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ABSTRACT Cloud elasticity involves timely provisioning and de-provisioning of computing resources and
adjusting resources size to meet the dynamic workload demand. This requires fast, and accurate resource
scaling methods at minimum cost (e.g. pay as you go) that match with workload demands. Two dynamic
changing parameters must be defined in an elastic model, the workload resource demand classes, and
the data center resource reconfiguration classes. These parameters are not labeled for cloud management
system while data center logs are being captured. Building an advance elastic model is a critical task,
which defines multiple classes under these two categories i.e. for workload and for provisioning. A dynamic
method is therefore required to define (during configuration time window) the workload classes and resource
provisioning classes. Unsupervised learning model such as K-Means has many challenges such as time
complexity, selection of optimum number of clusters (representing the classes), and determining centroid
values of the clusters. All clustering methods depend on minimizing mean square error between center
of population in same class member. These methods are often enhanced using guidelines to find out the
centroids, but they suffer from K-Means limitations. For the application of clustering cloud log traces,
most of the reported work use K-Means clustering to label workload types. However, there is no work
reported that label data center scaling classes. In this work, a novel method is proposed to analyze the
characteristics of both workloads and datacenter configurations using clustering method, and is based on
random variable model transformation (kernel density estimator) guide. This method enhances K-Means
clustering by automatically determining optimum number of classes and finding the mean centroids for
the clusters. In addition, it improves the accuracy and the time complexity of standard K-Means clustering
model, by best correlating between clustering attributes using statistical correlation methods.

INDEX TERMS Elastic model, kernel density estimator, dynamic k-means clustering, workload, data center
configuration, logs analysis.

I. INTRODUCTION
Cloud Elastic Model (i.e. rapid elasticity) is one of the
basic cloud service characteristics as per NIST definition
[1]. The configurable resources must be tuned dynam-
ically with minimum management effort to meet client
workload demands ‘‘such that at each point in time the
available resources match the current demand as closely
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as possible’’ [2]. Cloud resource scaling has three main
methods to rescale resources: i) horizontal scaling that
increases or decreases number of virtual instances like appli-
cation containers or virtual machines (VMs), ii) vertical
scaling that increases or decreases the virtual instances like
memory size, processor numbers or performance, storage,
and iii) migration, by moving VMs or applications from
one physical host server to another. All these parameters
must consider the size of resource units that can match
the workload demands need. On the other hand, workload
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types are also important considerations in cloud elasticity,
which must be investigated and characterized. Workload is
of dynamic and disparate nature, which depends on user,
and web-to-web activities, and events like the social media
web 2.0 multi-tier applications. The workload is affected
by inter-user activities, e.g. a famous person’s tweet can
cause a massive workload from other people, which may
increase or decrease the resource demands unpredictably. As
can be seen, the workload type and the resource configuration
are two related factors that must be considered in cloud
elastic actions. Good matching between workload demands
and optimal resource provisioning will reduce the cost both
for cloud service providers and the cloud users.

The challenges [3] in cloud elastic resource provisioning
are as following: 1) accuracy in scaling resources to match
workload demands, 2) management cost time and space com-
plexity to find optimal configuration set, 3) configuration
cost, cloud orchestration and initial service setup time (spin
up time [4]), and 4) scaling dimensionality (scale in or out)
i.e. resource scaling type (vertical or horizontal [5]) and unit
of scale capacity resource units. Cloud resource capacities
has been enhanced and developed by big cloud players who
introduced cloud computing hardware platform to support
customer’s business requirements such as Amazon, Google,
and Microsoft. The idea is to increase granularity of provi-
sioned resources like servers’ processes, storage and network
that allow more control over performance and cost. Intel and
Amazon tried to make processor aware about workload by
increasing or decreasing processor speed, and the number of
instructions per clock cycles (number of MIPS per second)
[6]. Facebook also worked on cloud hardware platform by
introducing an open source project called Open Compute
Project (OCP) [7]. The goal of this project is to allow cloud
services to choose most suitable hardware (server, storage,
network) design for cloud data center [8]. Microsoft inno-
vated theOlympus hardware project that is a ‘‘next generation
hyperscale cloud hardware design and a new model for open
source hardware development with the (OCP) community’’
[9]. Google cloud data center cluster is built by utilizing
existing servers dynamically [10], which is a web-based sub-
scription architecture model used to link resource units. The
combinations of all these technologies increase the provi-
sioned complexity and mapping tasks to workload demands.
By labeling resources using unsupervised machine learning
clustering method will allow data center cloud manager to
accurately and efficiently configure the resources at reduced
cost.

Workload applications are varied in cloud environments
especially with changes in virtualization technologies and
overlay networking setup. Software Defined Networking
(SDN) [12] and Network Function Virtualization (NFV) [11]
are impacting the resource provisioning based on network
topology setup and services that need to be investigated and
labeled as classes demands and released resources. Work-
load clustering in SDN and NFV environments is crucial,
because it will reduce resources orchestration cost and time

by defining architectures groups of computing resources that
can interchange in provisioning and releasing the resource
during service time. This allows cloud manager to pick one of
these groups of data center resources that can match overlay
network changes.

Clustering of cloud workload and configuration set is very
important to make elastic decision too. By clustering work-
load and datacenter configuration, it can define a labeled
data set such that the cloud management system can decide
the best action based on the predefined demand classes to
provision resource classes, using look up table. Many works
had been done investigating cloud workload using real log
traces. Google Cluster workload traces [13] have been clus-
tered and analyzed in [14]–[23]. Also, Alibaba cluster traces
are investigated in [24] to validate workload behavior in
real cloud environment. MapReduce workload in Taobao e-
commerce company has been studied in [25] to understand
workload characterization in large scale cloud environment.

Reading cloud resource and workload activity logs in real
time manner to be used in management decision action,
is investigated in [26], [27]. Dimensionality reduction meth-
ods (wavelet transform and Principal Component Analysis
PCA) are used to store and replay logs of Google Cluster
workload traces to allow machine learning model utilizing
decision time. Another method to reduce clustering time of
cloud workload using Hyper-gamma distribution applying
moments method is proposed in [28]. Defining a set of classes
for workload types and cloud data center resource configu-
ration set is a difficult task that needs to be addressed since
provisioning decision will be based on these two parameters.

