
Received November 13, 2020, accepted November 26, 2020, date of publication December 4, 2020,
date of current version December 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042596

CLUTCH: A Clustering-Driven Runtime Estimation
Scheme for Scientific Simulations
YOUNG-KYOON SUH 1, (Member, IEEE), SEOUNGHYEON KIM 1,2, AND JEEYOUNG KIM 1
1School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
2Samsung Research, Seoul 06765, South Korea

Corresponding author: Jeeyoung Kim (jeeyoungkim@knu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education through the Basic
Science Research Program under Grant NRF-2018R1A6A1A03025109.

ABSTRACT Efficient scheduling among simultaneous simulation jobs is of critical importance in the
allocation of limited computing and I/O resources. The difficulty of predicting when a job is completed can
cause nontrivial problems for system administrators and users e.g., squandered resources, long waiting times,
and simulation plan delays. To alleviate these problems, we propose a novel simulation runtime estimation
scheme termed CLUTCH, which employs a well-orchestrated ensemble of clustering, classification, and
regression techniques. The proposed scheme trains a runtime estimation model through a series of steps:
(i) grouping past simulation provenance records by clustering, (ii) labeling each of the grouped records by
classification, and (iii) performing regression on the execution times in each group. Given a simulation and
its external arguments, the trained model predicts the simulation’s runtime with high accuracy in a black box
fashion, using only basic external arguments without needing extra information. We additionally propose
two optimization algorithms which significantly reduce training overhead without sacrificing estimation
quality. In the experiment with real datasets, our model achieved approximately a 14.2% growth in estimation
accuracy, compared to the most recent state-of-the-art method; with our optimizations applied, the model
was trained 16 times faster while still retaining accuracy.

INDEX TERMS Simulation runtime estimation, ensemble machine learning, pre-processing, simulation
provenance, clustering, classification, regression, random forest, K-means.

I. INTRODUCTION
Runtime estimation has long been an important task for black
box-based online simulation platform services [1]. The main
concerns are that often many simulations accompany high-
performance computing (HPC) and storage resources which
accordingly require very high execution cost in time, some-
times reaching up to months. Such long execution times can
lead to a variety of issues, such as (i) leaving users to sit
and wait with no information of when their simulation will
end; (ii) unexpectedly delaying simulation schedules; and
(iii) wasting limited online simulation resources, occasionally
caused by an infinite loop initiated by a wrong combination
of simulation input values.

To address these aforementioned concerns, this article pro-
poses a CLUsTering-based sCHeme for estimating simula-
tion execution time, which we call CLUTCH. The key idea
of the proposed scheme is the application of an ensemble

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

of clustering, regression, and classification techniques, rather
than relying on a single prediction model. The model is
accompanied by two optimization techniques, first, determin-
ing the optimal pre-processing permutation and second, find-
ing the best number of clusters k in an automated fashion; the
proposed optimization methods are capable of significantly
reducing the training overhead while retaining the same esti-
mation quality.

With CLUTCH, an opportunity for online simulation plat-
form users to estimate their simulation times a priori will be
offered, allowing the users to adjust their simulation sched-
ules accordingly; further, the platform administrators will be
able to develop smart schedulers to improve simulation job
throughput [2], [3]. Additional technical details are discussed
in Section IV.

Our CLUTCH scheme deals with two major issues which
often affect the performance of runtime estimation. The first
issue is data pre-processing a well-known and challenging
problem which must be addressed before conducting full-
scale analysis and model training. Common methods of

220710 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3124-2566
https://orcid.org/0000-0002-7910-7884
https://orcid.org/0000-0001-9380-948X
https://orcid.org/0000-0001-6694-7289

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 1. A motivating example of the importance of a well-chosen
pre-processing method regarding estimation quality.

pre-processing include the location and elimination of out-
liers in the training data, or performance of normalization
and elimination of duplicate data. Many other options exist,
as well. We argue, however, that arbitrary data pre-processing
without careful preliminary analysis may negatively impact
the performance of a trained model.

Figure 1 clearly demonstrates that choosing a proper pre-
processing method and a desirable hyperparameter value
is critical for good performance. For a simulation program
(named 2D_Comp_P) available on an online simulation plat-
form, Figure 1(a) compares the simulation time estimation
performance with and without Principal Component Analysis
(PCA) [4], [5]. Applying a pre-processing permutation with-
out PCA, the worst case prediction error rate on the program’s
data is 71.47%, with an average of 67.70%. In contrast,
using a permutation with PCA yields an average error rate
of 75.72% and a best case of 70.73%. These preliminary
results emphasize that applying a pre-processing permutation
without PCA to the simulation data can contribute to better
prediction.

The second issue addressed by the proposed model is
finding the optimal number of clusters k , in data clus-
tering, which is a classic but still challenging problem
as reported in many previous works [6], [7]. A rich
body of existing literature proposes a rule of thumb
to determine an optimal k value in k-means clustering
variations.

Figure 1(b) plots the error rates of a simulation time esti-
mation model employing k-means as the value of k increases.
As illustrated, the estimation performance yields a minimum
error rate of 63.01% and worst case error rate of 71.45%; the
difference is a significant 8%. This demonstrates the impor-
tance of determining an optimal k value for better improving
estimation quality.

The proposed optimization method in this article resolves
the two following critical issues: yielding an optimal pre-
processing permutation and finding the optimal number of
clusters k for a given input dataset. With these optimizations,
we achieve training times approximately 16 times faster and
similar estimation performance. To the best of our knowl-
edge, this is the first work to address these problems in
runtime estimation.

Our contributions can be summarized as follows.

• Anovel runtime estimation scheme is proposed, to apply
an ensemble of clustering, regression, and classification
techniques.

• Two optimizationmethods are presented for our scheme:
first, to find the best pre-processing permutation, and
second, to determine the optimal number of clusters.

• The performance of our models are evaluated on real
datasets from an online simulation execution platform.

• It is shown through evaluation, that the proposed scheme
achieves a relative growth of approximately 14% in
accuracy, over the state-of-the-art method.

This article is organized as follows. In Section II related
work has been reviewed and comparative analyses with our
work have been performed. Section III includes a formu-
lation of the simulation runtime estimation problem and a
delineation of our approach. In Sections IV and V, we elab-
orate on the proposed scheme is elaborated and introduce
two optimization techniques. Section VI conducts asymptotic
analysis of the proposed scheme, and Section VII presents
the evaluation results of the proposed scheme compared with
state-of-the-art methods. Finally, Section VIII concludes our
paper and suggests future research directions.

II. RELATED WORK
So far, there has been a rich body of existing literature in

the area of estimating execution time. We have carefully and
extensively examined the literature and narrowed down our
focus to studies that we find relevant to this article. In this
section, we describe in detail how our work differs from the
previous studies in several aspects.

