recall metrics.
The Precision reflects the false detection rate of an algorithm,
while the Recall represents the effectiveness of detection.
Precision is expressed as follows:

Precision =
NTP

NTP + NFP
× 100% (28)

where NTP and NFP, respectively, are the number of cor-
rectly detected ships and the number of falsely detected
ships. Meanwhile, the Recall of an algorithm is formulated
as follows:

Recall =
NTP

NTP + NFN
× 100% (29)

where NFN represents non-detected ships. Since we used the
AIS dataset as the reference, the denominator of Eq.(29) is
equal to the total number of ships reported by the AIS.

Moreover, to assess the accuracy of calculated geometries
(breadths and lengths), headings, and velocities, two differ-
ent metrics, i.e., mean absolute percentage error (MAPE)
and linear regression constant (R2) are also employed. The
MAPE represents the amount of percentage error between the

two data populations. In this work, the MAPE is employed
for measuring the accuracy of calculated lengths and head-
ings. The equation for calculating the MAPE is expressed as
follows:

MAPE =

N∑
i=1

|xi − ri|
max(xi, ri)

N
× 100% (30)

where N is the total sample, while xi and ri, respectively,
represent the measured and the reference points.

The R2 represents the proportion of variance in the tested
variable that is predictable from its reference. In our case,
the R2 is used for measuring the strength of the relationship
between the resulted parameters and their references. In the
linear regression case, the R2 of a given (x, r) pair can be
calculated by following Eq.(31).

R2 =

N∑
i=1
(xi − x̄)2

N∑
i=1
(xi − ri)2

(31)

C. RESULTS AND PERFORMANCE
This section explains the results achieved by implement-
ing the developed ship recognition chain. In addition to the
results, the capabilities and limitations of the chain are also
discussed. At the end of this section, we also provided a
performance comparison between the developed chain and
methods presented in [22] and [24].

It should be noted that the rest of the results reported in
this article has been obtained by assigning fixed din and dout
values in the ship detection stage. These values were chosen
according to the experiment results as provided in Fig. 8.

FIGURE 8. The Precision-Recall response as the sizes of the windows is
varied.

The Precision-Recall curve in Fig. 8 was obtained by
assigning the dout to 20 pixels larger than din to keep the back-
ground window has wider coverage than that of the fore-
ground. According to the plot, we have found that the din
and dout equal to 46 and 66 can result in the highest detec-
tion performance; hence, these values are then assigned as
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TABLE 4. Properties of ships correctly-detected by the developed chain.

the optimum sizes of windows. For analysis, the static and
dynamic properties of ships correctly detected by imple-
menting optimum din and dout are shown in Table 4. These
properties were obtained from AIS dataset and online ship
database.

All of the ships above are used as references in assessing
the performance of the developed method.

1) RESULTS ON POSITIONING ACCURACY AND
CALCULATED SHIP DIMENSIONS
This section explains the accuracy of the developed chain in
locating the ships and determining the lengths and breadths
of the ship.

a: POSITIONING ACCURACY BY THE DEVELOPED CHAIN
In order to evaluate chain accuracy in locating the ships, the
geographic distance between the detected and the reported
location is calculated. The calculation was made possi-
ble by implementing the Haversine formula, requiring two
latitude-longitude pairs as the input. Fig. 9 shows the distance
distribution in which is stated as ‘‘positioning error’’ on the
rest of this article.

The results presented in Fig. 9 were obtained after a correc-
tion schema for compensating the difference between image
acquisition time and AIS timestamp applied. As a result,
the reported position used in calculating the positioning error
was previously interpolated based on their time difference
and the currently-reported dynamic parameters.

FIGURE 9. Distribution of ships positioning error.

According to Fig. 9, it is confirmed that the developed
chain is capable of accurately locating the ships on the
given images. It is shown that the error, is ranging from
57 to 750 m with an average value of 344 m. As the reported
AIS position has already been corrected, the current position-
ing error is most likely caused by inaccurate ground control
points (GCPs) assigned during the geo-referencing stage.
In general, it is difficult to assign precise GCPs, especially
for ocean areas in which unique features or objects are rarely
found. Therefore, the accuracy of GCPs, in our case, influ-
ences the capability of the developed chain in locating the
ships.

FIGURE 10. Ships having the smallest and largest positioning error (Ship
photos downloaded from http://www.shipspotting.com/gallery/photo.
php?lid = 3149019 and http://www.shipspotting.com/gallery/photo.
php?lid = 2344417).

In Fig. 10, we visualized two contrast conditions in which
the lowest and highest positioning errors are found.