Our contributions in this work are to introduce an enhanced
K-Means clustering approach for cloud workloads and dat-
acenter configurations types, and a correlation matrix that
evolves the relation between cloud resources and workloads.
Our proposed method analyzes workloads and datacenter
configuration traces based on kernel density estimator to find
number of classes and classes center. Ourmethod labels cloud
workload demands and datacenter configuration capabilities
to investigate workload types by related jobs submitted and
data center capabilities, server types, capacity, and configu-
ration setup. A dynamic mapping method based on demands
and provisioned resources (expert system) is proposed to
make the proper action during accepted configuration time.
This will allow cloud service providers to respect service
level agreements andminimize cost for customers and service
providers.

This will allow cloud manager to find the best match
between requested resources with provisioned resources con-
sidering all workload and data centers characteristics by
using real data from cloud data center traces. The tasks
carried out to achieve this goal are as follows: 1) analyze
data center resource capabilities and configurations, 2) ana-
lyze workload demand types and behavior from different
perspectives such as resource types needed (CPU, RAM,
Network, Storage), demand speed, mass, format and messag-
ing, protocols, and communications, 3) label workload and
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data center configuration with appropriate classes, 4) develop
proper mapping that achieves the best elastic match between
demands and resource provisioning, and 5) apply methods
to reduce resource provisioning complexity, time, and cost
by using hash look up with a key-value pair of demand and
provisioned resources, respectively.

This paper is organized as follows. Section II presents
the related work, and methodology background is discussed
in Section III. Our proposed Dynamic Clustering method is
presented in Section IV. Experiments and results are shown
in Section V and conclusion is presented in Section VI.

II. RELATED WORK
Workload clustering and classification have been studied in
literature for many reasons such as for cloud modeling and
evaluation, workload emulation and forecasting, and cloud
resource reconfiguration. An adaptable model for generic
large-scale workload is proposed in [29]. In this work,
the authors formulate an accurate, realistic, and adapted
workload model. They use Google Cluster Workload Trace
schema to represent large scale workloads. The analysis of
the workload is defined using four laws: 1) submission time,
defined by the inter-arriving rate of task and modeled by
Pareto distribution, 2) type, i.e. either task type or service
type, 3) make span, defined by the task duration and modeled
using long-tailed distributions like Pareto or log-normal, and
4) priority of the tasks order based on importance. K-Means is
used to cluster submitted jobs with k equal to four classes for
task and service types. The modeled workload characteristics
are dynamic in nature with different parameters such as fre-
quency, mass, and disparity. In [24] authors cluster Alibaba
cloud cluster traces using K-Means method to analyze and
identify job group characteristics and the relationship among
different job groups which in turn will help in scheduling jobs
at run time. Authors in [23] proposed simple set theory to
enhance K-Means clustering methods for cloud workloads
and data center configuration parameters. In [30] a Markov
model with hidden layers is used to characterize workload
stochastic behavior to cluster and classify workload patterns.
K-Means is used in [20] to cluster google traces jobs and
tasks as workload characterization to gain insight on the
performance of workload demands. Hierarchical and conven-
tional K-Means clustering is used to characterize workload
by assigning common groups of jobs and common groups of
machines in [21]. The goal is to schedule submitted jobs with
appropriate data center resources while reducing power and
batch job assignment latency.

An elastic scaling framework for cloud computing layers
using combined AI methods with optimization are discussed
in [31], [32] and [33]. Authors in [31] analyzed and clustered
workload using metaheuristic-based method for elastic scal-
ing. Their work depends on two AI methods: Genetic Algo-
rithm (GA), and Fuzzy C-means. An elastic framework with
hybrid workload clustering using two methods, K-Means,
and Imperialist competition algorithm, is proposed in [32].
In [33] resource provisioning framework is proposed for elas-

tic scaling in cloud PaaS layer using autonomic computing
and reinforcement learning (RL).

VM consolidation considering workload characterization
patterns in cloud data center is proposed in [18]. The authors
propose a fully distributed and threshold free Dynamic
Virtual Machine Consolidation (DVMC) algorithm called
GLAP that combines Q-Learning with a gossip-based proto-
col. A VM consolidation method is proposed in [34] that uses
optimization methods to reduce multi-tier workload latency.
Workload modeling based on common pattern clustering of
the workload is proposed in [22]. Selecting clustering method
that can match workload and data centers characteristics is
an issue. A new approach to select clustering method that
relates VMs to tasks in large data centers is proposed in [35],
[36]. The framework selects the best clustering algorithm
from a set of clustering algorithms based on cluster validation
methods. In [37], the author proposed a scaling dimension
method which is determined using linear algorithm related
to the workload type. Workload analysis is used in [38]
for optimal cloud resource configuration. In this work, deep
reinforcement learning is used to handle heterogeneous big
data workload. The authors proposed a new model (named
SARA), which does three tasks: 1) cluster workloads into
groups using Bisecting K-Means, 2) search the optimal con-
figuration of clustered workloads using deep reinforcement
learning, and 3) continue to cluster new workload and find
the best configuration set.

The researchers in [17] analyze data center resource to find
Zombie servers that consume energy by running in idle state.
Through the workload analysis, it was shown that significant
reductions in power consumption and CO2 emission can be
achieved by optimum resource scaling. Workload forecasting
for elastic resourcemanagement in edge clouds is proposed in
[39]. The authors use a combinedmethod between time series
analysis called Auto Regressive Moving Average (ARMA)
and Elman Neural Network (ENN) to forecast workload
based on error correction. Authors in [19] used a combina-
tion between K-medoids clustering algorithm and multilayer
perceptron neural network (MLP) model for workload pre-
diction. The proposed work focuses on prediction workload
pattern of new submitted tasks based on pool of historical
tasks.

Cloud resources and capabilities have been investigated
in [40] where the authors surveyed cloud hardware resource
design for AI-enabled cloud computing. Deep machine
learning workload framework is proposed in [41] to han-
dle machine learning stages (storing data sets, training
phase, evaluation, and production model) in cloud environ-
ments. This will allow users to deploy and test machine
learning models in distributed computing models without
considering resource limitation and configuration using stan-
dard Application Programming Interface (API). In [42],
the authors used reinforcement learning method on GPU
clusters for deep learning workload scheduling. To the best
of our knowledge, there is no method to dynamically cluster
cloud workloads and data center resource configuration set.
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TABLE 1. Related work summary.