Table 1 summarizes major similarities and differences
between our work and the existing studies. First, the
examined papers concern various application domains:
load sharing facility (LSF) [8], parallel program [9],
[11], [25], cloud [10], [29], HPC [2], [14], [15], [19],
location-based services [20]–[23], databases [26]–[28], big
data applications [29], [30], and scientific workloads
[12], [13], [16]–[19]. The runtime estimation problem
addressed in this article applies to the scientific workloads
domain.

Second, the target of estimation is slightly different across
the studies we have investigated. Most of the existing
works [2], [9]–[18], [29], [30] aim to predict the runtime.
Some studies [2], [8] attempt to estimate the memory usage.
A group of papers [20]–[23] proposes the estimation mod-
els of arrival time for intelligent transportation services.

VOLUME 8, 2020 220711

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

TABLE 1. Qualitative comparison of our work with related existing studies.

Estimating the worst-case execution time is also discussed
in some other works [24], [25]. Besides, there are some
works [27], [28] concerning query time estimation in the
database context. Our work heavily focuses on estimating
simulation runtime with high accuracy.
Third, tools used for analysis differed across these studies.

Some of these [26], [27], [29] developed (pure) analytical
models and assess the validity of the model. Many of the
existing studies [20]–[24], [28] build neural-net based learn-
ing models and utilize them for deriving estimated time;
many others [2], [10], [16]–[19], [25], [30] use tree and
linear regression based machine learning models. Some other
works [11], [12], [14], [15] use hybrid methods combining
these tools—analytical model, machine learning, and deep
learning. In this article, we use what we consider the two
most relevant of these works [16], [17] for performance com-
parison. In particular, these studies apply machine learning,

but take a different approach. For instance, Pumma et al. [16]
organize a given workload into a decision tree and estimate
the runtime using the Artificial Bee Colony (ABC) algo-
rithm [31]. Tyryshkina et al. [17] explore various regression
models for runtime estimation and conclude that the random
forest offers the best performance. Considering the fact that
machine and deep learning appear de-facto standard tools for
time estimation, and that the number of simulation prove-
nance records of each scientific simulation program is not
sufficient to apply deep learning, it is natural to employ the
random forest model to solve our problem.

Fourth, the availability of hardware-specific parameter
data differs from the existing works. The algorithms proposed
in some of the studies [2], [12]–[14], [16], [17], [24], [29]
require hardware information that may enhance the quality of
the runtime estimation, while those proposed in some other
studies [15], [18] require no such information. The former

220712 VOLUME 8, 2020

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

is known as the white box, and the latter, the black box.
Our runtime estimation approach takes the black box fashion,
which is much simpler and more lightweight than the white
box in which heavy resource monitoring is necessary.

Fifth, the majority of the existing work raises a ‘‘repro-
ducibility’’ issue. Their source code is not open to public.
Some other work, however, was reproducible; for instance,
Tyryshkina et al.’s work [17] and our earlier work [18] made
their code available, and Pumma’s algorithm [16] was easily
reimplemented. In Section VII, we will compare the per-
formance of our proposed scheme with that of these three
previous methods on the same simulation datasets.

Last but not least, the previous run-time estimation
method [18], named EXTES, is an ensemble of classifica-
tion and regression. Here are the major distinctions between
EXTES, and the proposed scheme, CLUTCH. Although both
are ensemble methods, our new scheme applies ‘‘clustering’’
to substitute for the classification of the previous work -
that is, CLUTCH applies a clustering technique to group
similar simulation provenance data, whereas EXTES uses a
very simple method of dividing execution time. Moreover,
determining the optimal number of clusters among the data
turns out to be highly effective to the new scheme. CLUTCH
succeeds in further improving performance with the inclusion
of that optimization. As a result, the proposed scheme results
in superior estimation quality to that of previous work by a
large margin.

III. PRELIMINARIES
This section provides some preliminaries necessary to under-
stand our paper. We introduce terminology, notation, and def-
initions; formulate our simulation time prediction problem;
and then give a brief description of our approach.

A. TERMINOLOGY
Below, we explain several terms used throughout this article.

• Simulation program: A computer program running
on an online scientific workload execution platform.
It receives from its users one or more input parameters
(defined below) and performs scientific computation.

• Simulation input parameter(s): A set of values provided
as input for a specific simulation program.

• Simulation instance: A simulation activity running with
user-specified input parameters. A simulation instance
consists of a set of input parameters and its correspond-
ing runtime, as defined below.

• Simulation runtime: The end-to-end time of a given
simulation instance. Note that the runtime significantly
varies not only across different simulation programs but
also with different simulation input parameters. Also,
even when the same input parameters are entered into
the same simulation program, their runtimes may vary.

• Simulation provenance: A ‘‘bag’’ of simulation
instances. The entire provenance is treated as an input
dataset for constructing a runtime estimation model.

TABLE 2. Notations and descriptions.

B. NOTATIONS AND DEFINITIONS
Table 2 lists the notations used throughout the paper.
• Input parameters: Each simulation input datum, xi ∈
X , contains P input parameters, which are expressed as
[a1, . . . , aP], where an input parameter, aj, corresponds
to the j-th parameter of the P input parameters. The
datum, xi, can then be represented by the following one-
dimension tensor: xi = [ai,1, . . . , ai,P], where 1 ≤ i ≤
N .

• Simulation runtime: Y contains N simulation runtimes.
Y can be represented by Y = {y1, . . . , yN }. A runtime
yi is driven from an input datum xi. Our study aims to
generate a model M to predict runtime for a given set
of the P input parameters on a simulation program. The
runtime estimated through M is defined as ŷ.

• Data to predict: After training the model M based on
the input parameters and runtime data, we predict the
runtime for a given simulation instance with the P input
parameters. For that input parameter datum for the new
instance, xj, which can later be included in X , the pre-
dicted runtime is defined as ŷj, where j ≥ N + 1.

C. PROBLEM FORMULATION
The goal of this article is for each simulation program to build
and utilize the best model to estimate the runtime ŷj on a given
simulation instance, xj, with the P input parameters. In the
following, we formulate our research problem.

1) MODEL CONSTRUCTION
For all elements in X , our goal is to train M to minimize(∑N

i=1

∣∣ŷi − yi∣∣)
|Y |

. In other words, we want to find M , that

can most reduce the sum of errors between the estimated ŷi
and the captured (true) time, yi.

2) RUNTIME ESTIMATION
This concerns reporting the simulation runtime estimated by
the developed model M , an ensemble of clustering, regres-
sion, and classification methods. This problem is much sim-
pler than the former model construction problem: given a new
simulation instance, xj, the goal is to estimate and report the
simulation time of xj: that is, ŷj = M (xj).

D. OUR APPROACH
In this study we take three key approaches for simulation
runtime estimation. Below, we describe the reasons for and
benefits of each selected approach in detail.

