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ABSTRACT The expected manifolds increase in the traffic and the massive number of connected Internet
of Things (IoT) devices would be a challenge to ensure a certain Quality of Service (QoS) in Beyond
5G (B5G) networks. Due to the increased availability of processing and energy resources and heteroge-
neous QoS requirements in modern IoT nodes, a client-centric access device selection approach for QoS
provisioning in multiple Radio Access Technologies (RATs) scenario is proposed in this paper. The proposed
algorithm provides the ability to specify node-specific QoS requirements at each node, a better access device
selection, and improved network scalability. For experimental evaluation, a hybrid indoor network consisting
of Wireless Fidelity (WiFi) and Light Fidelity (LiFi) RATs has been considered. Experimental results
show that the proposed technique outperforms several conventional client-based access device selection
approaches by up to 32.66% in network emulation experiments and up to 50% in hardware experimentation.
The contribution of this paper includes the proposed algorithm, its complexity and game-theory based
convergence analyses, evaluation of the proposed algorithm using network emulation and hardware-based
setups, and LiFi channel analysis. The analyses and results imply that the proposed algorithm could be
utilized in next-generation IoT networks as it performs better than conventionally used access device
selection techniques for QoS provisioning.

INDEX TERMS Quality of service, beyond 5G IoT networks, IoT QoS provisioning, light fidelity, visible
light communication.

I. INTRODUCTION
As 5G networks roll-out globally, researchers have started
to lay out plans for Beyond 5G (B5G) networks. A few key
requirements of B5G networks include universal connection,
low latency, energy efficiency, reliability, and data rates of
up to 100 terabits per second. Several new technologies are
planned to be part of B5G networks, including terahertz com-
munication, visible light communication, holographic radio,
and large intelligent surface [1].

The IP traffic is predicted to increase to 396 exabytes
by 2022, three times more than in 2017. By 2025, con-
nected devices are expected to surpass 75.4 billion globally
[2]. The Internet of Things (IoT) devices are expected to
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reach hundreds of billions by the year 2030. B5G networks
would face the challenge of a massive number of connected
IoT devices andmanifolds traffic increase. To provideQuality
of Service (QoS) guarantees for ensuring certain network
quality would be vital in such a scenario [3].

Current cellular networks are insufficient to accommodate
massive IoT networks. The seamless connectivity for IoT
devices in B5G networks would require solving various chal-
lenges, including QoS guarantees [4], dealing with excessive
overheads [5], non-orthogonal multiple access techniques
with improved spectral and bandwidth efficiencies [6], and
improving energy efficiency [7].

B5G networks would comprise a range of IoT devices,
including sensors, wearables, washingmachines, health mon-
itors, air conditioners, transportation systems, smartphones,
and tablets, etc. [8]. The functionalities of these devices
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significantly vary from simple sensing to high processing
devices. Where some IoT nodes would perform control
and monitoring tasks, other nodes might have to stream
high definition content [9]. Such a vast variation in the
requirements of IoT nodes translates to significantly different
QoS expectations for each node.

Conventionally, network-based approaches are used for
QoS provisioning by associating a client to a specific
access device or base station [10]. The QoS parameters
used by such methods for access device selection are inde-
pendent of the end-device and do not account for the
node-specific QoS requirements. Besides, network devices
lack an accurate last-hop view and are unaware of device
and application-specific requirements at the node. On the
other hand, there are client-based access device selection
approaches presented in the literature, but not much con-
sideration has been given to the massive number of devices
expected in B5G IoT networks. Such client-based approaches
also use the same QoS parameters for all end devices,
ignoring the heterogeneous QoS requirements of different
IoT nodes.

Another challenge for access device selection in B5G
networks is posed by multiple Radio Access Technologies
(RATs), including WiFi, 4G/LTE, 5G, and Bluetooth, etc.
The end-devices need to not only opportunistically switch
between access devices from the same access technology,
e.g., between WiFi Access Points (APs), but also between
access devices from multiple RATs. This challenge is further
complicated by including new RATs in B5G networks such
as Light Fidelity (LiFi) or Visible Light Communication
(VLC) [11]. The terms LiFi and VLC are used interchange-
ably. Generally, VLC refers to the visible light spectrum,
whereas LiFi refers to the complete light spectrum [12].
We will use the term LiFi for the rest of this paper. It is
also desirable to allow multihoming, enabling a client to
communicate over multiple RATs simultaneously.

To address the challenges mentioned above, we have pro-
posed a client-centric access device selection algorithm to
provision QoS considering heterogeneous requirements of
IoT nodes, multiple RATs, and multihoming. Although the
proposed algorithm in this paper would generally apply to any
choice of RATs, a hybrid indoor WiFi and LiFi environment
has been considered for experimental evaluation. This makes
it necessary to discuss the motivation for selecting such an
experimental setup.

B5G networks would be significantly dependent on
WiFi. By 2022, WiFi hotspots are expected to increase to
549 million, along with 80% of mobile traffic occurring
indoors [2]. Massive competition is expected in the limited
frequency spectrum because of the dense deployment ofWiFi
APs. To address this challenge, LiFi technology [12] appears
to be a promising candidate to complement WiFi because of
an enormous 300 THz frequency spectrum and an expected
10 Gbps data rate [13]. Besides, LiFi offers better data secu-
rity along with no RF emissions. However, LiFi technology
is susceptible to obstructions and has limited coverage [14].

The rest of the paper is organized as follows. The back-
ground and related work are presented in Section II. The
system model and the proposed algorithm are discussed in
Section III. Section IV presents the LiFi channel analysis.
As a proof of concept, network emulation based experimen-
tation is performed in Section V. To validate the proof of con-
cept, hardware experimentation is performed in Section VI.
Section VII provides a discussion, whereas Section VIII con-
cludes the paper.

II. BACKGROUND AND RELATED WORK
A. MOTIVATION AND PROBLEM STATEMENT
With the massive deployment of IoT devices in B5G
networks, ensuring QoS requirements to provide a certain
network quality would be essential. With the availability
of multiple RATs in B5G networks, suitable access device
selection to improve provided QoS is possible. Although
network-based approaches [15]–[21] provide a more optimal
access device allocation, using such approaches would result
in a huge amount of signaling information being transmitted
between network elements and IoT nodes. Besides, scal-
ability issues of network-core would arise because of the
expected massive number of IoT devices. A client-centric
approach would address these concerns and benefit from
the understanding of client-specific QoS requirements,
power and application-specific requirements of the client,
and a better knowledge of the client’s access network
state. Several client-centric approaches [22]–[25] have
been proposed in the literature. However, none of these
approaches consider heterogeneous QoS requirements of
IoT nodes.

To the best of the authors’ knowledge, there is no exist-
ing client-based QoS provisioning technique dealing with
heterogeneous requirements of IoT nodes in B5G net-
works. Such a technique would allow each IoT node to
choose QoS parameters different from other nodes to fit its
QoS requirements. It is also believed that no other work
has evaluated the performance of such a client-based tech-
nique using network emulation and hardware experimenta-
tions considering the scenario of a hybrid WiFi and LiFi
IoT network.

The following Research Questions (RQs) define this
paper’s research scope:

• RQ1: Is it possible to formulate a client-based access
device selection algorithm considering client-specific
QoS requirements for access device selection in B5G
IoT networks?

• RQ2: Would such an algorithm work for multi-RAT and
multihoming scenarios?