Specifying number of classes and initial group characteri-
zation for cloud workload and resource configuration is the
first step in dynamically clustering datacentre workload. All
workload aspects such as needed resources (RAM, CPU,
Disk, Network), duration, volume, speed, location, and tasks
must be considered for the analysis. In addition, data center
resources in cloud environment continues to change in terms
of capabilities, computation power and configuration tech-
nology. Servers, storage, and network infrastructure must be
characterized such that they can be adapted for new resource
types, workload types and provisioning methods. This work
focuses on determining number of classes dynamically adapt-
ing to the changes of workload demands and data center
resources using hybrid method that uses probabilistic statis-
tical theory and unsupervised learning with optimization for
selecting best solution.

Table 1 summarizes the related work based on four criteria:
clustering method, workload type, experiment design, and
performance evaluation.

III. METHODOLOGIES REVIEW
Methodologies used in this work are based on statistical,
optimization theory and machine learning model. Using sta-
tistical analysis methods to find cloud data center traces logs
mean and variance, then formulate mapping function of ran-
dom variable model, allow to model workload and datacenter
configuration characteristics. Unsupervisedmachine learning
customized K-Means method is then applied to minimize
population set inertia (mean square error between same group
set) guided by density function to find out number of centers
(means) and centers initial values.

A. KERNEL DENSITY ESTIMATE
Kernel Density Estimate (KDE) [43] is a method that can
describe sampled statistics population probability distribu-

tion using random variable definition. The probability den-
sity function (pdf) for continuous model or probability mass
function (pmf) for discrete model [44], are transformation
functions for the events in the sample space which associate
probability values to the outcome of random experiment. The
estimator can expose some characteristics of statistical data
such as skewness and multi-modality. A common approxima-
tion method for estimator is histogram, which is a frequency
distribution for the population events. It is found by dividing
the range of data into intervals named bins and then counting
the number of data points in the intervals, which represents
height of the chart. Define h as bin width, x0 origin or start
of sample range of population X set, m number of bins and
i ∈ 1, 2, . . . ,m an integer number to represent bin index,
then bin interval is defined as [x0 + ih, x0 + (i + 1)h]. The
histogram f̂ (x) can be defined as Equation 1, which shows
the number of elements per bin divided by the product of bin
width and the total number of data points, N . The term N is
used in the equation for normalization. Amore generalization
of histogram method is obtained by making bin size variable
in context to data set distribution as shown in Equation 2.

f̂ (x) =
count(xi) per bin

Nh
, (1)

f̂ (x) =
count(xi) per bin
N (h of xi bin)

. (2)

From histogram, the probability of each bin can be defined
by dividing number of elements in the same bin to the total
number of elements. Using this method, a probability mass
function (f (x)) can be formulated as a random variable to
describe the behavior of the sample set. The main two sta-
tistical parameters that are considered in any random vari-
able are mean (µ), which is the expected value defined as
E(x) =

∑
xf (x), and variance that represents square of

standard deviation (σ 2) Var(x) =
∑
x2 f (x) − µ2. Mean
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point to the most common value of population and variance
show how far population deviate frommean. These values can
be obtained from data set using sampled mean and variance.
However, these values are not enough to characterize the data
fully and build statistical prediction model.

FIGURE 1. Kernel types.

A solution for this limitation is to use random variable
model for population, which can provide all information
about any population including mean and variance. His-
togram is a simple clustering method that can help in finding
population classes by grouping elements in bins (a naive
description for random variable). In machine learning models
[45], unsupervised learning method called descriptive learn-
ing aims to find the system interested output pattern that
belongs to system output. Histogram clusters sample data
input D without any information about the expected output
values, where input data is defined as D = {xi}Ni where N
is the number of data points. Formulating probability mass
function for sample data using histogram distribution as a
random variable is used in clustering to indicate number of
classes and the centroids initial values. However, the limi-
tation in histogram method in clustering and nonparametric
analysis is caused by the discontinuity of probability density
function. A solution to this problem is to introduce a func-
tion that represents a weight for each population point and
by finding the total overlapped weight. Using this function
called kernel k(x), the density estimator can be defined as
Equation 3. Kernel function must satisfy three conditions:
1) it must be a positive function k(x) ≥ 0, 2) it must be
symmetric k(x) = k(−x), and 3) it must be continuous and
decreasing for x > 0, k ′(x) ≤ 0. There are many types of
kernel function that can be used, but the most common used
in machine learning Python libraries [46]–[49] are Gaussian,
Triangular and Cosine as depicted in Figure 1.

d̂(x) =
1
N

N∑
i=1

k(x − xi). (3)

Introducing width h window attribute for the kernel func-
tion that can be used as a smoother for kernel estimator func-
tion, as Equation 4 depicts. The bandwidth of the estimator
will show the overlapping in density in sampled space. This
can show the points neighbor relation as likelihood estima-

FIGURE 2. Kernel fitting.

tors.

d̂(x) =
1
Nh

N∑
i=1

k(
x − xi
h

). (4)

Generalizing kernel estimator using weight will make
a correction for the estimator for high related point
used as validation for the function fitting, as shown in
Equation 5. The weight with the kernel function will
smooth over all density function estimator. This function
can be a tradeoff between over fitting and under fitting
problems.

d̂(x) =
1
h

N∑
i=1

wik(
x − xi
h

), where
N∑
i=1

wi = 1. (5)

Choosing kernel function when there is a high number
of sampled points does not have a big weight because the
fitting shape will be the same for all types of kernel func-
tions, as shown in Figure 2 for a RAM request workload.
Here the number of bins is selected experimentally and it is
150. The important factor is to choose bandwidth h for the
kernel function. It will impact the overall density function
shape because it will control the density function smoothness,
where wider bandwidth will make function more smooth
and resilient against spikes shapes (non deterministic events),
as shown in Figure 3.

A complex statistical method is developed by statisticians
Ramsay and Silverman for choosing the bandwidth, h. The
theory of this method is outside the scope of this paper, and
provided in [50]. In our work, a toolbox in Python program-
ming language library is used. The method uses sampled
mean x̄ =

∑N
i=1

xi
N and sampled variance s2 =

∑N
i=1

(xi−x̄)2
N−1

of the population. In Python library there are three types of
bandwidth estimator that can find out the bandwidth based
on statistical population. The default method with Gaussian
kernel, called ‘‘normal_reference’’, can be shown by Equa-
tion 6, where A = min(s2(X ), IQR(X )) is inter quartile range,
N number of data points, andC is a constant matrix of Hansen
values based on Silverman rule of thumb [50].

h =
A× C
√
N
. (6)
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FIGURE 3. Kernel bandwidth fitting.