VOLUME 8, 2020 220713

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 2. An overview of the proposed CLUTCH scheme: for a simulation program, this figure illustrates training a runtime simulation model and later
invoking the model to produce the runtime predicted by the model on a user’s input parameters.

The first approach relates to input values for estimation.
Many existing works [2], [12]–[14], [16], [17] take advan-
tage of hardware-specific parameters that may be useful for
runtime estimation as mentioned in Section II. However,
the measured hardware parameters are not always available
across all platforms. Thus, for a certain environment in which
such parameters do not exist, the existing techniques cannot
be directly applied. Even if applied, estimated quality may
decrease. To address this concern, we estimate simulation
runtime based on only input parameters that are typically
stored in almost all platforms, without needing hardware-
specific parameters. By doing so, we can obtain two nice ben-
efits: (1) saving efforts and resources for hardware resource
monitoring and (2) applicability to a platform or an applica-
tion that cannot support such hardware monitoring.

The second approach involves the estimation tool. Many
of the existing works exhibited in Table 2 rely on machine
learning as a tool. Their machine learning models worked
well for their estimation. Considering their success, it is
totally appropriate to leverage machine learning techniques
to solve our time estimation problem.

The third and last approach concerns a combination of
prediction methods. In this article we present a novel ‘‘ensem-
ble’’ of clustering, regression, and classification to construct
a runtime estimation model. Unlike previous works [13], [18]
which take a similar approach, the biggest difference in our
work is to apply clustering to the input data in the early
training process, resulting in estimation quality enhancement.

IV. PROPOSED SCHEME
This section explains in detail our scheme estimating runtime
on specified input parameters of a simulation program.

A. OVERVIEW
Figure 2 illustrates an overall flow of our proposed scheme,
CLUTCH, comprising two processes: developing a runtime
estimation model (Figure 2(a)) and predicting the runtime via
the model (Figure 2(b)).

Figure 2(a) overviews the process of training the model.
In the training process, the proposed scheme builds three
models: clustering (colored in yellow), regression (in green),
and classification (in orange). First, for a simulation program,
its simulation provenance data—input parameters and their
runtimes—are pre-processed prior to actual model training.
Next, the refined provenance data are grouped together into k
clusters. In other words, the provenance data are clustered in
accordance with the characteristics of the internal simulation
computation. Then, for each of the k clusters, their respective
regressionmodel is built based on the simulation input param-
eters of the cluster. The training is finalized by labeling the
clusters with their respective numbers and input parameters.
In this way, the model-building process yields the simulation
runtime estimation model (in sky blue) for a given simulation
program.

Figure 2(b) pictorially abstracts how the proposed
CLUTCH scheme reports the final estimated runtime via

220714 VOLUME 8, 2020

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

the developed model from that program. CLUTCH accepts
user-specified simulation input parameters of the same sim-
ulation program and pre-processes the input data through
parameter normalization and PCA. Then, the trained model
is utilized to identify which cluster is closest to the user
input data and then pull out the regression model associated
with the cluster. Finally, our scheme predicts and outputs
the runtime on the input data via the regression model. (The
red arrows and boxes, for instance, represent the path to
choose a desired class of the estimation model and calcu-
late the predicted runtime.) Note that both processes must
first go through the respective pre-processing phases, which
we find critical in enhancing the quality of the runtime
estimation.

B. DETAILED SIMULATION RUNTIME ESTIMATION
This section elaborates on developing a runtime estimation
model. Note that since the parameter information for each
simulation program is different, the estimationmodel must be
separately built and trained. Nevertheless, the overall method-
ology is applied across all programs. Next we discuss how
pre-processing is carried out on the data.

1) PRE-PROCESSING PERMUTATION ON SIMULATION
RUNTIME DATA
Figure 3 shows the error variation for a simulation program
as the number of applied pre-processing methods increases.
It is clear that the error rate increases when more than three
methods are applied. More importantly, Figure 3 implies
that, regarding estimation time performance, it is critical to
determine the best pre-processing permutation among the
methods.

To yield the optimal permutation, we consider the fol-
lowing four pre-processing methods: (i) parameter normal-
ization, (ii) redundant parameter instance elimination, (iii)
dimension reduction through PCA, and (iv) outlier elimi-
nation. The first method indicates rescaling the range of
simulation parameter data between 0 and 1. The second
method is to integrate redundant provenance data with the
same parameter values into one. Note that even if the same
parameters are entered into the same simulation program,
the actual execution time may vary due to time variability
and other external factors. In our study, the runtimes of each
unique set of parameters are averaged (investigation into
better strategies is needed). The third method is to apply PCA
[4], [5]. Since scientific simulations are based on a number of
input parameters, PCA is a reasonable and effective option.
The last pre-processing method is to remove outliers. When
looking into the runtime distribution of the programs, we find
that most of the runtimes are concentrated near a certain
point. (This point is close to the average of the runtimes.) The
further away from that point, the fewer data there is. Hence,
we can infer that the outlying data produce more errors and
thus must be eliminated.

FIGURE 3. Error variation according to number of pre-processing
methods applied.

Equation 1 shows the runtime range (RT) of simulation
provenance data that remains after removing outliers:

RT : avg− c× sd ≤ t ≤ avg+ c× sd (1)

where t: a simulation runtime, avg: average of runtime, sd :
standard deviation of runtime, and c: a constant in

[
0, avgsd

]
.

Data that have a greater distance than the standard devi-
ation of the runtime weighted by a certain constant factor c
from the mean of the runtime is treated as an anomaly and
removed. There are two criteria for determining c. The first
criterion is to find an elbow, the point where a lot of data is
sharply removed. Our study defines the elbow as the point at
which at least 1% of the data is removed. That said, a large
amount of data may be removed along with the elbow. There-
fore, the second criterion is to limit the maximum amount
of data that can be discarded. If the elbow is not found,
we remove up to 5% of the total data and treat the retained
data as valid.

The aforementioned four pre-processing methods need to
be applied in a certain sequence to improve estimation quality.
We thus seek the best permutation of these methods by mak-
ing estimations and comparing quality for each permutation.
The number of pre-processing permutations is derived as
shown in Equation 2. Given the four methods, we can come
up with a total of 65 permutations by substituting 4 for m in
the following Equation 2:

U =
m∑
i=0

(
m
i

)
× i! (2)

where U : the number of pre-processing permutations, m: the
number of pre-processing methods.

2) ALGORITHM FOR DEVELOPING A RUNTIME ESTIMATION
MODEL
We now elaborate on the training algorithm. Algorithm 1
illustrates how the model is constructed. The algorithm takes
as input the past parameter data of a simulation program.
We first obtain an initial model M via regression (Line 1).
That model is equivalent to the regression model covering a
single cluster of the instances.M holds the best model so far.
In turn, the algorithm loops over a range from two to one hun-
dred clusters (Lines 2–12). Specifically, it performs clustering
and stores the result into Ck of Mc indicating a candidate
(Line 3). Next, for each cluster in Ck , its regression model
(rg) is explored, and its error is summed as e (Lines 4–7).