• RQ3: What would be the computational efficiency and
convergence of the algorithm?

• RQ4: How do Signal-to-Noise Ratio (SNR) and data
rate in a LiFi channel vary with respect to LiFi AP
and receiver orientations, and by using light sources of
different half-intensity radiation angles?
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• RQ5:Would the proposed algorithm perform better than
other access device selection techniques in a hybrid
indoor WiFi and LiFi network?

B. RELATED WORK
IoT devices’ massive deployment has allowed technology’s
creative intervention in many areas affecting human life,
ranging from smart homes to smart industries and smart
grids. The key objective of introducing smart devices in
the human habitat revolves around collecting and analyzing
usage patterns and providing effective resource utilization.
Smart IoT devices have limited analytical capability to act
autonomously on the sensor-generated data. The devices also
tend to transmit the raw sensing data to its manufacturer for
detailed data mining inside the remote data center [26]. Some
other use cases entail explicit requirement of transmitting
sensor data over the communication network, such as [27]
for baby monitoring empowering smart cradle, and [28] for a
pedestrian crossing control system. Assistance required from
communication networks for few applications has hard QoS
bounds to ensure the infrastructure’s safety and security, such
as mentioned in [29] for smart grids. Conversely, some other
applications do not put such hard bounds and require IoT data
transmission for awareness only, such as smart homes [30].

Conventionally, QoS provisioning in cellular networks
has been the responsibility of network devices. In such a
scenario, the association of a User Equipment (UE) to a
specific Base Station or an eNodeB is controlled by the
network [15]. Similarly, in computer networks, central-
ized decisions are made to select end-to-end paths by
core-layer devices, including Layer-3 switches and routers.
Software-Defined Networking controllers are recently
deployed for QoS provisioning on behalf of core-network
devices [16]. Centralized approaches help network operators
to achieve certain overall network optimization related goals
such as throughput maximization [17], load balancing [18],
and user fairness enhancement [19]. Although centralized
approaches achieve better network optimization, they usually
result in significant communication overheads for exchang-
ing information among different network entities [31].

The issue of excessive communication overheads can
be addressed using distributed client-based RAT selection
approaches [32]. Most of the distributive approaches are
game-theory based [33]. These approaches are further classi-
fied into partially distributed and fully distributed. In partially
distributed approaches, information from other users is also
used, whereas, in fully distributed approaches, the RAT selec-
tion decision is made independently of other users [34]. For
example, the decision to select between multiple WiFi APs
in today’s end-devices is fully distributed. A client usually
selects among availableWiFi APs based on a single Received
Signal Strength Indicator (RSSI) metric [35]. A multi-RAT
selection algorithm to select between cellular networks and
WiFi APs also exists in today’s end-devices. However, WiFi
is mostly the preferred network in such a scenario, indepen-
dent of the QoS provided by both networks.

Client-based RAT selection is considered a vital
requirement in B5G networks. A cellular network selec-
tion mechanism has been proposed for a mobile device
with simultaneous connectivity to two different cellular
operators [22]. The factors considered for selecting a partic-
ular cellular network consist of handover rate, energy con-
sumption, call quality, and financial cost. In [23], an approach
to achieve higher data rates in 6G networks is proposed
using data-fusion. Cooperation between user equipment
and network devices is proposed, along with the use of
machine-learning for network optimization. An approach
using context-aware RAT selection is proposed in [24]. The
presented experimental results indicate that context-aware
RAT selection outperforms conventionally used RAT selec-
tion techniques, including signal strength, link throughput,
and network delay. A multihoming-based multi-RAT selec-
tion technique for transmitting traffic of various classes over
different RATs has also been presented in [25].

Recently, hybrid WiFi and LiFi networks have been
researched in literature. In one such approach [20], fuzzy
logic has been used to evaluate clients to be connected with a
WiFi AP. The remaining clients are associated with the LiFi
AP. An approach for load balancing is proposed in [36], with
LiFi being the default network. Users with weak levels or no
optical signals are shifted to theWiFi AP. For AP assignment,
two different optimization algorithms are proposed, including
a joint optimization algorithm and a separate optimization
algorithm. Considering the effects of shadowing, a game-
theoretic load balancing approach between WiFi and LiFi
networks is proposed in [37]. Due to expected lower through-
put at users experiencing shadowing and channel blockage
in LiFi channel, such users are moved to a WiFi AP. Some
work for developing a handover management protocol is
presented in [38], considering factors such as link quality,
interference, and call flow. The paper discusses using indoor
networks and transportation systems’ while considering a
Femto AP and a LiFi AP. A hybrid WiFi and LiFi system for
QoS provisioning using link selection is proposed with buffer
overflow constraints and delay in [21]. Because of the smaller
coverage regions of LiFi APs, a concept of handover skipping
is proposed in [39] to enable handover between non-adjacent
APs for hybridWiFi and LiFi networks. A summary of access
device selection literature is provided in Table 1.

C. CONTRIBUTION
As presented in Table 1, both network-centric and
client-centric approaches have been proposed in the litera-
ture for access device selection. To the best of the authors’
knowledge, this paper presents the first client-based access
device selection algorithm for QoS provisioning in Beyond
5G IoT networks, while allowing each client to specify
client-specific QoS parameters. The algorithm works in a
multi-RAT environment and allowsmultihoming as well. Our
previous work [40] presented an initial novel system model
for such an access device selection. This paper expanded on
the same work and made the following new contributions:
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TABLE 1. Summary of access device selection techniques.

• Improved the already proposed system model and prob-
lem formulation presented in [40]. The related work
section is also improvised.

• A novel algorithm is proposed to solve the formulated
problem and provide the above-discussed benefits.

• Complexity analysis and game-theory based conver-
gence analysis are performed to evaluate the proposed
algorithm.

• Since LiFi is envisioned to be an integral RAT of B5G
networks, a LiFi channel analysis is performed.

• Evaluation of the proposed algorithm is performed using
network emulation and hardware experimentations for a
hybrid indoor WiFi and LiFi environment.

III. SYSTEM MODEL AND PROPOSED ALGORITHM
In this section, the network model and problem formulation
are presented, followed by an example of a hybrid indoor
network consisting of WiFi and LiFi access technologies.
Afterward, the proposed algorithm is presented, along with
its complexity and game-theoretic convergence analyses.

A. NETWORK MODEL
Consider a multi-RAT IoT environment, with one or more
access devices belonging to each RAT. A set N consists of
all nodes in an IoT network, whereas the set D contains all
the access devices. The total number of nodes is N , and the

total number of access devices is D. A node n ∈ N may not
be able to connect to all access devices in D, but is only in
the coverage area of a subset of access devices Dn, where
Dn ⊆ D. Let the number of access devices in Dn be Dn.
There is a possibility that a node n ∈ N can simultaneously

connect with multiple access devices, i.e., multihoming is
possible. In such a case, a node can establish a connection
with any number of access devices, up to the multihoming
limit, defined as Mn. We define a combinations matrix Cn
containing all possibleDn bit binary combinations with num-
ber of ones less than or equal toMn. Each c-th row of Cn con-
tains aDn-bit binary combination, where each bit corresponds
to a binary assignment variable xndc. Here, x

n
dc = 1 indicates

that for such a c-th binary combination, a connection exists
between node n ∈ N and an access device d ∈ Dn. Similarly,
xndc = 0 indicates otherwise.
As discussed in Section I, each IoT node could have

a different QoS expectation from the network. These QoS
requirements could be transformed into parameters classified
into three categories:
• QoS parameter: Should satisfy a certain QoS threshold.
• Link quality parameter: Should be used in the calcula-
tion of link quality.

