
SPECIAL SECTION ON BEHAVIORAL BIOMETRICS FOR EHEALTH AND WELL-BEING

Received October 23, 2020, accepted November 17, 2020, date of publication December 4, 2020,
date of current version December 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042451

Remote Physical Frailty Monitoring– The
Application of Deep Learning-Based Image
Processing in Tele-Health
MOHSEN ZAHIRI1, CHANGHONG WANG1, MANUEL GARDEA1, HUNG NGUYEN1,
MOHAMMAD SHAHBAZI1, AMIR SHARAFKHANEH2,4, ILSE TORRES RUIZ1,
CHRISTINA K. NGUYEN2,3, MONTHAPORN S. BRYANT2,3, AND BIJAN NAJAFI 1
1Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
2Telehealth Cardio-Pulmonary Rehabilitation Program, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
3Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
4Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA

Corresponding author: Bijan Najafi (bijan.najafi@bcm.edu)

This work was supported in part by the Department of Veterans Affairs, Veterans Health Administration, Promising Practice-Home-Based
Pulmonary Rehabilitation (Sharafkhaneh A and Bryant MS) and VA ACCESS Program (Sharafkhaneh A), and in part by the National
Institute of Health/National Institute on Aging (Najafi, B) under Award R41AG061951.

ABSTRACT Remote screening physical frailty (PF) may assist in triaging patients with chronic obstructive
pulmonary disease (COPD) who are in clinical priorities to visit a clinical center for preventive care. Con-
ventional PF assessment tools have however limited feasibility for remote patient monitoring applications.
To improve the safety of PF assessment, we previously developed and validated a quick and safe PF screening
tool called Frailty Meter (FM). FM works by quantifying weakness, slowness, rigidity, and exhaustion
during a 20-second repetitive elbow flexion/extension task using a wrist-worn sensor and generates a
frailty index (FI) ranging from zero to one; higher values indicate progressively greater severity of frailty.
However, the use of wrist-sensor limits its applications in telemedicine and remote patient monitoring.
In this study, we developed a sensor-less FM based on deep learning-based image processing, which can
be easily integrated into mobile health and enables remote assessment of physical frailty. The sensor-less
FM extracts kinematic features of the forearm motion from the video of 20-second elbow flexion and
extension recorded by a tablet camera, and then calculates frailty phenotypes and FI. To test the validity of
sensor-less FM, 11 COPD patients admitted to a Telehealth pulmonary rehabilitation clinic and 10 healthy
young volunteers (controls) were recruited. All participants completed the test indicating high feasibility.
Strong correlations (0.72 < r < 0.99) were observed between the sensor-based FM and sensor-less FM
to extract all frailty phenotypes and FI. After adjusting with age and body mass index(BMI), sensor-less
FM enables distinguishing COPD group from controls (p<0.050) with the largest effect sizes observed for
weakness (Cohen’s effect size d=2.24), frailty index (d=1.70), and slowness (d=1.70). These pilot findings
suggest feasibility and proof of concept validity of this sensor-less FM toward remote assessment of PF in
COPD patients.

INDEX TERMS Physical frailty, remote patient monitoring, telemedicine, mobile health, chronic obstructive
pulmonary disease, digital health, deep learning.

I. INTRODUCTION
Frailty is used to identify older adults with low physiolog-
ical reserves and vulnerability to illness and high risk of
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disability, institutionalization, and death [1], [2]. Frailty syn-
drome is common (above 56%) in individuals with chronic
obstructive pulmonary disease (COPD) [3], [4], and the frail
patients tended to have a greater number of disabilities and a
higher risk of mortality [5]. Therefore, frailty screening may
help identifying those patients who need to receive urgent
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treatment, physical therapy, or pulmonary rehabilitation for
preventing adverse outcomes or delaying progression toward
frailty.

Frailty is often characterized by assessing physical fit-
ness, called physical frailty (PF). Multiple tools have been
developed to objectively determine PF [6], [7]. Fried frailty
phenotype has been the gold-standard for clinical assessment
of PF [8]. This method determines PF based on presence or
absent of five phenotypes including exhaustion, inactivity,
shrinking, slowness, and weakness. The first three pheno-
types are subjectively assessed with surveys, whereas the
last two are objectively measured with a grip force and a
4.5 meters walk test. The administration of this test, specifi-
cally the walking test, is challenging in patients with limited
mobility including COPD patients, who often have high risk
of falling and may need to be connected to a ventilator
machine. On the other hand, the lack of ability to walk
does not necessarily indicate physical frailty. In addition,
incomplete phenotype assessment, compromises the predic-
tive power of the tool [9], [10]. Furthermore, these tests
must be performed in clinic environments under supervision
of professionals. This limitation challenges their practicality
for long-term tracking of PF conditions. Particularly during
public health emergencies (e.g. Covid-19 [11]), individuals
with COPD are discouraged to visit clinical centers due to
drastic containment and mitigation measures, further limiting
the effectiveness of in-person PF assessments. Therefore,
a new assessment method, which can obtain objective met-
rics associated with PF safely and remotely, are desperately
needed.