B. K-MEANS
K-Means is an unsupervised learning model that works to
cluster data set into specific number of cluster groups defined
by random or selected centroid values µ1, . . . , µk , where µk
represents centroid of cluster k . µk = 1

p

∑
i∈ck xi, where

p = |ck | represents number of data group points in cluster
k , and ck a subset of C represents clustered grouped points.
It works by iteratively finding the minimum distance between
centers and all points xi in the same cluster group set ck ,
until reaching distance threshold. The objective function J
is defined as the Mean Square Error (MSE) of the distance
between centroid and data point member in same group,
as shown in Equation 7. This objective function needs to be
minimized at each iteration.

J (c1, . . . , cp, µ1, . . . , µk ) =
1
p

p∑
i=1

||xi − µc(i)||2. (7)

K-Means works in two nested loops that requires a time
complexity of the product of number of group members and
number of centroids, i.e. O(k×p). There are many clustering
methods, which are characterized based on following per-
spectives [51]: 1) architecture, 2) robustness, 3) restrictions
on latent features, and 4) reconstruction loss. K-Means is the
simplest and most widely used method with three limitations:
1) setting number of clusters k and initial centroids points
value µcp , 2) finding out number of iterations per minimiza-
tion cycle (minimize cost function J (C,P)) by defining the
inertia distance threshold value, and 3) validation for the
clustering and the accuracy for the class members in context
to group points logical relation. There are many enhanced
versions of K-Means method that overcome some limitations
to be used in cloud workloads clustering [38] like Bisection
K-Means [52], which solves the local minimum problem in
objective function optimization. It works by setting k value to
2 for the data set for initial centroids to find two groups. It is
close to hierarchical clustering method, top down (divisive),
and evaluates each group using sum of the square error and
repeatedly dividing until number of groups is smaller than
k . All clustering algorithms work using unguided search on
the data points set, which can produce non logical result.
Using informative methods about population to help cluster-
ing method will significantly influence the result towards the

best consistence and accurate groups. In this work a novel
way is used to enhance K-Means method of clustering using
kernel density estimator to cluster cloud workloads and data
center configuration options dynamically.

IV. DYNAMIC CLUSTERING METHOD
In this paper, a combined method to cluster cloud workloads
and datacenter configuration is proposed using histogram,
kernel density estimator andK-Means. This guided clustering
method will dynamically determine number of classes based
on statistical population characteristics of cloud workloads
and data center configuration. Figure 4 depicts the flow chart
of the proposed dynamic clustering method. It is built by
integrating five phases: 1) Silverman to find bin width and
number of bins, 2) Histogram to describe the logs trace
distribution for attribute extraction and correlation, 3) KDE to
find random variable for the log type that generates PDF and
CDF, 4) K-Means to cluster correlated logs, and 5) Validation
of the clustering process to check accuracy of clustering.
The proposed method starts by data cleaning and ends by
validating the clustering result as depicted in Algorithms 1,
2, 3, 4, and 5, which are discussed in details later.

The flow chart in Figure 4 begins in Algorithm 1 by gath-
ering and storing the logs and replaying in a timely manner
to be processed. Data cleaning and extraction is done using
Algorithm 2 to evaluate logs value, more specifically to check
whether it is empty or of a wrong data type or format. It is
followed by extracting log attributes as vectors, which are
processed individually. The attribute vectors are statistically
analyzed to find population mean, variance and Hessian con-
stant matrix. These values are used to calculate bin bandwidth
using Silverman Equation 6, in order to find number of bins
over all the population range. After that histogram is applied,
as defined in Equation 2, and the sampled mean and variance
are obtained for population relation evaluation for all points
of each group, to create CDF using Equation 5 inAlgorithm 2.
A new vector M = x̄1, . . . , x̄k represents sampled mean of
all bin point members of each group that will be used as
K-Means initial centroids. The empty bins must be removed,
and the number of bins must be updated as the k value,
the number of clusters. Information that must be obtained
for clustering are by correlating the two attributes, which
are number of means (vector size) and the initialization of
each bin center. Two vectors with the minimum number of
classes are joined, and vector with higher number of classes
are merged to same as number of vector with lower num-
ber of classes (Algorithm 3). Algorithm 4 applies K-Means
clustering using Equation 7, and evaluates the clustering iner-
tial using kernel density estimate (Equation 3) distributions.
A full information about the data set attribute vectors will be
formulated using KDE that generates the probability distri-
bution function, and probability density function. These two
functions can inform the bin group probability volume, using
a convenient ratio factor as the event probability weight. Bin
boundaries can be defined based on bandwidth of kernel func-
tion by segmenting the distribution into the most representing
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FIGURE 4. Algorithm flow chart.

bins, that is the bins that have a higher probability value.
The result of this stage will be used to validate the group
points relation. Finally correlation and validation is applied
for clustering, as implemented in Algorithm 5.

Table 2 summarizes all symbols used in the equations and
algorithms.

The five phases of the proposed dynamic clustering process
are presented in detail in the following algorithms:

1) Algorithm 1, Logs Cleaning and Normalization phase:
In this part, the algorithm starts by reading the data
center and workload demand trace attributes in a real
time manner. These trace attributes are processed indi-
vidually. Cloud data center and workload log traces
are raw data that must be processed before being clus-
tered. The processing involves extracting valid and
meaningful log traces, by checking log values to see if
there is any missing or an invalid value. The algorithm
will approximate the missing value by averaging the
neighbors of the current point as shown in Line 2 of
Algorithm 1. Log values must be normalized to the
maximum value for all log types as rational value to
resource units, as shown in Line 6.

TABLE 2. Symbols summary.

Tables 3 and 4 show the lists of workload and data
center configuration attributes. Table 3 summarizes the
extracted workload trace attributes where each attribute
is denoted as WLi. Table 4 summarizes the datacentre
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TABLE 3. Workload extracted attributes.

TABLE 4. Datacenter configuration extracted attributes.

attribute vector which is denoted asDCi. Both attribute
types WLi and DCi are part of the normalized data set
array D stored in the Tables as colon. This notation is
used to build a relation table for presentation simplicity.