• Both QoS and link quality parameter.
The requirements of a node n for access device selec-

tion translates to a set of parameters Pn, with Pn being
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TABLE 2. Network model abbreviations.

the number of these parameters. Each parameter in Pn is
classified into one of the three above mentioned categories.
A QoS matrix Qn for node n consisting of QoS requirements
of all Pn parameters is defined as:

Qn = [q1 q2 . . . . qPn ] (1)

The corresponding value for a certain parameter inQn with
no QoS requirement (category no. 2) is set to ∞. The link
quality expectationmatrixLn containing parameter values for
the link quality calculation at node n is defined as:

Ln = [l1 l2 . . . . lPn ] (2)

The corresponding values in Ln for parameters not consid-
ered for link quality calculation (category no. 1) would be set
to zero. Specifying a higher value in Ln will result in a lower
contribution made by the corresponding parameter in link
quality calculation. The actual values matrix An containing
the values of Pn parameters for links from Dn access devices

at node n can be given as:

An =


a11 a12 . . . a1Pn
a21 a22 . . . a2Pn
...

...
...

...

aDn1 aDn2 . . . aDnPn

 (3)

Each row of An represents the perceived values of
Pn parameters from each access device. For example, a11, a12,
and a1Pn could represent delay, jitter, and throughput from the
first access device. Similarly, aDn1, aDn2, and aDnPn would
represent delay, jitter, and throughput from the Dn-th access
device.

Two selection variables yp ∈ {-1,0,1} and zp ∈ {0,1} are
defined. If p-th parameter is ignored in link quality calcula-
tion, the value of yp is set to 0 for such p-th parameter. For
a parameter with a lower desired value, e.g., delay or jitter,
yp equals 1, whereas, yp is set to -1, if the desired value of
the p-th parameter is high, e.g., bandwidth or SNR. For a
p-th parameter with a lower desired value, QoS constraints
selection variable zp equals 1, and for a p-th parameter with a
higher desired value, zp equals 0.

The Link Quality (LQ) between node n and access
device d can be defined as:

LQnd =
Pn∑
p=1

yp
lp − adp
adp

, adp 6= 0 (4)

If OQn is defined as the overall network quality available
to node n, the optimal access device selection problem is a
maximization function computed separately at each node n:

OQn = max (OQn,
∑
d∈Dn

xndc LQ
n
d ), ∀ c ∈ Cn (5)

subject to the following constraints:

C1 :

{
adp ≥ qp if zp = 0
adp ≤ qp if zp = 1

, ∀ d ∈ Dn, p ∈ Pn (6)

C2 :
∑
d∈Dn

xndc ≤ Mn, ∀ c ∈ Cn (7)

The constraint C1 ensures that the QoS requirements men-
tioned in Qn are satisfied. C2 is the multihoming constraint,
allowing node n to connect to a maximum of Mn access
devices simultaneously.

B. EXAMPLE: A HYBRID WiFi AND LiFi NETWORK
As an example, a hybrid WiFi and LiFi network is modeled
in this sub-section with an objective to minimize link delay,
with throughput and SNR QoS constraints. If the workload,
a function of bits, between node n and access device d is
defined as wnd , and r

n
d is the data rate available to node n from

access device d , the communication link latency between
them can be given as:

lnd =
wnd
rnd

(8)
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The data rate rnd between node n and access device d is
dependent on the available bandwidth βnd and signal-to-noise
ratio SNRnd . The data rate can be calculated for aWiFi network
using Shannon–Hartley theorem. However, for the LiFi net-
work, a gap exists between the upper bound calculated using
Shannon–Hartley equation and the actual capacity of a LiFi
link [41]:

rnd =


βnd

2
log2(1+

e
2π

SNRnd ), for LiFi channel

βnd log2(1+ SNR
n
d ), for WiFi channel

(9)

Using the channel model in [20], the SNR of the link
between node n and access device d can be given as:

SNRnd =



Rpd HLiFind Popt κ

NLiFi BLiFi
, for LiFi channel

GWiFind PWiFi
NWiFi BWiFi

, for WiFi channel
(10)

In the above equation, Rpd is the photodetector’s respon-
sivity, HLiFind represents the LiFi channel between node n
and access device d , Popt represents the transmitted optical
power, and κ is the optical to electrical power conversion
coefficient. The Power Spectral Density (PSD) of noise at
the node is given asNLiFi, whereas BLiFi shows the bandwidth
provided by the LiFi AP. In aWiFi channel, the SNR between
node n and access device d is calculated from the channel
gainGWiFind , WiFi AP transmitted power PWiFi, channel band-
width BWiFi provided by WiFi AP, and noise PSD at the WiFi
receiver NWiFi.
Consider a hybrid WiFi and LiFi network with latency

minimization objective, and rate and SNR QoS constraints.
If latency with any arbitrary value l1 is the only link quality
parameter, the link quality expectation matrix can be defined
as:

Ln = [l1 0 0] (11)

Similarly, considering data rate and SNR as QoS con-
straints with thresholds of φR and φSNR, respectively, the
QoS matrix Qn can be given as:

Qn = [∞ φR φSNR] (12)

Considering hybrid network with a single WiFi AP and a
single LiFi AP, the matrix of actual values An would be given
as:

An =
[
a11 a12 a13
a21 a22 a23

]
(13)

In the above matrix, the parameters of delay, rate, and SNR
received fromWiFi AP at node n are represented by a11, a12,
and a13, respectively. The same parameters are represented
by a21, a22, and a23 for the LiFi AP.

With the three matricesQn, Ln, and An defined, the overall
quality maximization problem can be formulated using (4)
and (5), subject to the following constraints:

C1− a : ad1 ≤ ∞, d ∈ {1, 2} (14)

C1− b : ad2 ≥ φR, d ∈ {1, 2} (15)

C1− c : ad3 ≥ φSNR, d ∈ {1, 2} (16)

C2 :
∑
d∈Dn

xndc ≤ 1, ∀ c ∈ Cn (17)

Here, C1 is the QoS provisioning constraints. The con-
straint C1-a indicates that the delay from the selected
AP should be less than∞, which would always be the case.
The constraints C1-b and C1-c ensure that the available data
rates and SNR from the selected AP are greater than φR and
φSNR, respectively. The constraint C2 shows that multihoming
is not allowed, and the maximum number of APs a node can
connect is 1.

C. PROPOSED CLIENT-CENTRIC ALGORITHM
The proposed client-centric algorithm is shown in
Algorithm 1. In this algorithm, the objective function shown
in (5) is maximized individually at each client, subject to the
constraints mentioned in (6) and (7). Various client-specific
and radio parameters are input to the algorithm, along with
the value of current Overall Quality (OQ) and the list of
currently connected Access Devices (AD) at time instant t .
The algorithm’s output is the updated OQ and AD for the
next time instant t + 1.