VOLUME 8, 2020 220715

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

Algorithm 1 A Runtime Estimation Model
input : inD← A program’s simulation provenance data
output: M ← The program’s runtime estimation model

1 M ← getRgMdl(inD) ; // M: The best model
2 for k ← 2 to 100 do // k: # of clusters
3 Mc.Ck = getClMdl(inD, k) ; // Mc: A

candidate in consideration
4 foreach cik ∈ Ck do // cik: i-th cluster

in Ck
5 Mc.Ck .rgik = getRgMdl(cik .inD) ;
6 e + = computeError(Mcand .Ck .rgik) ;
7 end
8 Mc.errk ← e∑k

i=1 |c
i
k |
;

9 if Mc.errk < M.err then
10 M ← Mc ; // Set Mc to M.
11 end
12 end
13 return M

We then compute a relative error (Mc.errk) by averaging
e over the sum of the non-redundant simulation instances
included in each cluster (Line 8). If the calculated error is
fewer then the error ofM (M .err), then the running candidate
(Mc) is updated to M , which becomes the new best model
(Lines 9-11). After the range is exhaustively examined, the
training ends and yields M as the final model (Line 13).

3) REPORTING ESTIMATED SIMULATION RUNTIME
After this training process, as already shown in Figure 2(b),
the proposed scheme accepts and pre-processes given simula-
tion input data and then identifies a particular cluster through
an additional classification model [32]. This classification
model is trained to associate a cluster with its input sim-
ulations as illustrated in Figure 2(a). Note that in the real
environment, a runtime value is not given as input. That is
why we need the classification model to use only simulation
input parameters in order to determine the best matching
cluster. Our scheme finally reports the estimated runtime
through the regression model of that chosen cluster.

4) UTILIZED MACHINE LEARNING MODELS
Regarding machine learning tools, we use random for-
est [33] for both regression and classification, as it has been
proven to show its excellent performance in many existing
works [10], [17], [18], [32]. When it comes to clustering,
we use k-means [34], and the reason will be detailed in
Lemma 1 in Section VI.

V. OPTIMIZATION
Our CLUTCH scheme proposed in Section IV can fall vic-
tim to two potential problems. First, considering all possi-
ble permutations of the four pre-processing methods may
take an unacceptably long time. Second, as seen in Algo-
rithm 1, a large number of clusters under consideration may

significantly impact the model’s training time. To mitigate
these problems, we introduce two optimization techniques.

A. PRUNING PRE-PROCESSING PERMUTATIONS
Putting the four pre-processing options on the table, we con-
sider 65 permutations by default as simply computed in
Equation 2. This implies that for each simulation program,
the training and verification processes of the model should
be carried out 65 times in total. Considering a number of
simulation programs, it is practically infeasible to apply all
permutations to build a simulation execution time estimation
model associated with each of the programs. Thus, it is essen-
tial to avoid excessive training time by applying early pruning
to as many uncompromising permutations as possible. This
section delineates how we can drastically reduce the total
number of permutations in consideration to eleven, without
impacting the overall estimation accuracy.

The first consideration is the sequence in which the pre-
processing methods are applied. If the ordering of the pre-
processing methods yields little difference in simulation exe-
cution time as well as minimal difference in the predicted
quality, then we can save training time by using a fixed
sequence. Based on this assumption, we explored cases
in which the same results were obtained regardless of the
sequence of the pre-processing methods. Consequently, some
combinations, such as 1) normalization and duplicate elim-
ination and 2) normalization and outlier removal, did not
matter to their internal orders.

Further analysis revealed that, on the contrary, the order
of application of normalization and PCA has a significant
impact on estimation quality. More specifically, the permu-
tations with PCA after normalization showed an error of
50.16% on average—a difference of about 5% from the
opposite order’s 55.10% error. It is therefore advantageous
to run PCA after normalization. Based on these results, the
following order has been determined as a permutation with
high accuracy: outlier removal→ duplicate elimination→
normalization→ PCA.
By deriving the above sequence, the problem of calculating

the number of permutations to be considered is narrowed
down to examining the applicability of each technique; thus
Equation 2 can be updated as simply 2N (N : number of pre-
processing methods). Given the four pre-processing options
currently available, a total of 16 permutations can be consid-
ered.

Next, we analyzed whether applying the pre-processing
methods indeed affected estimation quality. Recall that Fig-
ure 1(a) shows only pre-processing methods that adversely
affect the runtime data of a particular simulation program.
The example demonstrates that including more methods does
not always guarantee better performance. We also found that
as the number of methods to consider increased, the runtime
estimation accuracy tended to drop in many cases (again,
refer to Figure 3). In addition, the best predictive quality for
a simulation program was obtained when permutations with
two or fewer methods were applied, while the worst quality

220716 VOLUME 8, 2020

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 4. Error rate variation of cluster increase on two simulation
programs.

was often shown when three or more methods were applied.
We therefore concluded that it is optimal to choose two or
fewer appropriate pre-processing methods. Based on these
results, approximately five-sixths of the original permuta-
tions were pruned, resulting in only 11 permutations.

B. FINDING THE OPTIMAL k CLUSTERS
To address the model’s second issue, we herein propose how
to efficiently find the optimal number of clusters, k .
We conducted a preliminary analysis on our simulation

runtime data (exhibited in Table 3). Interestingly, we found
three underlying global trends present across the data. Data
following the first trend displayed an error rate that rose
with the number of clusters, as shown in Figure 4(a). The
second trend showed the error rate fall then rise at a certain
point, as the number of clusters increased, and is shown in
Figure 4(b). Data of the third type showed no distinctive
form.

In the first two trends, we observe that as the number of
clusters increased, the error rate gradually increased as well.
This common property reveals that the variation of the error
rate is closely akin to a logarithmic function (represented by
a blue line in Figure 4). More specifically, the first trend can
be described as a log function with positive coefficients; the
second trend can be described as a combination of two log
functions where the first log function (to the left of the lowest
error point) has negative coefficients, while the second (to the
right of the point) has positive coefficients. The point at which

TABLE 3. Summary of the datasets used for our experiments.

the second trend has the lowest error is the intersection of the
two log functions.

Figure 5 visualizes finding the best k for our problem.
In the figure, the x-axis indicates the number of clusters, k ,
increasing to the right, and the y-axis represents the error rate
associated with each k value.

Algorithm 2 describes the process of determining the best k
as illustrated in Figure 5. Step 1 calculates the estimated error
of the sampled k for regression (Lines 1-6). We draw more
samples when the k value is small, because as k increases,
the time required for clustering also increases. Thus, k starts
at 2 and increases by a factor of 1.6, being rounded up to the
nearest integer. The total number of sampled k values is 13.