Algorithm 1 Logs Cleaning and Normalization
Require: X /* X is input logs matrix. */
1: for i← 0 to Sizeof (X ) do
2: if nan(xi) then

/* nan, a function to validate vector elements. */
3: Approximate(xi)

/* Approximate missed value using average
of neighbor points.*/

4: end if
5: Maxi← FindMax(Xi)
6: Di← Normalize(xi,Maxi)

/* normalize each attribute vector value to the
maximum resource or log value. */

7: end for

2) Algorithm 2, Preparation and Initialization phase: This
part involves applying statistical analysis on cleaned
trace attributes individually. It starts by finding popu-
lation attributes for each trace vector and then finding
sampled mean and variance for the whole population.
By using Equation 6 (applying the Silverman rule) the
population segment bandwidth is calculated in Line 4.
Bin numbers, Binci can be found in Line 5 by dividing
vector size by step bandwidth. These values are used in
Line 6 to find attribute vector segments (class or bin
boundary) Bbi, class point members label Bpli, and
points count for each bin group Hi. Lines 8, 9 and
10 calculate sample mean, variance and mean square
error between the bin points. Then, using kernel density
estimator equation (Line 11), the probability density
function and cumulative density function are obtained
as shown in Lines 12 and 13 respectively. Finding CDF
has high time cost because of integration process.

3) Algorithm 3, Merge phase: In this part a rela-
tion between attribute vectors are calculated. First,

Algorithm 2 Preparation and Initialization

Require: D = {xi}Ni /* Initialize attribute vector xi. */
1: X ← D /* Initialize array X by data set matrix. */
2: Attno← AttributesNumber /* Column number of X, xi
is one single attribute vector. */

3: for i← 0 to Attno do
4: hi ← BinBandwidth /* Find Bin Bandwidth
Array using normal reference set h bin size, using equa-
tion 6 Silverman rule. */

5: Binci ←
sizeof (xi)

hi
/* Find bin count Binci for

each attribute by dividing attribute size by bandwidth
size. */

6: Hi,Bbi,Bpli ← f̂ (xi) /* Apply Equation 2 to
find histogram array Hi and its bin data points count,
bin boundary Bbi, and bin points member label Bpli. */

7: H ,Bb,Bpl ← MergeToOneVector(Hi,Bbi,Bpli)
8: M̄i ←

∑m
j=1

xij
m /* Sample mean array of m

number of points in that vector. */

9: Si2←
∑m

j=1
(xij−x̄i)

2

m−1 /* Sample variance array. */
10: MSEi ← J (xi, µi) /* MSE array for data point

in each bin Equation 7, this will validate the bins point
data consistency for later use in validation phase. */

11: KDEi← d̂(xi) /* Apply Equation 4 to find KDE
for fast processing in online mode. */

12: PDFi← d̂(xi) /* Apply Equation 5 to find PDF
array for validation in offline mode. */

13: CDFi ←
∑m

j=1 PDFij /* Calculate CDF array
from PDFi, offline mode for validation.*/

14: end for

the histogram empty bins are identified and removed,
as shown in Line 4 of Algorithm 3. Next, two attribute
vectors are combined based on minimum vector bin
numbers. The merging process works on converting the
longer vector to the same size of shorter vector attribute
bin number, by finding the merge step size, as shown
in Line 7. After the merge step is obtained, this value
is used to find the bin boundaries and new bin labels,

VOLUME 8, 2020 219437



T. Daradkeh et al.: Dynamic K-Means Clustering of Workload and Cloud Resource Configuration for Cloud Elastic Model

as shown in Lines 11 and 12, respectively. In Line 13,
the new point count for each bin is calculated. Finally,
through Lines 14 to 17, the new mean and variance are
calculated for the merged bins.

4) Algorithm 4, Correlation and Clustering phase: This
part works by applying K-Means using the number
of bins as class number k and the bins mean of each
group members as centroids, as shown in Lines 1 and
2 of Algorithm 4. Clustering accuracy error is evaluated
using the maximum inertia value as shown in Line 4.
This is an iterative process until the error value becomes
lower than the threshold value. Here inertia is theMean
Square Error matrix of clustering classes for each bin
member point. Next, the classes’ centroid values are
updated in Line 3 using standard deviation as a step
by step guide projection. The inertia error matrix is
compared with bin’s variance vector between group
members as shown in Line 7, and overall mean square
error is calculated in Line 8.

5) Algorithm 5, Validation phase: This part focuses on
validating the accuracy of the dynamic clustering algo-
rithm. The algorithm starts by initializing an evaluation
relation matrix MM in Line 1 to a default value of
zero (means no relation). This matrix is used as a test
for attributes’ relation and clustering accuracy. The
MM matrix represents the relation as strong with a
value of 1 (Line 12), good with a value of 0.75 (Line
14), normal with a value of 0.50 (Line 16), and weak
with a value of 0.25 (Line 18). Testing the relation
conditions are based on statistical threshold values. The
first test is done by comparing the maximum Euclidean
distance Eth with the standard error, as shown in Line
8. In the second test Silhouette value clustering index,
which indicates a relation consistency between classes’
point members, is checked against a threshold value
of 0.6. If the Silhouette value is lower than 0.6, it indi-
cates a good clustering K-Means relation, as shown
in Line 13. In the third test the slope value per bin
is compared against a threshold value, as shown in
Line 15. The threshold value is selected as 0.7 of the
maximum slope since it was statistically found (our
previous work [23]) that 0.7 of maximum slope shows
a normal relation between the attributes.

A. ALGORITHMS COMPLEXITY
Our proposed approach works based on capturing logs during
time window which is of a fixed size (sizeof (X )), which
means in general the whole algorithm complexity is a con-
stant. Since the buffer size is also fixed, the time complex-
ity is also a constant. Algorithm complexity analyses are
different for individual algorithms. For Algorithm 1 Logs
Cleaning and Normalization, and for Algorithm 2 Prepa-
ration and Initialization the complexity is O(1). For Algo-
rithm 3 Merge, time complexity depends on the minimum
value of Silverman bins number (Min) and logs dimensions
(Attno = sizeof (X )). There are nested dependent loops that

Algorithm 3Merge Phase
Require: X ,Binc,H ,Bb,Bpl,M , S,MSE /* All input

arguments are obtained from preparation phase as
arrays of attributes. */

1: for j← 0 to sizeof (X ) do
2: for c← sizeof (X ) to j+ 1 do
3: A1,A2←xj, xc /* extract two attribute vectors. */
4: Bincj ← cleanEmptybins(A1) /*
cleanEmptybins() function removes any histogram
empty bin count, then updates original bins count. */