At the start of the algorithm, the values of AD and OQ for
time t + 1 are initialized to the respective value at time t
(Line 1 and Line 2). This ensures that if no better selection
of available access devices could improve the overall quality,
the same access devices would be used at the next time
instant t + 1. As Dn access devices cover node n, it can con-
nect to any of these access devices, subject to the maximum
number of simultaneous connections limited by constraint
C2 mentioned in (7). All the possible binary combinations
that satisfy constraint C2 are stored in Cn (Line 3).
The outer for-loop (Line 4 to 36) iterates over all these

possible combinations of Cn and compute the LQ and AD
for each c-th combination at time t + 1. LQ is initialized to
a null value (Line 5), and AD is initialized to an empty set
(Line 6) for c-th combination at time instant t+1. The length
of each c-th combination is Dn bits.

The middle for-loop (Line 7 to 19) iterates over each
d-th bit of the c-th combination. The existence of a con-
nection between node n and device d for combination c,
i.e., xndc equals 1, is checked (Line 8). If a connection
exists, the device d is appended to the AD set of c-th
combination at time t + 1 (Line 9), and the inner for-loop
(Line 10 to 17) is executed, iterating over all link qual-
ity parameters. If the QoS constraint (constraint C1) is
satisfied for a specific parameter (Line 11), the LQ of
c-th combination at time t + 1 is updated (Line 12).
Otherwise, if the constraint C1 is not satisfied
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Algorithm 1 Access Device Selection Algorithm for Node n
Input: An,Ln,Qn,Yn,Zn,Mn,Dn,Pn, η,T , hn, sn,

OQ(t),AD(t)
Output: OQ(t + 1),AD(t + 1), hn, sn

1: AD(t + 1)← AD(t)
2: OQ(t + 1)← OQ(t)
3: Cn ← all possible binary combinations of length Dn

satisfying constraint C2
4: for c in Cn do
5: LQ(c, t + 1)← 0
6: AD(c, t + 1)← {}
7: for d ← 1 to Dn do
8: if xndc = 1 then
9: AD(c, t + 1)← AD(c, t + 1) || d
10: for p← 1 to Pn do
11: if (adp ≥ qp AND zp = 0) OR (adp ≤ qp AND

zp = 1) then
12: LQ(c, t + 1) ← LQ(c, t + 1) + yp ∗ ((lp −

adp)/adp)
13: else
14: LQ(c, t + 1)← 0
15: Go to Line 20
16: end if
17: end for
18: end if
19: end for
20: if AD(c, t + 1) 6= AD(t) then

21: if
LQ(c, t + 1)

OQ(t)
> η,∀ t = t − T + 1, . . . , t then

22: if LQ(c, t + 1) > hn then
23: if rand ≤ psn+1 then
24: AD(t + 1)← AD(c, t + 1)
25: OQ(t + 1)← LQ(c, t + 1)
26: Update hn
27: if concurrent move then
28: sn← sn + 1
29: else
30: sn← 0
31: end if
32: end if
33: end if
34: end if
35: end if
36: end for

(Line 13), LQ(c, t + 1) is set to zero (Line 14), and inner
and middle for-loops are immediately exited (Line 15). At the
end of the middle for-loop, the final value of AD(c, t+1) and
LQ(c, t + 1) for c-th combination at time t + 1 is available.

The value of AD(t+1) is updated to AD(c, t+1) (Line 24),
and OQ(t + 1) is replaced with LQ(c, t + 1) (Line 25), if four
if-conditions are satisfied. The first if-conditions checks if the
list of access devices in AD(c, t + 1) is different from AD(t)

(Line 20). The expected gain defined as
LQ(c, t + 1)

OQ(t)
should

exceed threshold η for the past T thresholds in the second
if-condition (Line 21). Here T represents the frequency of
measurement. Since nodes can switch between access devices
to selfishly increase their link quality, there is a possibil-
ity that some nodes will keep on switching without reach-
ing an equilibrium. A hysteresis parameter hn is introduced
for achieving convergence by dampening oscillations. This
parameter hn denotes the dependence of the access device
switching to the history of past switches made by the node n.
The value of hn is updated according to some hysteresis
policy (Line 26). For example, if we have access devices
classified into multiple classes, e.g., throughput-fair, time-
fair, proportional-fair, etc., the value of hn for a specific
class is the achieved link quality prior to leaving that class.
For node n to re-associate to an access device in this class,
the value of LQ(c, t + 1) should be greater than hn (Line 22).
If the access devices are not categorized into multiple classes,
we can assume that this condition is always satisfied.

There is a possibility that the nodes concurrently switch
to the same access device. This will result in lower link
quality as expected. To minimize concurrent switches, nodes
switch probabilistically with probability p < 1 (Line 23).
The parameter p is dependent on network congestion and
acts in the same manner as the 802.11 contention window
mechanism. When nodes switch simultaneously to the same
access device (Line 27), the value of switching parameter sn
is incremented by 1 (Line 28). Otherwise (Line 29), the value
of sn is set to a null value (Line 30).

D. ALGORITHMIC COMPLEXITY
The algorithmic complexity of Algorithm 1 is computed in
two different ways in this sub-section; floating-point opera-
tions (flops) and Big-O notation.

1) FLOP COUNT
Each real floating-point operation is defined as a flop. For
computing the number of flops consumed by Algorithm 1,
one flop count is consumed for each operation, including
arithmetic operations (addition, subtraction, multiplication,
division), assignment operation, logical comparison, and
addition or removal of an element from a set [42].

In Line 1, the set AD(t + 1) is replaced with AD(t). This
would require popping already stored elements in AD(t + 1)
and inserting elements from AD(t) to AD(t + 1). In the worst
case, the already store elements in AD(t + 1) would be Dn,
and the elements to be inserted into AD(t + 1) would also
be Dn. This means that Line 1 will take a maximum of 2Dn
flops. Since OQ(t + 1) is a single floating-point number and
is replaced by OQ(t), Line 2 will consume only one flop.
All possible binary combinations of length Dn that satisfy
constraint C2 are computed and assigned to Cn. In the worst
case, the combinations of interest would be all 2Dn combi-
nations, except the combination with all zeros. Line 3 will,
therefore, utilize 2Dn −1 flops to compute all possible binary
combinations and 2Dn − 1 flops to assign these combinations
to Cn.
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There are three nested for-loops in Algorithm 1. The inner
for-loop (Line 10 to Line 17) uses two flops in Line 10 for
initializing p (for the first iteration) or incrementing p (for
remaining iterations), and checking if p ≤ Pn. Seven flops
are used in Line 11 to perform seven logical comparison
operations. In Line 12, five flops are used to perform an
assignment operation and four arithmetic operations. As the
else-condition from Line 13 to Line 15 consumes fewer flops
than the if-condition from Line 11 to Line 12, the number of
flops consumed by the else-condition is ignored. Since the
inner for-loop is repeated Pn times, a total of 14Pn flops are
consumed by this loop.