Step 2 performs logarithmic regression based on calcula-
tions of cluster counts and errors for a total of 13 samples
(Lines 8-14). First of all, the fit for Case 1, which represents
the first trend, is the same as the traditional logarithmic
regression. This can result in an expression of the form y =
a · ln(x) + b, which accounts for the entire sample. The fit
of Case 2, which represents the second trend, performs two
logarithmic regressions: the first fit, y = a · ln(x)+ b, on the
left, and the second fit, y = c · ln(x) + d , on the right.
Considering that (i) there is a total of 13 sampled k values and
(ii) at least two values are required for a fit, the total number
of possible t values (meaning the points yielding the smallest
error) is 10. Each of the t values produces its respective error.
As the fit with the least error most explains the sample, the
subsequent step uses that fit.

Step 3 verifies whether the Case 2 fit satisfies the condition
of ‘‘a < 0 && c > 0’’ (Lines 17-23). If the condition is
true, then the model follows the second trend, and we can
determine the optimal k from the logarithmic functions’ point
of intersection. Else, the model may follow the first trend or
third trend.

In Case 1, if a is positive, then the model represents the
first trend. Hence, the optimal k is determined as the smallest
number of clusters, which is 2. If a is 0, on the contrary, the

VOLUME 8, 2020 220717

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 5. Visual example of the process to automatically determine k .

Algorithm 2 Finding the Best Number of Clusters, k
input : Simulation parameters and runtimes
output: The optimal cluster count, k

1 // Step 1: Generate Samples for case checking
2 for i← 0 to 12 do
3 k = b2× 1.6ic ;
4 x[i+ 1] = k ;
5 y[i+ 1]← Calculate the error for k ;
6 end
7 // Step 2: Fitting for case checking
8 lrCs1← Log regression (y = a ln(x)+ b) on Case 1 ;
9 for i← 2 to 11 do
10 x1 = x[1 : i] ;
11 x2 = x[1+ i : 13] ;
12 // Compute log regression on Case 2
13 y = (x ∈ x1) ? a ln(x)+ b: c ln(x)+ d ;
14 end
15 lrCs2←Model with the smallest error for Case 2 ;
16 // Step 3: Fitting for case checking
17 if lrCs2.a < 0 && lrCs2.c > 0 then

18 kbest =
[
e
d−b
a−c
]
;

19 else if lrCs1.a ≥ 0 then
20 kbest = 2;
21 else // Cannot find the best k
22 kbest ← Not available;
23 end
24 return kbest

error is constant. In this case, k is set to be 2 to save time on
clustering. If the a value does not satisfy either of these two
cases, we cannot find the best k; this case corresponds to the
third trend. In such case, the entire range of k is examined in
the same way as the scheme without optimization.

Note that a few more clusters around the chosen k are con-
sidered, as k may not always guarantee optimal performance.

VI. ANALYSIS
Here we show the asymptotic complexity of our scheme.

Lemma 1 (Clustering): The time complexity of clustering
N simulation instances is O(k ·N ·P), where k is the number of
clusters and P is the number of simulation input parameters.

Proof: In our scheme, k-means is used as a tool for
clustering. k simulation instances are initially chosen as cen-
ter points. For (N − k) simulation instances, their Euclidean
instances from the k centroids are calculated to form k clus-
ters. The calculation iterates over P parameters (a.k.a. P
dimensional space) that each of the simulation instances has.
Hence, the asymptotic complexity of our clustering is equal
to O(k · N · P). �
Remark 1: PAM [35] can be used as an alternative to the

k-means used in the proof. However, its time complexity is
known asO(k(N−k)2). This complexity ismuch less efficient
than that of k-means. It may be possible to apply sampling-
based clustering algorithms that are more rapid than PAM and
k-means; however, the sampling-driven approach cannot be
considered if N is insufficient.
Lemma 2 (Regression): The time complexity of the regres-

sion for N simulation instances is O(T · S ·N log(N)), where
T is the number of trees and S is the number of attributes
chosen by sampling.

Proof: In our scheme, random forest is used for regres-
sion. Suppose that we sample S parameters or attributes (from
P defined in Lemma 1) of a simulation program. For each s
∈ S, its tree can be built within O(N log(N)) time. Because
the number of trees is T , the running time complexity of the
regression is equal to O(T · S · N log(N)). �
Lemma 3 (Classification): The time complexity of the

classification for N instances is equal to Lemma 2.
Proof: We use random forest for classification as well.

Thus, the time complexity is equal to that of the regression.
�

Theorem 1 (The Proposed Scheme): For a simulation pro-
gram, the training time complexity of its runtime estimation
model is O(P ·N log(N)), where N is the number of instances,
and P, the number of simulation input parameters.

Proof: According to Lemma 1, running k-means for
N simulation instances takes as much time as O(k · N · P).

220718 VOLUME 8, 2020

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

Lemma 2 indicates that the time taken for random forest is
O(T ·S ·N log(N)). The running time of performing classifica-
tion is alsoO(T ·S ·N log(N)). For the regression within each
cluster, its running time is equal to

∑k
j=1 (T · S · Njlog(Nj)),

where Nj indicates the number of simulation instances in the
j-th cluster created after k-means is performed.
Considering the three costs, the running time complexity

for training themodel isO(
∑kmax

k=kmin (k ·N ·P+T ·S ·N log(N)+∑k
j=1 T · S · Njlog(Nj))), where kmin is the minimum value,

and kmax , the maximum value of the range to find the best k .
Since

∑k
j=1 Njlog(Nj) ≤ N log(N) and S ≤ P, the equation

can be modified to O(
∑kmax

k=kmin (k ·N ·P+ T ·P ·N log(N)+
T · P · N log(N))). By arithmetic sequence, this equation can

be rewritten to O(N · P · (
k2max+kmax−k

2
min+kmin

2)+ 2× (kmax −
kmin + 1)× (T · P · N log(N))). Here all the terms involving
kmax , kmin, and T can be simply treated as constants. Then,
the continuing equation is further modified to O(c1 · P · N +
c2 ·P ·N log(N)), where c1 and c2 are some constants. Hence,
the total training time is O(P · N log(N)). �
Remark 2: Theorem 1 emphasizes that our scheme asymp-

totically scales well with increasing simulation instances.
The following section provides empirical evidence on the
scalability of our scheme on real datasets.

VII. EXPERIMENT
Wenowpresent our evaluation results. The evaluation focuses
on the estimation quality, effectiveness of optimization, and
training time overhead of the proposed scheme.

A. ENVIRONMENT CONFIGURATIONS
We describe our experiment settings and explain and analyze
the datasets used for evaluation.