5: Bincc ← cleanEmptybins(A2) /* this
will reduce number of cluster centroids that might be

considered by dividing the population range using
fixed bandwidth size. */

6: Min,Max ← MinMax(Bincj,Bincc) /*
This function will find minimum value and maximum
value of two numbers, for merge algorithm will consider
minimum number of bins as reference, which will repre-
sent number of cluster in K-Means. */

7: MergeStep← Floor(Max/Min) /* Find
overlap step to convert larger number of bins to be same
number as the minimum. */

8: for k ← 0 to Min do
9: if (k + MergeStep) < Min) &&

(k + 2×MergeStep) < Min) then
/* validate loop boundary not to exceed

the array limit. */
10: Bba1 ← Bbcj[k : k + MergeStep]

/* update attributes bins boundary. */
11: Bpla1 ← JoinLabel(Bplj[k : k +

MergeStep]) /* update attributes
new bin label. */

12: Ha1,Ha2 ← Sum(Hj[k : k +
MergeStep]),Hc /* update

attributes bins points counts. */
13: µ1 ← Mj /* update means

for each combined bins. find new mean for each merge
bins. */

14: µ2 ← Mc /* get mean
values for lower bins number list. */

15: s1 ← Sj /* get variance
values for lower bins number list. find new variance for
each merge bins. */

16: s2 ← Sc /* get variance
values for lower bins number list. */

17: else
18: Arraysindex ← (Min−k) /*

for special case index last bin. */
19: end if
20: k ← k +MergeStep

/* updateindexbyincrementbymergestep.*/
21: end for
22: CallCorrelationClustering(Bba1,Bpla1,

Ha1,Ha2, µ1, µ2, s1, s2)
23: end for
24: end for
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TABLE 5. Data set attributes relation.

Algorithm 4 Correlation and Clustering Phase
Require: Bba1,Bpla1,Ha1,Ha2, µ1, µ2, s1, s2
1: Threshold ← 0.0001 /* initialize tolerance threshold
value. */

2: centroids ← [µ1, µ2] /* K-Means centers are initial-
ized by pair of the two attributes means. */

3: classno ← sizeof (Ha2) /* both attributes arrays are
same size (number of bins). */

4: whileMax(inertia) ≥ Threshold do
5: inertia ← Kmeans(centroids, classno, ) /*
call K-Means function with initialization of centroids and
number of classes, return Error of clustering classes. */

6: centroids← [µ1, µ2]× [s1, s2] /* K-Means
centers are updated by multiplying standard deviation
with initialized mean centered, instead of using random
initialization. */

7: eval ← compare(inertia, [s1, s2]) /* eval-
uate relation between classes points relation to the
attributes bins itself relation using standard deviation. */

8: Jeval ← J (eval) /* Store two attributes
population as attributes relation matrix. Find lower error
code value (chosen as table 5 shows), lower error code
and deviation values indicate higher relation. */

9: end while

can be solved using series, with time complexity O(Min ×
log(Attno)). Algorithm 4 Clustering and Correlation has a
constant time complexity of O(1), where K-Means class
numbers are set and center initialization is updated using
projection multiplication process. This is because the updated
process is limited by a constant iteration number that does not
exceed the standard deviation. Algorithm 5 Validation Phase
cost is O(Min × Attno) for two nested independent loops.
The overall complexity of our proposed approach is therefore
O(Min× Attno).

V. EXPERIMENTS
A. IMPLEMENTATION LIBRARIES AND TOOLS
Python programing language is used for development and
implementation of the proposed methodology. For machine
learning and statistical analysis, the following python

Algorithm 5 Validation Phase
Require: inertia,CDF,PDF,MSE,Attno, classno, Jeval,

s1, s2 /* using standard K-Means methods of valida-
tions. Attno is the set of correlated attributes in table 5
*/

1: MM ← [0] /* relation matrix index for attributes
statistical correlation. */

2: E ← Euclidean(inertia) /* evaluate distance between
the points in each class point members with MSE. */

3: V ← Silhouette(inertia) /* evaluate threshold accepted
value. */

4: S ← Slope(CDF) /* evaluate slope for each bins range.
*/

5: SE1, SE2 = s1
√
ms1
, s2
√
ms2

/* find standard error SE,
where ms number of points in class. */

6: SE = Min(SE1, SE2)
7: Sth = 0.7 Max(S) /* find slope relation as 0.7 of max
slope. */

8: Eth = SE /* find attributes relation as ratio of
maximum distance. */

9: for i← 0 to Attno do /* loop for all attributes. */
10: for j ← 0 to classno do /* loop for

clustering minimum number of class Min. */
11: if Eij ≤ Eth && Vij ≤ 0.6 && Sij ≥ Sth then
12: MMi,j ← 1 /* one means a high

correlation and clustering. */
13: if Vij ≤ 0.6 && Sij ≥ Sth then
14: MMi,j← 0.75
15: if Sij ≥ Sth then
16: MMi,j← 0.50
17: else
18: MMi,j← 0.25
19: end if
20: end if
21: end if
22: end for
23: end for

libraries are used: (i) scikit-learn 0.22.2 [47], [48] for
K-Means clustering and (ii) python library developed by
Vanderplas [49] for kernel density estimation.
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B. RESULTS
In this section, a full analysis of the proposed dynamic clus-
tering method will be presented. For attributes correlation
and clustering mapping, the relation between all attributes is
shown in Table 5. In this table, the upper right triangle, sepa-
rated by blue cells, represents the total ofMSE (J) as a rational
normalized value to the maximum value of 100000, that can
represent clustering accuracy. The bottom left triangle of the
table represents the number of classes k used to make the
clustering. There is an inverse relation between the number
of classes and the total MSE error value, such that with a
lower number of classes the error value is higher. But in some
cases, such as between datacenter attributes DC5 and DC4,
the value of this error is very small because the distribution
of the statistical points is close (e.g. machine list and CPU
resource units are correlated factors).