Similarly, the middle for-loop (Line 7 to Line 19) uses
two flops for Line 7. One flop is used each by Line 8 and
Line 9 for logical comparison and adding an element to set
AD(c, t + 1), respectively. As the middle for-loop also con-
sists of the inner for-loop and iterates Dn times, the total
number of flops consumed by the middle for-loop would be
(4+ 14Pn)Dn.
The outer for-loop (Line 4 to Line 36) uses two flops in

Line 4 to increment and compare if loop index c is still in Cn.
One flop each is used by Line 5 and Line 6 to initialize
LQ(c, t+1) with a null value and AD(c, t+1) with an empty
set, respectively. A comparison of two sets AD(c, t + 1) and
AD(t) is performed in Line 20. Since this is an element-by-
element comparison, the worst-case scenario will result in
Dn element-by-element comparisons, thus, utilizingDn flops.
Two flops are used in Line 21 for an arithmetic operation and
a comparison operation. One flop each is used by Line 22 and
Line 23 to perform a comparison operation. To update the
value of AD(t + 1) in Line 24, at maximum Dn elements will
be removed, and Dn elements will be added. This will result
in 2Dn flops being used. One flop is used to update the value
of LQ(t + 1) in Line 25. Although hysteresis and concurrent
move are discussed in Line 26 and Line 27, the hysteresis
policy could vary, as well as the strategy to detect concurrent
move. A detailed discussion of these policies is not carried
out in this paper. For complexity analysis, we assume that
Line 26 uses α flops, and Line 27 uses β flops. The body of
if-condition in Line 28, as well as the body of else-condition
in Line 30, each uses one flop. Therefore, we will count only
one flop being utilized by both of these lines, as only one of
these lines would be executed in an iteration. As discussed
earlier, the length of Cn could be at most 2Dn − 1, the outer
for-loop will also iterate a maximum of 2Dn − 1 times. The
number of flops thus consumed by outer for-loop would then
be (10+ α + β + 7Dn + 14PnDn)(2Dn − 1). Adding to it the
2Dn+1+2(2Dn−1) flops consumed by Lines 1 to 3, the total
number of flops used by Algorithm 1, FA1, are:

FA1 = (10+ α + β + 7Dn + 14PnDn)(2Dn − 1)

+ 2Dn + 1+ 2(2Dn − 1) (18)

FA1 ≈ (α + β + 7Dn + 14PnDn)(2Dn − 1) (19)

In Line 3 of Algorithm 1, the binary combinations of
interest are those with the number of ones less than or equal

to Mn. The total number of these combinations of interest,

represented as Z , can be computed as Z =
Mn∑
k=1

Dn!
(k!(Dn − k)!)

,

and FA1 can then be written as:

FA1 ≈ (α + β + 7Dn + 14PnDn)(Z ) (20)

Equations (19) and (20) indicate that flops consumed by
Algorithm 1 increase exponentially as the number of access
devices, i.e., Dn increases. Exponential algorithms do not
generally work very well for larger inputs. For the case where
multihoming is not allowed, nodes can connect only to one
access device, resulting in Z = Dn. This would ensure that
the flop count does not increase exponentially, but cubically.
For such a case, the flop count FA1 can be stated as:

FA1 ≈ (α + β + 7Dn + 14PnDn)(Dn) (21)

For the scenario of hybrid WiFi and LiFi indoor network,
where nodes have access to only two access devices and
can connect to a maximum of one access device at a time,
i.e., Mn = 1, the flops consumed becomes linear. With no
hysteresis policy and no detection of concurrently moving
nodes to the same access device, FA1 would be given as:

FA1 ≈ (14+ 28Pn)(2) (22)

FLiFi−WiFi ≈ 56Pn (23)

2) BIG-O NOTATION
We have three nested for-loops in Algorithm 1. The outer
for-loop runs from 1 to 2Dn − 1, the middle for-loop runs
from 1 to Dn, and the inner for-loop runs from 1 to Pn.
In Big O notation, the algorithmic complexity is exponential,
i.e., O(2Dn × Dn × Pn). For the case of no multihoming,
the outer for-loop runs from 1 to Dn, and the complexity
reduces to cubic, i.e., O(D2

n × Pn). For the case of hybrid
WiFi and LiFi network with no multihoming (Dn = 2),
the complexity is linear, i.e., O(Pn).

E. GAME-THEORETIC ANALYSIS
In our proposed algorithm, a client will always select access
devices with maximum overall link quality. Since there is
only one-hop, we can assume that the proposed algorithm
will always select the most optimal access devices and is
optimal from the client’s point of view. From the network’s
point of view, the allocation might be sub-optimal, but there
is no feedback from the network to the client, and we cannot
evaluate optimality from the network’s point of view.

Another approach is to perform a game-theoretic analysis
of such distributed algorithms. A scenario where individual
nodes locally decide to maximize link quality in a fully dis-
tributed fashion, andwithout any intervention from other enti-
ties, could be modeled as a non-cooperative game. For such
a game, the set of players is the set of nodes, and the set of
strategies is the set of access devices. Such a non-cooperative
game converges to Nash Equilibrium if each player considers
its selected strategy to be optimal given the choices of all
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other players, that is, it cannot unilaterally improve its payoff
by changing strategies.

Algorithm 1 is guaranteed to converge to Nash
Equilibrium for any combination of access devices
(Theorems 1 - 3, [43]). In the case of time-fair access
devices, the average Pareto-efficiency gain (average through-
put improvement per client) between a non-Pareto-optimal
Nash profile from Algorithm 1 and a Pareto-dominant profile
is bounded by (Theorem 6, [43]): 2, if N ≤ D

N + D
N

, if N ≥ D
(24)

For proportional-fair access devices, the same average
Pareto-efficiency gap is bounded by (Theorem 7, [43]): 2 · (1+ ln(N ), if N ≤ D

N + D
N
· (1+ ln(N )), if N ≥ D

(25)

IV. LiFi CHANNEL ANALYSIS
Before performing experimentation, we analyze the LiFi
channel in this section for developing a detailed understand-
ing of such a channel at different heights, distances, and
orientations. We consider a LiFi channel model, as shown
in Figure 1. We assume no interference from other light
sources in such a scenario and no reflecting objects. The
signal received at the node from LiFi AP is made up only
of the Line-of-Sight (LoS) component.

FIGURE 1. LiFi channel model.

We consider a similar channel model and channel parame-
ters for our analysis, as proposed in [20]. We consider an LoS
signal received from LiFi AP at the photodetector on the node
lying on the ground. A field angle defines the area where the
lamp could radiate 10% of its maximum luminous intensity,
shown with a blue circle. The beam angle defines the area
where the lamp radiates at least half (50%) of its maximum
luminous intensity, shownwith a yellow circle.We define this
half-intensity radiation angle as 81/2.
We further define two other angles: the angle of

irradiance (φ) and the angle of incidence (ψ). The angle of
irradiance is the angle with respect to the perpendicular axis

of AP, and the angle of incidence is the angle with respect to
the perpendicular axis of the node. We also define the height
between the AP and the ground as height h, and the distance
between the AP and the node as d .We calculate the distance d
by using Pythagoras’ theorem on height h and the horizontal
distance d0 between the center point of the light source and
the photodetector at the node.

The Lambertian emission order m is calculated as m =
−ln 2 / ln (cos81/2). We define optical filter gain as gf ,
n as the refractive index, Apd as the physical area of the
photodetector, and9max as the semi-angle of the field of view
of the photodetector. The optical concentrator gain gc(9) is
then given as:

gc(9) =


n2

sin2(9max)
0 ≤ 9 ≤ 9max

0 9 > 9max

(26)

The LiFi channel in (10) can be defined as:

HLiFi =
(m+ 1)Apd

2πd2
cosm(φ)gf gc(ψ) cos(ψ) (27)

For LiFi channel analysis, we consider the parameters as
defined in Table 3. We analyze the LiFi channel by evaluating
the channel SNR and data rate per node by varying angle of
irradiance (Figure 2), angle of incidence (Figure 3), and using
different light sources with different half-intensity radiation
angles (Figure 4). In all three analyses, we also vary the
distance d between the AP and the node, and observe that
SNR decreases with increasing distances. This is obvious
because signal power reduces over distance, ultimately reduc-
ing the SNR. As the data rate is directly proportional to SNR,
the data rate per node also reduces. We use (9) to calculate
the bandwidth from the SNR, assuming that the LiFi AP uses
Time Division Multiple Access (TDMA), and the bandwidth
is equally divided among eight users.