1) EVALUATION ENVIRONMENT
Our proposed scheme CLUTCHwas developed in R [36] and
the source code is currently available in a GitHub repository.1

The evaluation was performed on a Windows 10 Education
OS server running on an Intel Xeon Gold 6126, 32 GB RAM,
and a 1 TB M.2 NVMe SSD. We created Hyper-V VMs
running Ubuntu 18.04 using 1 Core and 8 GB RAM allocated
for evaluation.

2) DATASET
To make a fair performance comparison of our scheme with
the state-of-the-art methods, we use the datasets presented in
our prior paper [18]. The datasets, which are also available at
the same Github repository, include runtime data collected on
an online service platform [37] supporting various computa-
tional science and engineering (CSE) simulations. Details of
the datasets used are exhibited in Table 3.

In the datasets, most records (or simulation instances) have
a very long average runtime, reaching up to two million
seconds. There are also quite a few abnormal cases where

1https://github.com/knudeallab-papers/clutch

the measured runtimes are less than two seconds. It is safe
to assume that running time below two seconds may have
occurred due to a runtime error or being inadvertently stopped
by the user; we, therefore, discard such records and exclude
them from the data for training and evaluation.

3) EVALUATION METRICS
Establishing a good performance metric is essential for accu-
rate assessment. In this section we discuss two possibili-
ties for the metric and proceed with the reasonable choice
between the two.

The first metric is the Mean Absolute Percentage Error
(MAPE) [38] method, the most basic method that can be
considered for comparison with other competitors. MAPE
is defined below in Equation 3, where n is the number of
records, A is actual runtimes, and F is predicted runtimes.

MAPE(%) =
100
n

n∑
t=1

|At − Ft |
At

(3)

Since the range of the time reported by the proposed
scheme can be very wide (as exhibited in Table 3), there may
be a large gap between the predicted time and the actual time.
For instance, if the actual time is short and the predicted time
is long, the error value becomes very large. Because MAPE
averages each error, such large error values can distort the
estimation results of other good performances; a method is
therefore needed to eliminate this distortion.

A previous study [39] has shown that the shortcoming
can be overcome by applying the Symmetric Mean Absolute
Percentage Error (SMAPE), as shown in Equation 4.

SMAPE(%) =
100
n

n∑
t=1

|At − Ft |
(At + Ft)/2

(4)

For SMAPE, the difference between the predicted and the
actual runtime is divided by the mean of the actual and
predicted runtime, instead of the actual runtime, reducing
distortion compared to MAPE. A certain idiosyncrasy of
the SMAPE approach is that unlike most percentage-based
evaluation methods producing errors up to 100%, in the worst
case SMAPE may produce errors up to 200%.

Due to the fact that the range of errors is from 0% to
200%, and that the range of time predicted is vast, there
still exists distortion on the overall results, so additional
correction methods are needed. An estimation value that is far
off from the average of the estimation results is considered
to be an anomaly and the outlier removal techniques given
in Section IV-B1 are applied. Through this process, we can
obtain the estimation result with limited distortion.

B. EVALUATION RESULTS
In this section we discuss our evaluation results.

Using the datasets shown in Table 3, we compare the
performance of our proposed scheme, CLUTCH, with two
state-of-the-art works [16], [17]. Tyryshkina et al. [17] make
their code available as exhibited in Table 3, so there is no

VOLUME 8, 2020 220719

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 6. Evaluation results on estimation error across the different simulation programs.

problem with comparing their performance with our own.
We have also reconstructed the code from Pumma et al.’s
algorithm [16] to fit our data, and we compare that work with
ourCLUTCH scheme. As our earlier work [18] deals with the
same data used in this study, it is extensively compared with
the proposed work. We additionally include the comparison
results of a baseline method, termed ‘Avg,’ simply reporting
an average simulation time of each program. One thing to
note is that comparison with Naghshnejad et al.’s work [15],
which can’t be directly adapted to our proble, is not possible.
This is because their algorithms utilize program submission
time, resulting in unfair comparison with our work.

Figure 6 displays the comparison results of estimation
error across simulations. In the figure, ‘ABC’ is the result
of the previous work [16] on estimating runtime using the
ABC algorithm. Again, we reconstructed their work for our
comparison. ‘RF’ is the result of another previous work [17],
whose authors compared various regression models and
found that the random forest model yielded the best results;
we therefore use the random forest for ‘RF’. ‘EXTES’ is
the result of our most recent work [18]. We previously pro-
posed a hybrid model of classification and regression for
runtime estimation. The results were selected from several
representative programs in each CSE (computational science
and engineering) domain, with the average for all the nineteen
programs on the far right. (Because of lack of horizontal
space, the rest of the programs can’t be shown here although
we do have their results.)

As shown in Figure 6, our proposed scheme, CLUTCH,
near-consistently yielded the best performance among other
state-of-the-art methods (as well as ‘Avg’). More specifi-
cally, the average error rates for all simulations were 59.46%
for ABC, 45.51% for RF, and 34.67% for EXTES, while
CLUTCH (our scheme) showed a 29.75% error rate. This is
a 14.19% increase in accuracy over EXTES, which was the
best among the three competitors. The error rate of CLUTCH
was as low as approximately 5% on the dmd_pol program
(from the CHEM area in Table 3), in particular. These
empirical results demonstrate the validity and effective-
ness of the clustering-driven approach used in the proposed
scheme.

C. OPTIMIZATION PERFORMANCE
In Section VII-B we have shown that the proposed CLUTCH
method betters the recent methods [16]–[18]. Nevertheless,
we are aware that the training process takes a long time,
as mentioned previously. To address this concern, we intro-
duced several optimization methods in Section V. Here,
we present the evaluation results with optimization applied,
to confirm the effectiveness of the proposed optimization
techniques.

Figures 7 and 8 show the result of incrementally applying
different optimization options of CLUTCH to the selected
programs in Table 3. In the figures, ‘CLU_v0’ represents the
vanilla version (with no optimization applied), as evaluated in
SectionVII-B. ‘CLU_v1’ represents the result of applying the
method of finding the optimal k clusters (denoted as ‘OPT1’)
to CLU_v0. ‘CLU_v2’ represents the result of applying the
method of reducing pre-processing permutations (denoted
as ‘OPT2’) to CLU_v0, and the last version, ‘CLU_v4’,
represents the result of applying the two optimization options
together to CLU_v0. On one hand, an earlier study [40]
proposed an algorithm, termed X-means, to be able to quickly
determine the optimal number of clusters (denoted as XM).
Since XM can be used in place of OPT1, we add the result
of replacing OPT1 with XM in CLU_v4, represented as
‘CLU_v3’.

Figure 7 shows the uncompromising performance of OPT1
and OPT2. The difference in error rates among the variations
of CLUTCH except CLU_v3 was in the range of 0.2%∼0.4%
across the board. Considering the effect of random factors in
the model such as random forest, the quality of estimation
almost never varies. But when X-means [40] was applied by
CLU_v3, the estimated quality is adversely affected. Hence,
X-means cannot find the optimal number of clusters that we
wanted to determine.

