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ABSTRACT The uncertainty of worn parts is a challenge for the remanufacturing process. Therefore,
an integrated optimization decision method for remanufacturing process based on conditional evidence
theory under uncertainty is proposed. On the basis of production history data of remanufacturing enterprises,
prior information of the remanufacturing process is generated, and the prior evidence is constructed. Then,
depending on the relationship between the parameters and the processing technology, the information of
detection and evaluation of parts’ characteristic parameters is transformed into evidence. The prior evidence
and the evidence are fused corresponding to the parameter value. Then, the influence law among production
data, characteristics of worn parts and technological process in remanufacturing is revealed. The fusion result
has a one-to-one correspondence with the processing technology of worn parts. According to the decision
rules, the optimal processing technology of worn parts can be obtained by judging the fusion results. The
statistical data of remanufacturing worn crankshafts shows that the quality improved by 2.5%, the production
cost reduced by 5.6%, and the time saved by 7.3%. This study provides theoretical and methodological
support for the optimization of remanufacturing production.

INDEX TERMS Conditional evidence theory, information fusion, remanufacturing, uncertainty.

I. INTRODUCTION
With the rapid development of global economy, the contra-
diction between economic growth, environment and energy
is increasingly prominent [1]. Remanufacturing has been rec-
ognized as an important way for the sustainable development
of manufacturing industry. It is an important technology for
reducing energy conservation and emission, resource con-
sumption in the current circular economy and green man-
ufacturing field [2]. Remanufacturing technology is to take
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the worn part as the workpiece, to obtain the remanufactured
parts after remanufacturing process [3], and the requirement
is that the quality of the remanufactured products is not
lower than the original products. Different from original
manufacturing, the remanufacturing worn parts have greater
uncertainty [4], which makes the remanufacturing process
have more difficulties. Because of the above reasons, it is a
challenge to control remanufacturing quality, and to optimize
remanufacturing production management benefits [5].

In order to improve the production control and manage-
ment of remanufacturing process, many experts have studied
that:

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 221119

https://orcid.org/0000-0002-6656-1172
https://orcid.org/0000-0001-5999-3578
https://orcid.org/0000-0001-6298-7988
https://orcid.org/0000-0003-1625-6548


Z. Bao et al.: Integrated Optimization Decision Method for Remanufacturing Process

In terms of remanufacturing technology, the main aspects
of a holistic approach to assess and improve remanufacturing
processes were shown by Butzer [6]. An overall process
method for remanufacturing process planning of worn parts is
proposed by Kin [7], which includes some key steps such as
damage analysis of waste parts, selection of remanufacturing
repair process, remanufacturing process sequencing, risk and
reliability assessment of remanufacturing scheme. A reman-
ufacturing process technology that can restore the origi-
nal performance of the toque converters for passenger car
6-speed automatic transmissions is developed [8]. A reverse
engineering based approach is proposed to aid remanufac-
turing process for worn components [9]. The microstructure
formation in the near-net-shape tip-remanufacturing process
of SX superalloy is studied through LAM experiments and
simulation [10].

In remanufacturing process evaluation, a sustainability
evaluation of remanufacturing machining systems emergy-
based is proposed by Liu [11]. An uncertain remanufacturing
process routings model for used parts based on Graphi-
cal Evaluation and Review Technique network is studied
by Li [12]. Through a comprehensive study of more than
2000 engines of caterpillar remanufacturing company in the
UK, it is found that enhanced pre-treatment inspection can
improve remanufacturing efficiency [13]. The environmental
benefits and costs assessment model for remanufacturing
process under quality uncertainty is built by Liao [14]. The
data-driven ecological performance evaluation for remanu-
facturing process is built by Jiang [15].

In the aspect of multi-objective optimization of reman-
ufacturing process, an integrated model based on quality
function deployment, fuzzy linear regression and zero-one
goal programming is proposed by Zhang [16]. A mixed
integer optimization model to optimize the batch, route
and type of remanufacturing process from the perspec-
tive of cost is proposed by Kernbaum [17]. An optimiza-
tion model for remanufacturing process routes oriented
toward eco-efficiency is proposed by Peng [18]. There
are also many studies on remanufacturing process plan-
ning and scheduling, the multi-objective stochastic goal
programming model for more efficient remanufacturing pro-
cess is studied by Shakourloo [19]. The linear optimization
model to optimize the processing capacity, processing time
and processing equipment in the remanufacturing process
is established by Franke, and the optimization results are
verified by simulation technology [20]. The coupling mech-
anism of reassembly quality with uncertainty of remanufac-
tured parts is presented [21]; A cost-driven process planning
method for hybrid additive–subtractive remanufacturing is
proposed [22].

With the development of big data technology and knowl-
edge engineering, there are more and more researches on
comprehensive application of remanufacturing production
data for remanufacturing processing. An ontology-based
method for knowledge modeling for remanufacturing process
planning is proposed for leading to considerable time and

cost saving [23]. A hybrid method integrating blockchain and
case-based reasoning for remanufacturing process planning is
presented, which can take full advantage of the remanufactur-
ing knowledge by cross enterprises knowledge sharing [24].
The impact of human resources experience and its training
level on key process indicators, perceived quality of core, and
internal complexity of remanufactured metal-mechanic prod-
ucts is assessed [25]. A knowledge-based method for reman-
ufacturing process planning is proposed as part of the efforts
in upgrading eco-efficiency which also aims to improve the
efficiency of process planning and realize the inheritance and
evaluability of the process planning knowledge [26].