TABLE 3. LiFi channel analysis parameters.

Figure 2 shows that the SNR and data rate decreases with
an increasing angle of irradiance φ. The increasing value
of φ corresponds to moving the node away from the center
of the light source. The angle of incidence ψ is kept 0◦,
which means the receiver on the node is directly facing the
light source. The light source considered for this result has a
half-intensity radiation angle 81/2 of 60◦.

In the next analysis in Figure 3, we consider the same light
source with 81/2 = 60◦, with the node lying on the center
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FIGURE 2. Calculated SNR and data rate per node by varying φ and d, with ψ = 0◦ and 81/2 = 60◦.

FIGURE 3. Calculated SNR and data rate per node by varying ψ and d, with φ = 0◦ and 81/2 = 60◦.

FIGURE 4. Calculated SNR and data rate per node by varying 81/2 and d, with φ = 0◦ and ψ = 0◦.

spot of the coverage area of the light source, i.e., φ = 0◦.
Here, we vary the angle ψ , which corresponds to rotating the
receiver at the node, and observe that the signal SNR and data
rate decreases with increasing values of ψ .

In the last analysis shown in Figure 4, both φ and ψ
equals 0◦. This means the receiver at the node is directly
facing the light source and is placed at the center of the
light coverage area. However, we use different light sources,
having different 81/2 values. With light sources having
smaller coverage angles, the light is more concentrated in the

coverage area, providing better SNR and data rates. As the
light coverage area increases, i.e., 81/2 becomes larger, both
SNR and data rate reduces.

V. PROOF OF CONCEPT: NETWORK EMULATION BASED
EXPERIMENTATION
This section presents some network emulation based exper-
imentation for proof of concept of the proposed algorithm.
The network emulation based setup and obtained results are
explained in the following sub-sections.
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FIGURE 5. Hybrid WiFi and LiFi network emulation experimentation setup.

A. SETUP
The network emulation setup considered is shown in Figure 5.
The setup has a single WiFi AP and eight LiFi APs, with one
LiFi AP placed in each room. The yellow cone shows the
coverage area of a LiFi AP, whereas the pink oval shows the
WiFi AP’s coverage area. Three nodes are placed under each
LiFi AP, whereas a single WiFi AP covers all nodes. Such
a network emulation setup is considered for a typical office
corridor with eight rooms. For simplicity, we have assumed
that all the nodes are stationary. The network emulation setup
parameters are summarized in Table 4.

TABLE 4. Network emulation setup parameters.

To emulate such a network, Mininet [44] network emulator
has been used. Mininet provides virtual spaces for nodes
using Linux kernel API and configures various link param-
eters to emulate the described setup. For proof-of-concept,
both WiFi and LiFi links are modeled using TCLink class
in Mininet. The LiFi link bandwidth available at each node
is considered to be constant at 20 Mbps, with a 40 msec
link delay. The link bandwidth and delay from the WiFi AP
are assumed to be a function of distance. The IoT nodes

in Room 1 and Room 5 receive a WiFi link bandwidth
of 54 Mbps with 20 msec delay to the WiFi AP, nodes
in Room 2 and Room 6 receive a WiFi link bandwidth
of 36 Mbps with 30 msec delay to the WiFi AP, whereas
nodes in Room 3 and Room 7 receive a WiFi link bandwidth
of 18 Mbps with 40 msec delay to the WiFi AP. For nodes in
Room 4 and Room 8, the WiFi connection is assumed to be
very bad, with SNR less than the decodability threshold φSNR.

To evaluate QoS-based network performance, User Data-
gram Protocol (UDP) flows of sizes 1 to 13 Mbps have
been admitted at each node. For results, each experiment is
repeated ten times, where the plotted data-point represents the
mean value, and the error bar indicates the standard deviation.
To calculate delays between APs and nodes, Internet Control
Message Protocol (ICMP) is used, whereas iperf utility is
used for generating the UDP traffic.

B. RESULTS
We have compared the results of our Proposed Methodol-
ogy (PM), based on Algorithm 1, with AP techniques used
conventionally. These techniques include Best SNR (B-SNR)
and Maximum Bandwidth (M-BW). The PM aims to mini-
mize the delay with throughput and SNR as QoS constraints.
The B-SNR technique opts for the AP, offering the best SNR.
On the other hand, the M-BW technique chooses AP offering
the maximum link bandwidth.

For the first analysis, the throughput QoS constraint is
evaluated. If the flow admitted at a node is received with
the same throughput at the AP, the node QoS is marked
as satisfied, otherwise, the QoS is marked as unsatisfied.
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Figure 6 evaluates the percentage of nodes whose QoS is
satisfied with increasing flow size admitted at each node.
With the increasing sizes of flows being admitted, network
congestion also increases, making it challenging to satisfy
each node’s throughput QoS requirement. Such a behavior
can be seen in Figure 6, where the percentage of nodes with
QoS satisfied decreases for all techniques as the flow size
increases. The behavior for all techniques stays the same till
the flow size reaches 3 Mbps, with all techniques satisfying
QoS of 100% of nodes. As the PM selects AP based on
throughput QoS constraint, it outperformsB-SNR andM-BW
techniques for flow sizes greater than or equal to 7 Mbps.
The M-BW technique performs the worst because of the
congestion caused by all nodes selecting the WiFi AP, and
not utilizing the LiFi link at all.

FIGURE 6. Percentage of QoS satisfied nodes.

The average throughput achieved per node is compared for
all three techniques in Figure 7. With PM performing the best
for satisfying throughput QoS constraint, the technique is also
expected to achieve the highest average throughput per node.
Considering an ideal network with no limitation of capacity,
the average throughput per node would always be equal to
the admitted flow size. This is shown with a red dotted line

FIGURE 7. Average throughput per node.

in Figure 7. As the networks with infinite capacities do not
exist in reality, the average throughput per node decreases
as network congestion increases. A trend similar to Figure 6
can be seen in Figure 7, with all techniques providing almost
an ideal average throughput per node till the admitted flow
size per node is less than or equal to 5 Mbps. When the
flow size increases beyond 5 Mbps, the PM achieves a higher
average throughput per node compared with B-SNR and M-
BW. Network congestion for PM occurs for flow sizes greater
than or equal to 9 Mbps, as shown by the PM curve following
the ideal curve till 7 Mbps. For B-SNR and M-BW, this
congestion occurs earlier at 7Mbps and 5Mbps, respectively.
After congestion occurs in the network, the achieved average
throughput per node curve starts to flatten. A drop in through-
put is observed for M-BW beyond 7 Mbps. This behavior
indicates the presence of severe network congestion. As the
size of admitted flows in a congested network increases,
the network becomes further congested, resulting in packet
losses. The result is lesser packets received at the AP and a
lower throughput between the node and the AP. This behavior
is not yet visible in PM and B-SNR. However, if experiments
would be conducted beyond 13 Mbps, congestion will occur
for these two techniques as well at a certain data rate.