Our team has developed and validated a quick frailty meter
(sensor-based FM) tool based on a wrist-worn sensor [12].
The device enables the quantifying of PF by measuring slow-
ness, weakness, exhaustion, and rigidity phenotypes during
20-second repetitive elbow flexion and extension test [12].
20-second was chosen according to our prior study [13]
in which 20-second repetitive elbow flexion-extension exer-
cise was showed to be long enough to capture alterations
in elbow angular velocity due to the presence of exhaus-
tion phenotype (based on Fried Frailty Exhaustion pheno-
type [14]) but not too long to observe noticeable alteration
in those without presence of exhaustion phenotype. Using a
linear regression modeling including bootstrap with recursive
feature elimination technique, the measured phenotypes are
mapped into a continuous scale ranging from 0 to 1, called
frailty index (FI) [12]. The sensor-based FM was validated
against the Fried frailty Phenotypes Criteria [14], in a sam-
ple of 117 community dwelling older adults [13], in which
100% and 87% sensitivity were achieved to identify, respec-
tively, frail and pre-frail cases with specificity greater than
95%. In another study [15], the sensor-based FI showed a
significant agreement (r = 0.72, p < 0.0001) with a clini-
cally validated trauma specific FI [16], [17] in a cohort of
101 bedbound geriatric patients with 78% sensitivity and 82%
specificity to distinguish cases with frailty from non-frail
individuals. In a subsequent study [18], in which the same

cohort followed up to 60 days post hospital discharge, base-
line sensor-based FM enables predicting those patients with
and without unfavorable discharge disposition, 30-day read-
mission, 60-day readmission, and 30-day prospective falls.
In another study [19], it was demonstrated that dual-task FM
(20-second repetitive elbow flexion-extension while counting
backward) enables distinguishing between older adults with
and without cognitive impairment in a sample of 67 com-
munity dwelling older adults. Sensor-based FM has also
been used in several clinical studies including prediction of
adverse events post vascular surgery, early-stage Alzheimer’s
screening, and prediction of adverse events among COPD
patients [20]–[24]. Unlike the traditional PF phenotype cen-
tered on gait, the FM-based test is safer for frail older adults
with impaired mobility and a high risk of falling, as the
test can be administered while the subject is in a sitting
or lying position. The test is in particular advantageous for
COPD patients who may need to be connected to a ventilator
machine and thus have difficulty performing gait test [25].

However, sensor-based FM still requires professional
device operation, which may not be friendly to non tech
savvy users. As a result, its application is not suitable for
remote patient monitoring and telemedicine applications.
To address this gap, in this study we developed a sensor-less
frailty assessment tool (sensor-less FM) based on deep learn-
ing and image-processing technologies, which can be easily
integrated into a tablet (mobile health) and enables remote
assessment of PF without extra cost. We hypothesize that the
sensor-less FM has a high agreement with the sensor-based
FM to assess PF in COPD patients. Additionally, we compare
PF phenotypes and index between COPD patients and young
healthy people using the sensor-less FM.

II. METHOD
Figure 1 illustrates the flowchart of the algorithm to esti-
mate physical frailty and frailty phenotypes from a 2D video
captured using a standard RGB smartphone/tablet camera.
The algorithm first uses deep learning to estimate positions
of wrist and elbow joints from each frame of the captured
2-D video using the approach suggested by Cao et al, called
‘‘OpenPose’’ algorithm [26]. In summary, OpenPose algo-
rithm uses convolutional networks that enables predicting the
location of a joint of interest (see section A. image processing
section). The advantage of this algorithm is the use of 2D
video to track the position of a body joint instead of 3D
video which is required in the conventional motion tracking
systems. Based on changing the wrist and elbow positions
between two consecutive frames, the angular velocity of the
forearm around elbow joint is calculated. Then, the features
of interest (e.g. number of flexion and extension, reduction
in angular velocity over time, elbow flexion time, elbow
extension time) are extracted from the angular velocity as
described in details in the following (see section B: Feature
Extraction). At the end, physical frailty phenotypes (i.e. slow-
ness, weakness, exhaustion, and rigidity) and frailty index is
obtained from the features.
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TABLE 1. Frailty related features (digital biomarkers) used to quantify 20-second repetitive elbow flexion/extension test.