In Fig. 10 (1), a Marshall Island-flagged container ship,
Front Discovery, with MMSI number 538008190, was accu-
rately spotted by the detection chain nearby the Port of Cape
Town. While in Fig. 10 (2), Yu Xiao Feng, a Chinese bulk
carrier withMMSI number 414742000, was detected with the
highest error of up to 750m located by the developed chain.
Although the chain produces the highest positioning errors
on this particular ship, the other parameters, such as length,
speed, and heading, have been precisely calculated. There-
fore, a relatively high positioning error resulted from the
chain is still acceptable since this error is directly affected by
the non-chain-related issue, i.e., the quality of geo-referenced
images.
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b: ACCURACY ON CALCULATED SHIP DIMENSIONS
Despite optimum din and dout have been used in the chain,
an unstable relationship between the calculated lengths and
those found in references still exists. As provided in Fig. 11,
the calculated lengths swing around the references depends
on the image fed to the chain. It is shown that the lengths
extracted from ‘‘Image 1’’ and ‘‘Image 2’’ tend to exceed their
references. On the contrary, the calculated lengths found in
‘‘Image 3’’ are relatively smaller than that of the references.
From this plot, it is confirmed that the calculated lengths in
‘‘Image 1’’ are relatively closer to their references than that
found on other images.

FIGURE 11. Comparison of calculated and reported lengths.

FIGURE 12. Breadth difference in the pixel unit.

As experienced by the lengths, the difference between the
calculated and reported breadths are also found. As shown
in Fig. 12, the error between these breadths ranges from 1 to 5
pixels with an average value of 1.8 pixels, which is still in an
acceptable range of error.

To analyze the error of calculated dimensions, in Fig. 13,
we provided the MAPE of dimensions in which representing
the percentage error between the calculated and reported
dimensions.

According to Fig. 13, the highest error of lengths and
breadths are both found in ‘‘Image 2’’ then followed by

FIGURE 13. MAPE of dimensions for different test images.

‘‘Image 3’’ and ‘‘Image 1.’’ It is also shown that the overall
MAPE of lengths and breadths is around 15.1% and 35.9%,
respectively. Moreover, it is clear that the MAPE of lengths
covary with theMAPE of breadths. As inspected on the input
image individually, the MAPE of breadths increases as the
MAPE of lengths gets larger. This phenomenon indicates that
the factors influencing theMAPE of lengths also affecting the
performance of the chain in estimating the breadths, and those
factors depend on the quality of input images.

In addition to MAPE of dimensions, it is also found
an interesting result related to the accuracy of calculated
breadths. As shown in Table 5, the larger the true breadths,
the lower the MAPE resulted. This inversely-proportional
relationship indicates that the accuracy of calculated breadth
actually depends on the ships’ actual size. Consequently,
a smaller vessel would have a larger relative error due to the
limited resolution of the images.

TABLE 5. The values of MAPE of breadth for three different classes of
true reference.

Due to the relatively high error found in calculated dimen-
sions, it can be concluded that the improvement for achieving
a better result is still required. In our case, this error is caused
by two interrelated factors. Firstly, as commonly found on
medium resolution imagery, the blur effect is unavoidable
in LAPAN-A3 MSI. This effect affects the accuracy of cal-
culated dimensions as the blurry ship image fed into the
ship properties determination stage. Secondly, since we only
used medium resolution imageries with a pixel resolution
of 16m, a small error is difficult to be achieved as long as
the results are compared to meter-unit references. However,
if measured discretely in the pixel unit, the averaged error
for lengths and breadths are 2.6 and 1.8 pixels, respectively.
These results indicate that the calculated ship dimensions are
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still acceptable despite medium resolution imagery used as
the input.

Finally, we have also found that both the positioning error
and the accuracy of the calculated dimensions discussed
above are affected by the current sailing speed, as presented
in Table 6.

TABLE 6. Positioning error and MAPE of dimension for two different
classes of ship velocity.

As the positioning error represents the distance between
the detected and the interpolated AIS location, a fast-moving
ship will produce a relatively high error since its interpolated
position’s uncertainty tends to increase. Therefore, on aver-
age, the ships moving with 0 – 1.8 knots can be located
more precisely compared to those moving at a higher speed.
In addition to positioning error, the MAPE of lengths and
breadths also increases as the ship gets faster. This phe-
nomenon happened since the shipmoving with a higher speed
will produce more wakes and ripples surrounding its hull
compared to the moored one. Consequently, this problem
will affect the performance ship detection stage in classifying
desired ship pixels from a given ship image. As a result,
the calculated lengths and breadth derived from this frame
might be overestimated, resulting in a relatively largerMAPE
value.