Considering the SNR and throughput, the objective of the
PM is to minimize link delay. The average delay per node
is evaluated and compared in Figure 8. It can be seen that
the PM offers the lowest delay and is very close to B-SNR.
The reason for such a behavior is lower link delays being
considered for links offering better SNR. Although in other
network topologies, it is expected that the PMwill outperform
B-SNR. AsM-BW does not give any consideration to the link
delay, it has performed the worst. As the flow size increases
beyond 9 Mbps, severe network congestion in M-BW starts
to drop all the ICMP packets, and the evaluation of delay is
no more possible. This is represented by the M-BW curve
extending beyond the visible y-axis in Figure 8.

FIGURE 8. Average delay per node.

The number of nodes connected to WiFi and LiFi APs
is compared in Figure 9. As determined by Algorithm 1,
the nodes distribution among WiFi and LiFi APs varies
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FIGURE 9. Nodes distribution among WiFi and LiFi APs.

in PM with different admitted flow sizes. As there is only
a single WiFi AP, the WiFi link would quickly become
congested with increasing flow sizes. Therefore, more nodes
would associate with LiFi APs at higher admitted flow sizes
in PM. Around six or more nodes connect to WiFi AP at
lower admitted flow sizes, whereas only four nodes connect
to WiFi AP at flow sizes greater than 9 Mbps in PM.With the
assumption of nodes directly under the LiFi AP, and consid-
ering no blocking and shadowing, nodes always experience
better SNR from the respective LiFi AP, as compared to the
WiFi AP. Therefore, all nodes are associated with LiFi APs
in B-SNR. In the case of M-BW, all nodes receive band-
width of 20 Mbps from their respective LiFi APs. Nodes in
Room 1 and Room 5 receive a bandwidth of 54Mbps over the
WiFi link, whereas the nodes in Room 2 and Room 6 receive
a bandwidth of 36 Mbps. The bandwidth received over the
WiFi link is less than 20 Mbps for the remaining nodes.
Therefore, the twelve nodes in Room 1, Room 2, Room 5, and
Room 6 connect to the WiFi AP. At the same time, the other
twelve nodes use the LiFi link. As the same number of nodes
connect to both LiFi andWiFi APs, the black-lines in Figure 9
indicating the number of nodes connected to LiFi AP and
WiFi AP are overlapping.

VI. HARDWARE EXPERIMENTATION
The proof of concept using network emulation based exper-
imentation in Section V has shown that our proposed algo-
rithm outperforms other conventionally used access device
selection mechanisms in today’s end devices. In this section,
similar hardware experimentation is performed to evaluate if
the PMwould still outperform the other techniques. The setup
and results for such a hardware experiment are explained in
this section.

A. SETUP
Due to hardware limitations, the setup is not as extensive
as the network emulation setup. In this setup, we consider
a network of four IoT nodes, two LiFi APs, and oneWiFi AP.
Raspberry Pi 4 and 3B+ are being used as IoT nodes, with a

built-in WiFi module and an external USB based LiFi mod-
ule. As shown in Figure 10 setup at aeroLiFi,1 two IoT nodes
are placed under each LiFi AP, with a distance of 130 cm
between them. The LiFi setup used is the LiFi-XC generation
released by PureLiFi in 2018. Each LiFi-XC system consists
of an access point and a USB dongle receiver, supporting a
full-duplex link rate of 43 Mbps, and the ability to support
eight users at a time, using time-division multiple access [45].
However, the received average data rate from experimenta-
tion in our setup is observed to be around 25 Mbps, which is
further divided among two users. The hardware experimenta-
tion setup parameters are summarized in Table 5.

FIGURE 10. Placement of IoT nodes under LiFi AP.

TABLE 5. Hardware experimentation setup parameters.

The experimental setup, shown in Figure 11, is split into
two rooms. The first room has a WiFi AP and a LiFi AP,

1[Online]. Available: http://aerolifi.com/, accessed in December 2020
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FIGURE 11. Hybrid WiFi and LiFi hardware experimentation setup.

whereas there is only a LiFi AP in the second room. All the
APs used support Power-over-Ethernet. Therefore, a PoE+
switch is used to power the access points. A PoE+ switch is
used instead of a PoE switch because LiFi APs require more
power than provided by the PoE standard. We have also used
another Raspberry Pi to act as an iperf server and a DHCP
server. Both the WiFi and LiFi interfaces of the IoT nodes are
in the same subnet.

We use Balena2 IoT cloud platform to deploy Linux-based
containerized applications on Raspberry Pi devices. For the
Raspberry Pi server application, we deployed two Docker3

containers, one acting as a DHCP server, and the other as
an iperf server. The Raspberry Pi client application also
consists of two Docker containers, one for loading the ker-
nel module of PureLiFi LiFi-XC drivers, and the other
container is used as an iperf client. Although the selected
TP-Link EAP115-Wall WiFi AP provides up to 300 Mbps
with 802.11n mode, we used the 802.11 b/g mixed mode with
a single channel of 20MHz bandwidth to provide a maximum
data rate of 54 Mbps, similar to our network emulation setup.

Similar to the network emulation setup, flow sizes of 1 to
13 Mbps are admitted to evaluate the network performance.
Like network emulation analysis, each data point shows the
mean of repetition of ten experiments, and the error bar
represents the standard deviation. Similarly, iperf utility and
ICMP packets are used to generate UDP traffic and measure
the delay between the IoT node and the server, respectively.

B. RESULTS
We perform a similar network evaluation in hardware experi-
mentation as in our network emulation setup. Due to different
network size, topology, and link parameters, we do not expect
to have exactly similar results, but similar trends. The PM
tries to satisfy the QoS constraints of data rate and SNR
while minimizing the delay. In B-SNR, nodes connect to the

2[Online]. Available: https://www.balena.io/, accessed in December 2020
3[Online]. Available: https://www.docker.com/why-docker, accessed in

December 2020

AP offering the best SNR, while in M-BW, nodes connect
based on the maximum link bandwidth.

First, the percentage of nodes that satisfy the QoS con-
straint of throughput with increasing flow size inserted per
node is evaluated. Till 7 Mbps flow size admitted per node,
no congestion occurs for any of the techniques. This is shown
in Figure 12, with all techniques satisfying QoS requirements
for 100% of nodes until 7 Mbps. The congestion occurs
for all techniques as flow size increases beyond 7 Mbps.
However, AP selection based on throughput QoS constraint
in PM outperforms B-SNR and M-BW by better satisfying
QoS requirements for all admitted flow sizes beyond 7Mbps.
The M-BW and B-SNR techniques perform nearly the same
and are unable to satisfy the QoS requirements of any node at
11 Mbps and beyond.

FIGURE 12. Percentage of QoS satisfied nodes.

As the QoS satisfied is based on the throughput constraint,
the average throughput achieved per node would have a simi-
lar trend, as shown in Figure 13. The performance of an ideal
network with infinite capacity and no congestion is shown
with a red-line. As also seen in Figure 12, no congestion
occurs until 9 Mbps for any of the techniques. The PM
outperforms other techniques by providing a higher average
throughput per node beyond 9 Mbps. B-SNR and M-BW
perform similarly at flow sizes greater than 9 Mbps.