FIGURE 1. Flow chart of the algorithm to calculate physical frailty
phenotypes and frailty index from the 2D video of 20-second repetitive
elbow flexion and extension exercise.

A. IMAGE PROCESSING – OpenPose ALGORITHM
A 2D video, with the speed of 30 frames per second, was
captured from a tablet camera (Samsung Galaxy Tab, Seoul,
South Korea) for the 20-second rapid repetitive elbow flexion
and extension test. In each frame of the video, the positions of
the joints of the arm are achieved by encoding the arm pose

of subjects using OpenPose algorithm as a pre-trained deep
learning method [26], [27]. This multi-stage convolutional
architecture iteratively predicts 2D anatomical joints of the
arm for each person in the frame (Figure 2). The model takes
a color image as an input and outputs an array of matrices
including a confidence maps and affinity fields. In the first
step, the first 10 layers of the VGG-19 net is used to produce
the feature maps from the input image. The second step of the
model consists of a 2-branch multi-stage CNN to predict a set
of 2D confidence maps and affinity fields. The confidence
map is a grayscale image which shows the location of key
point (e.g. wrist and elbow) in the image and affinity fields
encodes the degree of association between key points. The
angular velocity of the elbow can be extracted based on the
positions of the wrist and the elbow in the sequence of frames.

B. FEATURE EXTRACTION
The features of interest from the 20-second elbow repetitive
flexion-extension test were extracted according to Lee et al
study [12] in which sensor-derived digital biomarkers related
to physical frailty phenotypes and measurable from elbow
angular velocity (Figure 3) during 20-second repetitive elbow
flextion-extension test were defined. Table 1 summarizes
these features and their definition. In summary, we used a
zero-crossing method and peak detection algorithm to dis-
tinguish each extension/flexion period from the 20-second
angular velocity signal [12]. Then 20 features were extracted
to determine slowness, weakness, rigidity, exhaustion, and
unsteadiness frailty phenotypes. Five features were used to
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FIGURE 2. Estimation of wrist and elbow joints locations using the
‘‘OpenPose’’ algorithm in two example frames.

determine slowness including angular velocity range, rise
time (Fig 3-a), fall time, extension time (Fig 3-b), flexion
time(Fig 3-c), and number of extensions/flexions. The weak-
ness was characterized by estimating the product of range of
angular velocity and range of angular acceleration. Rigidity
was quantified by estimating the elbow flexion/extension
range of motion. Elbow rotational angle was calculated using
quaternion and Kalman filters as described in our previous
study [28]. Exhaustion was quantified by the magnitude of
change in features of interest over a 20-second test including
a decline in ‘elbow speed of rotation’, decline in ‘power’,
increase in ‘flexion/extension’ time, and increase in ‘rise
time’. To determine change over 20-second, the differences
between the first and last 10 seconds of features of interest
were calculated. To quantify unsteadiness, we calculated the
coefficient of variation (CV) of five features as summarized
in Table 1.

In our previous study and in a cohort of 100 geriatric inpa-
tients, we identified the optimized combination of features to
determine frailty index using a regression model, bootstrap
with 2000 iteration, and recursive feature elimination tech-
nique [12]. The estimated frailty index based on the optimized
linear regression model is as follow:

FIest =−1.7357× 10−3Ph1−1.2026× 10−3Ph2 + 0.36848

×10−3Ph3 − 0.49396Ph4 + 0.48974Ph5 + 0.24495, (1)

where Ph represents the selected features of interest as:
Ph1 – range of motion; Ph2 – percentage of decline in
power; Ph3 – flexion time; Ph4 –flexion time variability; and
Ph5 –extension time variability. Frailty index ranges from
0 to 1; higher values indicate progressively greater severity
of physical frailty.

III. TEST
For the setting of the test, the subject wore a wrist-worn
sensor (sensor-based FM, a tri-axial gyroscope, sample fre-
quency = 100 Hz, BioSensics LLC, MA, USA) as a bench-
mark. The participant was asked to repetitively flex and
extend their dominant elbow to full flexion and extension as
quickly as possible for 20 seconds. While the test was per-
formed, the subjects were recorded on their sagittal plane by
a tablet camera (Samsung Galaxy Tab, Seoul, South Korea)
ensuring arm flexion and extension remained in the video
(sensor-less FM).