2) RESULTS ON HEADING AND VELOCITY
The accuracy of resulted headings and velocities depends
on the ship-and-wake segmentation performance controlled
by the sensitivity parameter, CB. According to Eq.(22) dan
Eq.(23), the value of CB is inversely proportional to the
number of segmented ship pixel. An extremely lowCB results
in an over-estimated wake length of the ship. On the con-
trary, choosing a relatively high CB may lead to the absence
of detected wake; hence heading correction cannot be per-
formed, and ship velocity will be saturated at 0 knots or
anchoring. Therefore, the selection of CB is important to
be considered to provide a satisfying result. In finding the
optimum CB, we have varied this value from 0.50 to 1.50 for
each image and measured the resulted MAPE of headings
and velocities as given in Fig. 14. It should be noted that the
headings provided in Fig. 14 are the corrected version as the
RT-based approach is included by default.

Based on Fig. 14, the optimum CB values resulting in the
lowestMAPE of headings and velocities vary for each image.
However, these values tend to range from 1.02 to 1.10. It is
also shown that applying the CB outside this range leads the
MAPE to increase before saturated at a certain point.

According to results on Fig. 14, we set CB = 1.08 for
‘‘Image 1’’ and ‘‘Image 3’’ while CB = 1.10 is applied for

FIGURE 14. Distribution of MAPE of headings and velocities as the CB
varied.

‘‘Image 2.’’ As an in-house developed chain preprocesses
the images fed to the detection chain, the extreme variation
of digital number (DN) due to weather or light change can
be compensated. As a result, even the CB is experimentally
investigated based on a limited number of images, the CB
ranging from 1.08 to 1.10 is reasonable to be assigned to
a new database. We expand this part into two respective
sections to deeply analyze the accuracy of resulted headings
and velocities using those optimum CB.

a: HEADINGS ACCURACY AND RT-BASED CORRECTION
In this section, we analyzed the accuracy of the chain in esti-
mating the headings. Moreover, the comparison of accuracies
and errors resulted before and after applying the RT-based
correction are also presented.

Fig. 15 shows the correlation between corrected headings
and their references.

FIGURE 15. Linear correlation between corrected and reported headings.

Based on Fig. 15, the calculated headings are closely
matched to those reported by AIS. Referring to the linear
regression fit, the R2 reaches up to 0.79, indicating that the
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developed chain can produce a satisfying headings result.
Finally, based on the resulted MAPE and R2, it is confirmed
that the optimum CB is not only capable of producing the
lowest percentage error but also providing a high accuracy
result.

High accuracy headings achieved in this experiment is an
obvious contribution from the RT-based heading correction.
To compare the headings resulted from the direct method
in [28] and the proposed RT-based approach, we have pro-
vided the plot of these values in Fig. 16.

FIGURE 16. Comparison of uncorrected and corrected ship headings.

By observing the comparison plot in Fig. 16, it is shown
that 6 of 28 headings (21.42%) are successfully corrected.
As a result, the corrected headings are more likely closer to
their references than that of the uncorrected one. To quantita-
tively compare these headings, we provided their MAPE and
R2 values in Table 7.

TABLE 7. MAPE of headings and R2 of test images.

As individually assessed using Table 7, it is confirmed
that, in general, the inclusion of the RT-based approach is not
only capable of reducing the errors but also produces more
accurate results as the R2 coefficients are found increasing.
However, a particular case is found on headings extracted
from ‘‘Image 2’’ in which none of them are falsely-calculated,
indicating that the method introduced by [28] performs per-
fectly in this particular image. By excluding the ‘‘Image 2,’’
it is clear that the highestMAPE reduction is around 19.61%
as found in ‘‘Image 3.’’ At the same time, the highest increase
in R2 is found on ‘‘Image 1’’ with a value of 0.48.

b: ACCURACY OF ESTIMATED VELOCITIES
This section explains the accuracy of estimated velocities in
which were calculated by making the full use of detected
wake length information. As shown in Fig. 17, it is found
that estimated velocities and their AIS references are in sat-
isfying correlation with a value of R2 up to 0.73. This result
indicates that even if using medium-resolution imagery and
a relatively simple approach (during the absence of Kevin
wake), well-correlated velocities still can be achieved.

FIGURE 17. Linear regression of ship velocities.

Theoretically, by using 16m of resolution on Eq.(26), the
minimum non-zero velocity, VMIN , can be detected by this
chain of around 5.78 knots. It means, a sailing ship having
a velocity below this value will be detected as an anchoring
vessel. This condition is exactly found in the results provided
in Fig. 18. It can be seen that 14 of 28 ships have velocities
below the VMIN and are detected as in moored.

FIGURE 18. Comparison of calculated and reported velocities.