Figure 8 shows differences in training time among the
different versions of CLUTCH. As illustrated, the proposed
optimization methods contribute to a reduction of training
time; more specifically, compared to CLU_v0, CLU_v1 is
about 2.9 times faster, CLU_v2 is 5.3 times faster, CLU_v3 is
64.8 times faster, and CLU_v4, applying all the optimization
techniques, is 15.9 times faster. CLU_v3 is also about 4.1

220720 VOLUME 8, 2020

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

FIGURE 7. Estimation error rate comparison of applying the optimization.

FIGURE 8. Training time comparison of applying the optimization
methods.

times faster than CLU_v4 (our proposed optimal model).
As mentioned earlier, however, the estimation performance
of CLU_v3 is far lower than that of CLU_v4. Therefore,
CLU_v4 is the optimal choice; that is, CLU_v4 can save
training time by more than one order of magnitude without
losing estimation accuracy.

In short, our proposed optimization techniques can reduce
training time without affecting accuracy, and the resulting
model is more effective than that of the previous study [40].

VIII. CONCLUSION AND FUTURE WORK
In this manuscript we proposed CLUTCH, a novel simulation
runtime estimation scheme based on an ensemble of clus-
tering, classification, and regression. We also presented two
optimization techniques: one determining an optimal permu-
tation of given data pre-processing methods and one finding
the optimal k number of clusters in an automated fashion. The
optimization techniques significantly reduced the overhead
of training the runtime estimation model while preserving
the quality of the estimation. To the best of our knowledge,
we are the first to address the issues of deriving the optimal
pre-processing permutation and determining the best k for
clustering, concerning the runtime estimation problem.

In our experiments, we demonstrated that the simulation
runtime estimation models created for each program had
an average error rate of 29.75%. Further, the models were
applicable to many simulation programs from diverse CSE
areas. The models hold effective in a black box environment
in which additional profiling information, such as hardware
resources or work queue status, is unavailable.

Importantly, our scheme showed a growth in error
improvement of about 14.19% compared to the

state-of-the-art work with the best accuracy [18], and a
remarkable 2x improvement over the model with the least
accuracy [16].

Our findings can help users plan simulations, and help
administrators efficiently schedule simulations, by estimating
their runtimes and then making users reconsider input values
requiring too much runtime. This saves time and resources.

The direction of future research can be summarized as
follows. First, we plan to apply the proposed scheme to other
domains. Its success in simulation runtime estimation raises
the expectation that our proposed scheme could shed light on
some other areas of application. It would also be interesting
to see whether there is a way of calculating the optimal k
other than using sampling and logarithmic regression, since
our optimization may not be applicable to some simulation
programs. Lastly, developing a job scheduler via the proposed
scheme would be of interest.

REFERENCES
[1] C. Witt, M. Bux, W. Gusew, and U. Leser, ‘‘Predictive performance

modeling for distributed batch processing using black box monitoring and
machine learning,’’ Inf. Syst., vol. 82, pp. 33–52, May 2019.

[2] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, and A. Okanlawon,
‘‘Improving HPC system performance by predicting job resources via
supervised machine learning,’’ in Proc. Pract. Exper. Adv. Res. Comput.
Rise Mach., Jul. 2019, pp. 1–8.

[3] M. Soysal, M. Berghoff, and A. Streit, ‘‘Analysis of job metadata for
enhanced wall time prediction,’’ in Proc. Workshop Job Scheduling Strate-
gies Parallel Process., 2018, pp. 1–14.

[4] C. Lee and D. A. Landgrebe, ‘‘Analyzing high-dimensional multispectral
data,’’ IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 792–800,
Jul. 1993.

[5] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, ‘‘Locality-preserving
dimensionality reduction and classification for hyperspectral image anal-
ysis,’’ IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185–1198,
Apr. 2012.

[6] D.-W. Kim, K. H. Lee, and D. Lee, ‘‘On cluster validity index for estima-
tion of the optimal number of fuzzy clusters,’’ Pattern Recognit., vol. 37,
no. 10, pp. 2009–2025, Oct. 2004.

[7] S. Zhou, Z. Xu, and F. Liu, ‘‘Method for determining the optimal number
of clusters based on agglomerative hierarchical clustering,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 12, pp. 3007–3017, Dec. 2017.

[8] T. Taghavi, M. Lupetini, and Y. Kretchmer, ‘‘Compute job memory rec-
ommender system using machine learning,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 609–616.

[9] J.-W. Park and E. Kim, ‘‘Runtime prediction of parallel applications
with workload-aware clustering,’’ J. Supercomput., vol. 73, no. 11,
pp. 4635–4651, Nov. 2017.

[10] T.-P. Pham, J. J. Durillo, and T. Fahringer, ‘‘Predicting workflow task
execution time in the cloud using a two-stage machine learning approach,’’
IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 256–268, Jan. 2020.

[11] J. Bhimani, N. Mi, M. Leeser, and Z. Yang, ‘‘FIM: Performance prediction
for parallel computation in iterative data processing applications,’’ in Proc.
IEEE 10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 359–366.

[12] M. H. Hilman, M. A. Rodriguez, and R. Buyya, ‘‘Task runtime prediction
in scientific workflows using an online incremental learning approach,’’ in
Proc. IEEE/ACM 11th Int. Conf. Utility Cloud Comput. (UCC), Dec. 2018,
pp. 93–102.

[13] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, and A. Almalaise,
‘‘Using machine learning ensemble methods to predict execution time of
e-science workflows in heterogeneous distributed systems,’’ IEEE Access,
vol. 7, pp. 25138–25149, 2019.

[14] Q. Wang, J. Li, S. Wang, and G. Wu, ‘‘A novel two-step job runtime
estimation method based on input parameters in HPC system,’’ in Proc.
IEEE 4th Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2019,
pp. 311–316.

VOLUME 8, 2020 220721

Y.-K. Suh et al.: CLUTCH: A Clustering-Driven Runtime Estimation Scheme for Scientific Simulations

[15] M. Naghshnejad and M. Singhal, ‘‘Adaptive online runtime prediction to
improve HPC applications latency in cloud,’’ in Proc. IEEE 11th Int. Conf.
Cloud Comput. (CLOUD), Jul. 2018, pp. 762–769.

[16] S. Pumma, W.-C. Feng, P. Phunchongharn, S. Chapeland, and
T. Achalakul, ‘‘A runtime estimation framework for ALICE,’’ Future
Gener. Comput. Syst., vol. 72, pp. 65–77, Jul. 2017.

[17] A. Tyryshkina, N. Coraor, and A. Nekrutenko, ‘‘Predicting runtimes of
bioinformatics tools based on historical data: Five years of galaxy usage,’’
Bioinformatics, vol. 35, no. 18, pp. 3453–3460, Sep. 2019.