The average delay experienced per node is shown
in Figure 14. Our PM outperforms other techniques at lower
flow sizes as the network is not congested, and both LiFi and
WiFi APs can satisfy QoS constraints. Therefore, PM selects
the AP with the minimum delay. However, as the network
congestion increases, the delay of PM becomes greater than
M-BWbecause PM prioritizes the QoS constraint of through-
put over the delay. The AP, which satisfies the QoS constraint
is selected by PM, even if it has a higher delay than the other
AP. For M-BW, the nodes in Room 1 connect to the WiFi AP,
and the nodes in Room 2 connect to the LiFi AP, the average
delay experienced at the nodes is the least because the nodes
are always connected to the AP in the same room, i.e., smaller
distance. Finally, for B-SNR, the delay experienced is the
most because all nodes connect to their respective LiFi APs,
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FIGURE 13. Average throughput per node.

FIGURE 14. Average delay per node.

without utilizing the WiFi link, thus causing more congestion
in the LiFi network. This congestion of the LiFi network
and non-utilization of the WiFi network results in the highest
average delay per node for B-SNR.

The nodes connected to LiFi and WiFi APs for B-SNR
and M-BW are independent of the flow sizes, as shown
in Figure 15. As the nodes are lying directly under the
LiFi AP with no blockage, shadowing, and mobility, the B-
SNR nodes would always connect to the LiFi AP, as the
SNR received over the LiFi channel would always be better
than the WiFi channel. For M-BW, it has been observed
from the experimental evaluation that the WiFi link band-
width is greater than LiFi AP for nodes in Room 1. These
nodes are always connected to the WiFi AP. Since nodes
in Room 2 have a greater distance from the WiFi AP, they
perceive a lower data rate from WiFi AP than LiFi AP due
to different modulation and coding scheme (MCS), code rate
selection, and signal strengths. Therefore, in M-BW, the IoT
nodes in Room 2 will always connect to the LiFi AP. Since
two nodes connect to both LiFi AP and WiFi AP in M-BW,
the black-lines indicating the number of nodes connected to
each AP are overlapping. In the PM, the nodes connected
to LiFi and WiFi AP vary as the flow size changes. The
nodes are dynamically allocated to the AP best satisfying the

FIGURE 15. Nodes distribution among WiFi and LiFi APs.

QoS constraint of throughput, while minimizing delay.
As flow size increases, the single WiFi link becomes con-
gested, resulting in more nodes connecting to LiFi APs at
higher flow sizes. On average, more nodes connect to the
WiFi AP till flow size of 9 Mbps, with just one node con-
necting on average to the WiFi AP beyond 9 Mbps.

VII. DISCUSSION
The outcome of the five research questions, defined in
Section II-A, are discussed in this section. This is followed by
a comparison of results obtained from network emulation and
hardware experimentations in Section V-B and Section VI-B,
respectively.

RQ1 aimed to formulate a client-based access device
selection algorithm considering client-specific QoS require-
ments for access device selection in B5G IoT net-
works. Such an algorithm is formulated in Algorithm 1.
As Algorithm 1 works for multi-RAT and multihoming sce-
narios, RQ2 is also fulfilled.

RQ3 intended to evaluate the computational efficiency
and convergence of the algorithm. The algorithmic com-
plexity of the proposed algorithm is evaluated to be expo-
nential. However, the complexity reduces to cubic in the
absence of multihoming and reduces to linear when only
two access devices are considered. Regarding convergence,
the algorithm converges toNash Equilibriumwith the average
Pareto-efficiency gap bound defined by (24) and (25).

RQ4 aimed to analyze the LiFi channel data rate and
SNR for different configurations. The outcome of this anal-
ysis shows a decrease in SNR and data rate with increas-
ing distance between the AP and the receiver. LiFi channel
is analyzed by varying the angle of irradiance (Figure 2),
angle of incidence (Figure 3), and half-intensity radiation
angle (Figure 4).

The RQ5 targeted evaluating the performance of the pro-
posed algorithm compared to other access device selection
techniques. The proposed algorithm is compared with two
other access device selection techniques; B-SNR and M-BW.
Using network-emulation and hardware experimentation
setups, it is shown that the proposed algorithm outperforms

219834 VOLUME 8, 2020



M. Asad et al.: Client-Centric Access Device Selection for Heterogeneous QoS Requirements in Beyond 5G IoT Networks

the other two techniques by providing a better QoS satisfied
ratio, a higher average throughput, and a lower average delay.
The proposed algorithm improves the QoS satisfied ratio
by up to 32.66% in network emulation and up to 50% in
hardware experimentations.

Comparing the results of network emulation and hard-
ware experimentations, it can be seen that PM outperforms
B-SNR andM-BW for QoS provisioning as well as provides a
higher average throughput per node in both setups. However,
network congestion and a decrease in QoS satisfied ratio
occur earlier at 7 Mbps in network emulation than 9 Mbps in
hardware experimentation. This is because of the difference
in total system bandwidth between network emulation and
hardware setups. Network emulation setup has a total sys-
tem bandwidth of 534 Mbps for 24 nodes (22.25 Mbps per
node), whereas hardware setup has a total system bandwidth
of 140 Mbps for four nodes (35 Mbps per node). As a lower
per node bandwidth is available in network emulation setup,
results show earlier congestion. The PM provides the lowest
per node delay in network emulation results for all flow sizes.
The delay per node for PM is the lowest till 7 Mbps for
hardware experimentation, but becomes greater than M-BW
at 9 Mbps and beyond. However, since this difference in the
delay between PM and M-BW is insignificant and is less
than 1 msec, the difference can be neglected. The magnitude
of delay of around 40 msec in network emulation and around
4 msec in hardware experimentation is incomparable because
of different network topology and different link delays in both
setups. An exactly same percentage of nodes associate with
WiFi AP and LiFi AP for B-SNR andM-BW in both network
emulation and hardware experimentation setups, as the AP
selection in these techniques is independent of flow size and
network size. In PM, when the flow size increases beyond
9 Mbps, four out of 24 nodes (16.67%) and one out of
four nodes (25%) connect to WiFi AP in network emulation
and hardware experimentations, respectively. This shows a
consistent behavior of less number of nodes connecting to
WiFi AP at higher flow sizes. However, the exact percentages
should not be compared due to different network sizes and
WiFi link load in both setups. The same 54 Mbps WiFi link
is shared between 24 nodes in the network emulation setup,
and among only four nodes in the hardware experimentation
setup.

VIII. CONCLUSION
In this paper, we presented a client-based access device selec-
tion mechanism for QoS provisioning in Beyond 5G IoT net-
works while considering multiple-RATs and heterogeneous
QoS requirements of IoT nodes. In contrast to convention-
ally available access device selection approaches, the pro-
posed technique allowed IoT nodes to specify their own
QoS requirements. A novel algorithm is proposed for such
an access device selection mechanism with cubic complexity
in the absence of multihoming and linear-complexity when
only two access devices are used. The game-theoretic analysis
showed that such a non-cooperative game is guaranteed to

converge to Nash equilibrium. The proposed algorithm’s per-
formance is evaluated in a hybrid WiFi and LiFi IoT network
scenario using Mininet based network emulation and hard-
ware experimental evaluations. The comparison with other
conventional access device selection techniques, including
B-SNR and M-BW, shows that our proposed algorithm out-
performs these techniques.

As future work, experiments with multipleWiFi APs could
be considered, in addition to multiple LiFi APs. The AP
selection for mobile nodes with various mobility models
would also be an interesting topic to investigate. As energy
efficiency is a concern for IoT nodes, another possible future
work direction could be AP selection in hybrid WiFi and
LiFi networks while jointly maximizing energy efficiency
and QoS.
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