According to Fig. 18, by using LAPAN-A3MSI, the devel-
oped chain is suitable to be used as a maritime monitoring
tool for a specific area in which the ships were sailing with
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FIGURE 19. The relation between spatial resolution and the minimum
ship velocity (VMIN ) can be detected by the developed chain.

a minimum speed of 5.78 knots. For other types of MSI,
this approach can also be implemented; however, one has
to consider that the VMIN increases as a wider spatial reso-
lution MSI is used. Fig. 19 shows the relation between the
spatial resolution (γ ) and minimum velocity recognized by
the developed method (VMIN ).
The spatial resolution, γ , in Fig. 18 is limited to 250 m

since locating a ship having breadth and length above this
limit is almost impossible. Based on this plot, an image with
150 m of spatial resolution can still be used to distinguish
between anchoring and sailing tanker or bulk carrier ship at a
speed of 13-17 knots. However, for the imagery with a spatial
resolution higher than this, only container and cruise ships
moving with full speed at 16-30 knots will be detected.

The main limitation of implementing the RT-based for
determining actual ship headings and using the wake length
to estimate the velocities is that they depend on the detected
wake component’s availability. It means that an anchoring
ship heading might not be representative if detected using
the developed chain. To address the limitation on determining
ship headings, one can develop a ship bow-stern discriminator
algorithm. However, one must conceive that this approach
requires a sufficient ground resolution MSI. Moreover, since
the absence of the detected causes the velocity to be saturated
at zero, choosing an appropriate CB is essential to determine
actual headings and velocities.

3) PERFORMANCE COMPARISON
This section provided the comparison results between the
developed chain and methods proposed by authors in [22]
and [24]. The authors in [22] used sea surface analysis for
locating ships on high-resolution SPOT-5 and Google Earth
service images. Then, a linear function combining pixel
and region characteristics is employed to select ship candi-
dates. Finally, two geometry-based metrics, compactness and
length-width ratio, were adopted to remove falsely-detected
ships. The authors in [24] employed a local saliency map
to detect ships in a single frame of GF-4 satellite sequential

TABLE 8. Performance comparison between the developed chain and
other approaches.

images. However, the saliency map was generated by apply-
ing fixed Sth so that the final result depends on the value
assigned. In Table 8, it is shown that the performance of the
developed chain implementing adaptively-determined Sth is
close to those resulted from its predecessor in [24]. This result
indicates that the proposed approach is useful in reducing the
effort in finding appropriate Sth as a new database fed into
this chain.

In our case, the method in [22] did not give a satisfying
performance as applied on medium resolution LAPAN-A3
MSI. Compared to the developed chain, the Precision of this
method is far behind even it has a slightly higher Recall.
Since a low Recall represents an algorithm’s weakness in
dealing with the falsely-detected object, it can be concluded
that employing the compactness and length-width ratio for
detecting false alarms is less suitable to be applied in medium
resolution MSI, especially for LAPAN-A3 MSI. Therefore,
limiting the desired ship’s dimensions to a specific range of
values as used in the developed chain is necessary for achiev-
ing better performance on medium resolution MSI. Despite
having a low Precision, the method in [22] ran 22% faster
than the developed chain. This indicates that this method
gives an advantage in processing speed as employed either in
medium or high-resolution imagery. Based on this particular
comparison, it can be concluded that the developed chain is
more suitable to be implemented for recognizing the ship in
the medium resolution of LAPAN-A3 MSI or other typical
medium resolution imager satellites.

V. CONCLUSION
In this article, we proposed an automatic processing chain
used for recognizing the ships existing on medium resolution
LAPAN-A3/LAPAN-IPB MSI. The chain consisted of two
main stages, i.e., ship detection and properties determination
of the detected ship.

The detection algorithm was designed to extract ship can-
didates and to verify them. We developed an adaptive local
saliencymapping technique to detect the candidates, indepen-
dent of any predefined threshold. In verifying the candidates,
we applied two-stage verification based on their spectral and
geometry information.

The properties determination stage was carried out to esti-
mate the length, breadth, eccentricity, and heading of the
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detected ships. The estimation was made possible by imple-
menting an existing direct-and-fast methodology for ship
recognition. Finally, we also proposed a novel method based
Radon transform (RT) to identify the actual orientation so that
the accuracy of the estimated headings can be improved. This
method works by comparing the response of segmented ship-
and-wake and ship binary images on Radon space to obtain
the generated wake’s location and length. Moreover, by using
the wake length information, ship velocity is also estimated.

Based on the experiments, it is found that the devel-
oped chain is capable of precisely locating the ship with
an accuracy of up to 57 m as applied on 16m resolution of
LAPAN-A3 MSI. It is also found that the estimated lengths
and breadths are in a close match to their references with an
averaged error of 2.6 pixels only. Furthermore, it is confirmed
that the estimated velocities and their AIS references are in
promising correlation with the value of R2 up to 0.73. More-
over, the proposed RT-based method significantly improves
the chain accuracy after successfully detecting and correcting
21.42% of falsely-calculated headings. Finally, compared to
the existing methods, the developed chain has a higher Pre-
cision indicating the chain dealing well with falsely-detected
objects on a medium resolution MSI.
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