The algorithm tests the relation between all attribute types
to find attribute relation magnitude. The relation between
the attributes is described using normalized MSE, as shown
in Equation 7. A good relation has a lower index value.
Clustering works to define number of classes and its member
points that belong to each class. This creates a labeled data.
The matrix in Table 5 shows the results of all the correlation
experiments between all trace attributes that can indicate
the matching relation between the attributes. There are two
matching aspects; first, logical matching where correlation
vectors considered are in the same characteristics set. For
example, in Table 3 workload clustering is defined based
on correlation between all attributes to each other, such as
defining job classes according to number of submitted tasks.
Second, statistical analysis of log trace correlation that can
measure the nature of the trace’s relation.

In Figure 5, jobWL1 has initially 7 bins that are distributed
among jobs range, which becomes three bins after histogram
cleaning. As well, tasks WL2 has 403 histogram bins dis-
tribution and after cleaning it becomes 164 active sets. The
merging set that shows jobs and tasks correlation will use
the minimum number of classes, because population relation
density (the PDF) of jobs are concentrated in a narrow range,
as Figure 6 depicts. In Figure 6, CDF guides the probability
of tasks and jobs occurring during small ranges. This can
give us a small number of job classes based on the number
of task classes relation, which is a good logical attribute for
the workload characteristics, as Figure7 indicates the labeled
points.

Repeating the correlation process for all attributes of work-
loads and data center configurations, we notice some relations
that are not directly connected and correlated, such as corre-
lation between submitted jobsWL1 and CPU demandsWL3.
As Figure 8 depicts, job (7 bins) distribution in histogram
model is not related at all and there is no doubt that classifying
jobs based on CPU demands (75 bins) will not be accurate.
In Figure 9, the PDF indicates two totally non consistent
distributions as well as it shows the job CDF slope is close
to one, which indicates jobs are arriving in batches grouped
with fast growing rate. On the other hand, CPU demand PDF

FIGURE 5. Histogram of jobs and tasks.

FIGURE 6. PDF and CDF of jobs and tasks.

FIGURE 7. K-Means clustering of jobs and tasks.

is more distributed and the CDF slope is lower in magnitude,
which also has a higher variance.

Figure 10 shows a view of jobs and CPU demands clus-
ter labels. From Figure 10 we can conclude that most of
CPU demand bins are segregated of jobs bin ranges except
a limited number of job classes, due to which many of
CPU demands classes’ granular details may be lost. On the
other hand, logical attribute for the workload characteristics,
as shown in Figure 13, indicates a high correlation between
tasks and CPU demands. From Figure 11, it is observed that
there is a high overlap in the population histogram between
number of tasks and CPU demands. There are a large number
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of classes in both WL2 and WL3 attributes. For WL2 it
is 403 and for WL3 it is 75. In the PDF and CDF shown
in Figure 12 the clustering result of the CPU demands per
submitted tasks is depicted. It shows that CPU demands with
respect to tasks distribution is faster in growth and more
concentrated in a fixed narrow range with high slope value.
However, the submitted tasks distribution is wider in range
and has a lower slope value in CDF. After merging and bin
cleaning phase of Algorithm 3, the CPU demand bin number
becomes 74 and the task bin number becomes 164. Figure 13
shows the clustering results from CPU demand and tasks for
74 classes, which is the minimum between CPU demand and
task bin numbers.

FIGURE 8. Histogram of jobs and requested CPU demand.

FIGURE 9. PDF and CDF of jobs and requested CPU demand.

For the datacenter configuration attributes set, the map-
ping between all of DC configuration attributes are listed
in Table 4. All the attributes are correlated, but the most corre-
lated attributes for elastic model are as follows: machine list
(DC2) correlated with datacenter capacity of both available
CPU and RAM resources (DC9, DC10) and provisioned CPU
and RAM resources (DC3, DC4). The correlation result for
total MSE is depicted in Table 5, and some examples are
discussed in the following text. Not all of them are mentioned
due to paper size limitation and similarity in result analysis.
Similarity in DC attributes come from datacenter configura-
tion method, which is based on just adding or removing phys-
ical hosts with minor differences in machine resource units.

FIGURE 10. K-Means clustering of jobs and requested CPU demand.

FIGURE 11. Histogram of tasks and requested CPU demand.

FIGURE 12. PDF and CDF of tasks and requested CPU demand.

Figure 14 shows mapping of two histograms: Provisioned
RAM (DC4) with 34 bins and Datacenter RAM capacity
(DC10) with 78 bins. The distribution of PDF provision RAM
ismore compact compared to datacenter configuration capac-
ity (number of machines), which is continuously increasing.
This means upgrading of the DCmachines is expanded (scale
out) as Figure 15 depicts. There are some lags in hardware
scaling compared to provisioning resources, this is due to
the capacity resource scaling as Figure 17 depicts. The full
available resources are provisioned as they become available
for both CPU and RAM. This reflects existing machine lists
that are scaled out or the new added machines are involved

VOLUME 8, 2020 219441



T. Daradkeh et al.: Dynamic K-Means Clustering of Workload and Cloud Resource Configuration for Cloud Elastic Model

FIGURE 13. K-Means clustering of tasks and requested CPU demand.

FIGURE 14. Histogram of provisioned RAM and datacenter RAM capacity.

FIGURE 15. PDF and CDF of provisioned RAM and datacenter RAM
capacity.

in DC production resources. The clustering of datacenter
RAM capacity with respect to RAM provisioning is depicted
in Figure 16. The classes here are very clear with scaling units
(almost equal scale RAM resources units) that can participate
in each configuration time window.

Another example that should be considered in clustering
elastic attributes is DC and WL attributes correlation, which
is non logical for elastic model correlation (because it reflects
the datacenter actions not elastic scaling condition). Figure 18
depicts the RAM demands (WL4) with 125 bins to provi-
sioned RAM (DC4) with 34 bins. The PDF and CDF distri-

FIGURE 16. K-Means clustering of provisioned RAM and datacenter RAM
capacity.

FIGURE 17. Datacenter CPU and RAM capacity, and CPU and RAM
provisioned.

butions in Figure 19 show the demanded resources are for a
longer duration, however the provisioning is done faster in a
shorter period as CDF slope indicates. This causes a violation
of the elastic feature (same scale of RAM resources units) that
participate in each configuration timewindow. Labeling these
kinds of relation (provisioned to demand) directly without
elastic conditions check, will cause violation in elastic scaling
and SLA as shown in Figure 20.