[18] S. Kim, Y.-K. Suh, and J. Kim, ‘‘Extes: An execution-time estimation
scheme for efficient computational science and engineering simulation via
machine learning,’’ IEEE Access, vol. 7, pp. 98993–99002, 2019.

[19] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran,
‘‘Benchmarking machine learning methods for performance modeling of
scientific applications,’’ in Proc. IEEE/ACM Perform. Model., Bench-
marking Simulation High Perform. Comput. Syst. (PMBS), Nov. 2018,
pp. 33–44.

[20] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, ‘‘Multi-task represen-
tation learning for travel time estimation,’’ in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 1695–1704.

[21] Z. Wang, K. Fu, and J. Ye, ‘‘Learning to estimate the travel time,’’ in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 858–866.

[22] K. Fu, F. Meng, J. Ye, and Z. Wang, ‘‘CompactETA: A fast inference
system for travel time prediction,’’ in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2020, pp. 3337–3345.

[23] H. Hong, Y. Lin, X. Yang, Z. Li, K. Fu, Z. Wang, X. Qie, and J. Ye,
‘‘HetETA: Heterogeneous information network embedding for estimating
time of arrival,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2020, pp. 2444–2454.

[24] S. Heo, S. Cho, Y. Kim, and H. Kim, ‘‘Real-time object detection system
with multi-path neural networks,’’ in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2020, pp. 174–187.

[25] S. Reder, F. Kempf, H. Bucher, J. Becker, P. Alefragis, N. Voros,
S. Skalistis, S. Derrien, I. Puaut, O. Oey, T. Stripf, C. Ferdinand,
C. David, P. Ulbig, D. Mueller, and U. Durak, ‘‘Worst-case execution-
time-aware parallelization of model-based avionics applications,’’
J. Aerosp. Inf. Syst., vol. 16, no. 11, pp. 521–533, Nov. 2019.

[26] S. Currim, R. T. Snodgrass, Y.-K. Suh, R. Zhang,M.W. Johnson, and C. Yi,
‘‘DBMS metrology: Measuring Query time,’’ in Proc. Int. Conf. Manage.
Data, 2013, pp. 421–432.

[27] S. Currim, R. T. Snodgrass, Y.-K. Suh, and R. Zhang, ‘‘Dbms metrology:
Measuring Query time,’’ ACM Trans. Database Syst., vol. 42, no. 1,
pp. 1–42, 2016.

[28] Z. Chu, J. Yu, and A. Hamdulla, ‘‘A novel deep learning method for Query
task execution time prediction in graph database,’’ Future Gener. Comput.
Syst., vol. 112, pp. 534–548, Nov. 2020.

[29] D. Ardagna, E. Barbierato, E. Gianniti, M. Gribaudo, T. Pinto, A. da Silva,
and J. Almeida, ‘‘Predicting the Performance of big data applications
on the cloud,’’ J. Supercomput., May 2020, doi: 10.1007/s11227-020-
03307-w.

[30] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki, ‘‘PREDIcT:
Towards predicting the runtime of large scale iterative analytics,’’ Proc.
VLDB Endowment, vol. 6, no. 14, pp. 1678–1689, Sep. 2013.

[31] D. K. V., D. R., and B. A., ‘‘Artificial bee colony algorithm for grid
scheduling,’’ J. Converg. Inf. Technol., vol. 6, no. 7, pp. 328–339, Jul. 2011.

[32] M. Pal, ‘‘Random forest classifier for remote sensing classification,’’ Int.
J. Remote Sens., vol. 26, no. 1, pp. 217–222, Jan. 2005.

[33] A. Liaw and M. Wiener. (2017). Package: Randomforest. [Online].
Available: https://cran.r-project.org/web/packages/random Forest/
randomForest.pdf

[34] (2020). Kmeans R Package. [Online]. Available: https://www.
rdocumentation.org/packages/stats/versions/3.6.1/topics/kmeans,

[35] Q. Zhang and I. Couloigner, ‘‘A new and efficient K-medoid algo-
rithm for spatial clustering,’’ in Int. Conf. Comput. Sci. Aopl., 2005,
pp. 181–189.

[36] R Core Team. (2016). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
[Online]. Available: https://www.R-project.org/

[37] Y.-K. Suh, H. Ryu, H. Kim, and K.W. Cho, ‘‘EDISON: AWeb-based HPC
simulation execution framework for large-scale scientific computing soft-
ware,’’ in Proc. 16th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.
(CCGrid), May 2016, pp. 608–612.

[38] R. J. Hyndman and A. B. Koehler, ‘‘Another look at measures of forecast
accuracy,’’ Int. J. Forecasting, vol. 22, no. 4, pp. 679–688, Oct. 2006.

[39] T. Tsutsui and T.Matsuzawa, ‘‘Virtual metrology model robustness against
chamber condition variation using deep learning,’’ IEEE Trans. Semicond.
Manuf., vol. 32, no. 4, pp. 428–433, Nov. 2019.

[40] D. Pelleg and A. W. Moore, ‘‘X-means: Extending K-means with Efficient
Estimation of the Number of Clusters,’’ in Proc. 17th Int. Conf. Mach.
Learn., 2000, pp. 727–734.

YOUNG-KYOON SUH (Member, IEEE) received
the Ph.D. degree from the Department of Com-
puter Science, The University of Arizona, in 2015.
From 2005 to 2017, he was a Senior Researcher
with theKorea Institute of Science and Technology
Information. Since 2017, he has been an Assistant
Professor with the School of Computer Science
and Engineering, Kyungpook National University,
Daegu, Republic of Korea. His research inter-
ests include databases, big data systems, machine

learning, high-performance computing, and performance evaluation. He is a
member of ACM. He was a recipient of the Best Poster Award of IEEE/ACM
CCGrid 2016 and the Best Paper Award of EDB 2016.

SEOUNGHYEON KIM received the B.S. and
M.S. degrees from the School of Computer Sci-
ence and Engineering, Kyungpook National Uni-
versity, Daegu, Republic of Korea, in 2018 and
2020, respectively. He is currently an Engineer
with Samsung Research. His research interests
include data mining and machine learning.

JEEYOUNG KIM received the Ph.D. degree in
computer and information science and engineer-
ing from the University of Florida, Gainesville,
FL, USA, in 2013. From 2013 to 2018, she
was a Senior Engineer with the Mobile Division,
Samsung Electronics. From 2018 to 2019, she held
the role of a Research Faculty with the Center
of Self-Organizing Software, KyungpookNational
University, Daegu, Republic of Korea. Since 2019,
she has been a Teaching Faculty with the School

of Computer Science and Engineering, Kyungpook National University. Her
research interests include the IoT, real-life human generated data, machine
learning, and big data systems.

220722 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11227-020-03307-w
http://dx.doi.org/10.1007/s11227-020-03307-w