A. DATA ACQUISITION
We recruited 11 patients (age: 67.8±10.7 years old, BMI:
32.2±25.1 kg/m2, 82% frail or pre-frail according to
Fried Frailty Criteria) with Chronic Obstructive Pulmonary
Disease (COPD) from the Telehealth Pulmonary Rehabili-
tation Clinic at Michael E. DeBakey Veterans Affairs Med-
ical Center – Houston, Texas, USA. We also recruited
10 healthy young subjects (age=29.6±6.7 years old,
BMI:28.7±6.7kg/m2), from the staff and students at the Bay-
lor College of Medicine. Common eligibility criteria include
their ability to provide written informed consent and ability to
do 20-second elbow flexion and extension. Participants were
excluded from the study if they were non-ambulatory had
neurological conditions affecting upper extremity function
(recent stroke, Parkinson disease, Huntington disease, etc.);
or were unwilling to participate. All participants signed a
consent form for this study. This study was approved by the
Institutional ReviewBoard of the Baylor College ofMedicine
and the Michael E.

DeBakey Veterans Affairs Medical Center (Houston, TX,
USA).

B. STATISTICAL ANALYSIS
To assess the agreement between the sensor-based FM and
the proposed sensor-less FM, we used Altman and Bland
(B&A) plot on these two quantitative measurements [29].
This plot examines the association between the difference and
the mean of the paired measurements. The Y axis presents
the difference between the paired measurements and the X
axis shows the mean of the paired measurements. The upper
and lower 95% limits are also presented to show the limit of
agreement (mean of difference ± 1.96 × SD of difference).
We evaluated the correlation of frailty phenotypes between

the sensor-less and sensor-based FM by using the Pear-
son correlation coefficients [30]. For comparison between
two methods, in addition to the estimated frailty index,
we selected the features shown to be independent predictors
of frailty index based on prior studies [12]–[15]. Values
ranging from 0.40-0.59 indicates moderate correlation, from
0.6-0.79 indicates strong correlation, and from 0.8-1.0 indi-
cates very strong correlation [31]. Univariate general linear
model was used to compare the frailty parameters between
COPD subjects and healthy control group. Results were
adjusted by age and BMI. The effect size for discriminat-
ing between groups was estimated using Cohen’s d effect
size and represented as d in the Results section. Values
were defined as small (0.20-0.49), medium (0.50-0.79), large
(0.80-1.29), and very large (above 1.30) [32]. Values less than
0.20were classified as having no noticeable effect [32]. In our
analyses, statistical significance was accepted when p< 0.05.

IV. RESULTS
A. ACCURACY OF IMAGE BASED SYSTEM TO ESTIMATE
THE FRAILTY PHENOTYPE AND FRAILTY INDEX
All participants completed the test indicating high feasibility.
Figure 4 demonstrates the angular velocity extracted from
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FIGURE 3. A typical pattern of angular velocity recorded by FM. Reduction in angular velocity, rise time
(a), and power over the 20-second period of elbow flexion and extension are markers of exhaustion,
slowness, and weakness. Flexion time (b) and extension time (c) used to calculate Frailty Index.

TABLE 2. Upper extremity frailty parameters for both sensor-based and sensor-less FMs.

FIGURE 4. Elbow angular velocity. The orange signal shows the
sensor-based signal as our gold standard. The Blue signal demonstrates
the output of the sensor-less FM to define the position of forearm in the
frames of the video.

the forearm movement for both sensor-based and sensor-less
FMs in a typical COPD subject.

There was strong to very strong correlations between the
sensor-less FM and the sensor-based FM to estimate the
frailty phenotypes (Table 2 ). Very strong correlation with
statistical significance was observed for rise time (slowness
phenotype), power (weakness phenotype), and elbow flex-
ion time. Strong correlation with statistical significance was
observed for range of rotation (rigidity phenotype), decline in

speed, decline in power (exhaustion phenotype), and frailty
index.

The Bland-Altman plots for all phenotypes show a high
precision and low bias for estimating frailty phenotypes
using the sensor-less FM compared to the sensor-based
FM (Figure 5). Figure 5 (e) and (f) suggest a strong
agreement between the estimated frailty index from the
proposed sensor-less FM compared to the sensor-based
FM.