Elastic model works on matching the provisioned class
to the demand class using simple (look-up) method while
connecting the labeled demand class to the provisioned data
center configuration. Mapping resources to demands in cloud
resource orchestrator depends on appropriate linking between
the demand workload class and the data center provisioned
resource class. This is supposed to be independent from
the pre-existing old actions (the map between demands and
provisioned resources). The solution is to cluster scaling
resources unit with respect to provisioned resources, then
map them to demands. This will ensure amore effective cloud
elastic manager’s action. Results show the overlap between
correlated attributes that indicates the relation between work-
load demand class types to its equivalent best matching class
with the provisioned class.
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FIGURE 18. Histogram of demanded RAM and provisioned RAM.

FIGURE 19. PDF and CDF of demanded RAM and provisioned RAM.

FIGURE 20. K-Means clustering of demanded RAM and provisioned RAM.

C. VALIDATION
We adopted three ways to validate clustering accuracy and
consistency:

First, clustering accuracy is determined by running
K-Means with changing k values. A statistical measurement
has been applied that shows k values close to the extracted
number of bins will produce the maximum Euclidean dis-
tance between cluster member nodes, with the minimum rate
per bin. This can indicate a good relationship between bin
cluster point members.

The second method is to test the cluster member consis-
tency using the Silhouette method. In this validation method,

K-Means clustering is evaluated in the range between [−1, 1],
where a high value means the member objects are matched
in a good way. Figure 21 depicts the relationship between
cluster members, which is not negative and is more than
0.6. This indicates a well-matched object to its own cluster.
The third validation method uses Cumulative Distributed
Function (CDF) slope. CDF F̂(X ) =

∑M
i=0 inf̂ (x), which is

defined as accumulating bin groups probability, can describe
the behavior of each cloud log attribute population as a
random variable. Using CDF slope, we can describe the
attribute bin probability growthwithin the vector range. Close
slope values between two attribute vectors can indicate a
high relation between these two attributes. The slope of the
CDF curve can indicate the speed of probability density
distribution events. With large slope values, the probability
intensity of the events becomes high, but with smaller slope
values, the probability of the events, in that range, is rare and
the probability intensity is lower. Using this method, we can
indicate the highest range in the two attributes population
that can be correlated and grouped by comparing with the
clustering methods over population ranges. This shows an
instantaneous view for specific events to check if there is a
continuous bins relation. If continuous bins slope is equal,
then a high relation between these two bins point members is
found by CDF segmentation.

Applied on probability volume based on area integration
using histogram bins as increment step, the points members
in the same bin have very high relation. Also the points in
neighbors’ bins are related. Updating class boundaries of
bin centroid groups relies on K-Means minimum distance
inertia value between same bin group members and the total
mean square error as shown in Equation 7. By combining
related centroids (merging similar bin groups) will reduce
M attribute vectors, and K-Means iteration cost by finding
new sample mean and variance on new merged bins in the
attributes vector instead of using random substitution. This
way centroid update will be reduced because the mean and
variance of bin distribution have high correlation based on
KDE probability distribution.

The validation of this work is based on the aforemen-
tioned three methods, which can be applied on all attributes
clustering combinations regardless if they are logically con-
nected or not (for elastic condition). The first method cal-
culates the maximum Euclidean Distance (ED) for all clus-
tering group classes elements and the distance is compared
with standard deviation error (SE). In all cases, we found
ED < SE , which indicates good clusters are formed using
the proposed methodology. In the second method, the Sil-
houette method is applied on all clustering cases achieving
a reasonable correlation data consistency index (Silhouette
score) of 0.4 value, as Figure 21 depicts. All Silhouette
coefficients (for each class value) of clustering classes are
passing the Silhouette score value indicating good cluster
formations. Finally, the last method involves checking the
normalized MSE as calculated using Equation 7. A value
less than 0.70 of the maximum error ratio indicates a good
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FIGURE 21. K-Means clustering evaluation using silhouette plot of
demanded RAM and provisioned RAM.

FIGURE 22. Confidence interval validation

cluster.With these constraints we achieved a reliable dynamic
clusteringmethod, as Table 5 depicts. But in some cases, there
are violations for absolute mean square error between some
attributes. We found 24 such cases out of total 288 cases,
which is about 8.34%. The accuracy of the cluster therefore
can be considered as 91.66%, which is an acceptable value.

To test the behavior of the algorithms and their reliability,
we run the experiment 10 times for each of the two attributes.
Figure 22 depicts the variation (Confidence Interval) in Sil-
houette and Euclidean distance for each experiment. The
outputs are normalized to the maximum value to make the
figure more readable. Confidence range is represented in the
graph as black middle bar in the output value. From the
figure we can conclude the error range for each experiment
does not exceed 0.093 in WL1 and WL3 cases, which is an
acceptable value and shows that the algorithms work prop-
erly.

D. PERFORMANCE EVALUATION
The experiments have been applied with K-Means by select-
ing the number of clusters and centers dynamically, the num-
ber of maximum running iterations fixed to 300 as the default
value. The time complexity achieved with the proposed
method is reduced to be O(1) rather than O(k × p). This
is achieved because of the initialization of K-Means classes

FIGURE 23. Time cost.

FIGURE 24. Iteration cost.

centroids and the way of updating them using variance guide,
which reduces number of K-Means iterations. The execution
time is significantly reduced, as shown in Figure 23. Using
the proposed enhanced method by selecting the number of
classes and centroids initialization using attributed statisti-
cal measurement instead of initializing them with random
values, the number of iterations is reduced to a maximum
of 10 iterations, as Figure 24 depicts. This is a significant
reduction from standard K-Means method, where the max-
imum number of iterations is found to be 42. The validation
methods for the proposed approach depends on bin number as
time complexity, which is acceptable. The only challenge in
validation is to calculate CDF, which uses integrationmethod.
However, it is not a major issue since the validation process
can be done in offline mode.

VI. CONCLUSION
In this work, we have introduced a customized guided
K-Means clustering method for cloud elastic model that
depends on KDE and the Silverman method to find the initial
centers and number of classes. The proposed approach can
reduceK-means time complexity and enhance accuracy of the
clustering. From our detailed analysis, a reduction of about
75% on average is obtained in execution time from regular
K-Means algorithm and a 87.5% reduction is obtained in
K-Means iterations. With this method, datacenter configu-
ration and workload demands are mapped dynamically with
adaptation to their characterization changes, which allows
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the cloud management system to accommodate any type of
workload and datacenter hardware configuration types. Our
next work will be about classification of workload and DC
configuration for elastic scaling module in cloud manage-
ment system.
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