B. FEASIBILITY OF SENSOR-LESS SYSTEM TO SEPARATE
THE COPD GROUP FROM CONTROL GROUP
Table 3 summarized the differences between group for key
phenotypes including rise time (phenotype slowness, Unit: s),
power (phenotypeweakness, Unit deg2/s3×100,000), rigidity
(elbow range of motion, deg), change in power (exhaustion,
Unit: %, negative sign: decline; positive sign: increase), and
frailty index. All phenotypes except rigidity and exhaustion
were significantly different between COPD group and control
group (p<0.007). The largest effect sizes were observed for
weakness (d=2.41), frailty index (d=1.70), and slowness
(d=1.62).

V. DISCUSSION
This study proposes a telehealth platform to assess phys-
ical frailty based on a tablet with a camera module. The
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FIGURE 5. Bland-Altman plots showing the agreement between the sensor-based FM and the sensor-less FM for (a) rise time, (c) power,
and (e) frailty index. Scatterplots between the sensor-based FM and the sensor-less FM for (b) rise time, (d) power, and (f) frailty index.

TABLE 3. Group comparison of frailty Phenotypes (slowness, weakness,
rigidity, and exhaustion) and frailty index between COPD patients and
healthy control subjects using sensor-less FM.

platform is practical for remote tracking of physical frailty
status, which in turn may assist with triaging high risk
patients and timely intervention to reduce frailty-related
health deterioration among the COPD patient population.
The key advantages of the proposed sensor-less FM are

ease of use (20 seconds to complete the test with no
need of sensor attachment), low cost (using a mobile app),
and high safety (no need to use a walking test and the
test can be administered while sitting or lying down on a
bed).

From Figure 4, we can observe a good agreement for angu-
lar velocity signals outputted from the sensor-less and the
sensor-based FMs. The high agreements observed between
sensor-based and sensor-less derived features correlation,
suggest that sensor-less FM is as accurate as sensor-based
FM for determining frailty phenotypes of interest. As a result,
the derived frailty index based on these sensor-less kinematic
parameters has a good agreement with the sensor-based FM.
The B&A plots (Figure 5) further support good agreements
for the frailty phenotypes and the frailty index between the
sensor-less FM and the sensor-based FM. In summary, these
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results indicate a good accuracy of the proposed sensor-less
FM to assess physical frailty.

As expected, results suggest COPD patients were signifi-
cantly more physically frail than the healthy control subjects
based on the frailty phenotypes and frailty index obtained
using the sensor-less FM. The results are in line with the other
known studies [4], [5], [3]. This finding indirectly verifies
the effectiveness of the sensor-less FM to determine physical
frailty. In addition, our study suggests that the most pro-
nounced phenotype affected by COPD is weakness followed
by slowness.

This study has twomain limitations. First, this study exam-
ined the sensor-less FM in the clinic environment under
supervision of a research coordinator. This testing condition
ensures the consistency across different subjects and excludes
as much interference from human factors as possible. For
example, in our trial, the subject’s sagittal plane is always
approximately perpendicular to the sight line of the cam-
era, and all forearm movements are completely captured
in the view of the camera based on real-time observation
of the research coordinator. However, for the remote appli-
cation, various factors including home environment (e.g.,
light), ability to follow instruction to examine sensor-less
FM, and other unexpected human factors may challenge
the accuracy of the sensor-less FM. Some of these fac-
tors could be managed via tele-medicine and live interac-
tion with patient (e.g., via zoom, video-connect, or other
tele-conference resources). However, the accuracy of this
solution needs to be validated in a follow-up study. To reduce
the sensitivity to camera view for unsupervised applications,
a potential solution could be the use of advanced image
processing approach (e.g. camera stereo) to detect the 3D
trajectory of the forearm movements from the video. Sec-
ond, this study only examined the differences in physical
frailty between COPD patients and healthy subjects in a
cross-sectional trial and in a small sample size. In future,
a longitudinal trial will be conducted to examine whether the
sensor-less FM is sensitive to track the change in physical
frailty over time and/or in response to an intervention. In addi-
tion, the ability of the sensor-less FM to distinguish frail from
non-frail participants should be confirmed in a larger sample
size.

In conclusion, this paper proposes a sensor-less FM based
on a tablet camera and image processing technologies. The
sensor-less FM extracts frailty phenotypes and frailty index
from the video of the 20-second repetitive elbow flexion and
extension test with good reliability using the sensor-based
FM as a benchmark. The sensor-less FM addresses the lack
of an objective tool to remotely assess physical frailty for
COPD patients. Furthermore, it can be widely used in general
older population who have limited access to themedical facil-
ities and need remote tracking of physical frailty. Compared
with the sensor-based FM, the widespread availability of
image-acquisition tools such as smartphones or tablets would
make the deployment of the sensor-less FM more practical
and less resource intensive.
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