The above researches of remanufacturing process is stud-
ied from perspective of cost, quality, resources, environment
and other aspects [27], and many models are used to evalu-
ate the processing decision-making, optimize the processing
path, and improve the efficiency of remanufacturing pro-
cess [25]. However, due to the large uncertainty of worn
parts [28], it is difficult to describe the remanufacturing
process accurately and clearly by using the models [29].
The remanufacturing process is a step-by-step process. How
to apply the uncertainty characteristics of worn parts, opti-
mize the remanufacturing process, and improve the reman-
ufacturing efficiency is important for the remanufacturing
enterprises [30], [31]. At the same time, in view of the
advantages of evidence theory: (i) the required prior data is
more intuitive and easier to obtain than in the probability
reasoning theory; (ii) it can integrate a variety of data and
knowledge; and (III) it has the ability to directly express
‘‘uncertainty’’ and ‘‘unknown’’, which are expressed in the
mass function and retained in the process of evidence synthe-
sis [32]. The method of remanufacturing process optimiza-
tion based on conditional evidence theory is proposed. The
historical experience of remanufacturing is expressed in the
form of prior evidence, and it is combined with the evidence
corresponding to the worn parts’ parameter using conditional
evidence theory. The remanufacturing process is optimized
according to the fusion results. It provides theoretical and
methodological support for the optimization of remanufac-
turing production.

In order to achieve the above research objectives,
the remainder of this paper is organized as follows.
In Section 2, the integrated optimization method of reman-
ufacturing process is outlined. In Section 3 case application
is carried out using the proposed approach in this paper.
Finally, concluding remarks and discussions are summarized
in Section 4.

II. METHODOLOGY
The crack, fatigue and other damage forms of worn parts are
different, so theway of repair should be determined according
to the damage situation. To complete the remanufacturing
process of a worn part, it needs multiple stations, and each
station has different processing technology to choose, which
makes the decision of processing technology more complex.
At the same time, the repair process itself may bring new
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variables, resulting in temporary changes in the processing
technology, thus increasing the uncertainty and control diffi-
culty of the process. Due to the particularity of remanufac-
turing process, it will inevitably bring more complexity of
work arrangement, material buffer capacity, and processing
progress. It is one of the urgent problems to be solved in the
field of remanufacturing process. The theory of conditional
evidence is an effective method to deal with uncertain infor-
mation. Therefore, the conditional evidence theory is used
to solve the decision-making problem of remanufacturing
process integration optimization.

A. INTEGRATION OPTIMIZATION MODEL OF
REMANUFACTURING PROCESS
1) CONDITIONAL EVIDENCE THEORY
Suppose M =

∑
S⊆U

bSS and N =
∑
T⊆U

cTT are two indepen-

dent evidences on frame 2.5 =
∑

j=1,...,k
piFi is the prior evi-

dence on set2. The fusion steps and formulas of conditional
evidence theory are as follows [32]

1) The conditional consent of M ,N based on 5 is

α5(M ,N ) =
∑

S,T⊆2

bScTα0(S,T ) (1)

where,α5(S,T ) =

{
β5(S∩T )
β5(S)β5(T )

, β5(S) 6= 0 6= β5(T)
0 , other

β5(S) is the probability assignment functions based on
5.

2) The conditional product of M ,N based on 5 is

M ·5 N =
∑

S,C⊆U

bScTα5(S,T )(S ∩ T ) (2)

3) The conditional evidence combination of M ,N based
on 5 is

M ∗5 N =
M ·5 N
α5(M ,N )

(α5(B,C) 6= 0) (3)

M ∗5 N is the fusion result, if there are other evidences,
the above formula M ∗5 N can be used again to fuse other
evidences.

Based on the conditional evidence theory, we can generate
the prior information of remanufacturing process accord-
ing to the enterprise production history data, and construct
the prior evidence by using the prior information. Accord-
ing to the corresponding relationship between the parameter
characteristics and the processing technology of the worn
parts, the detection and evaluation information of the feature
parameters of the parts is transformed into the corresponding
evidence of the parameter values. Finally, the conditional
evidence theory is used to fuse the prior evidence and the
corresponding evidence of parameter value, and the fusion
result has one-to-one correspondence with the remanufactur-
ing processing technology of worn parts (Fig 1).

2) INTEGRATION OPTIMIZATION MODEL
In order to achieve the goal of remanufacturing pro-
cess optimization and maximize its production efficiency,
time, cost and dimensional tolerance should be considered
comprehensively.

The dimensional tolerance D is the weighted sum of each
part tolerance:

D =
n∑
i=1

ζDiDi (4)

where,Di is the dimensional tolerance, ζDi is the correspond-
ing coefficient, where i = (1, 2, · · · · · · , n) is the ith toler-
ance, and n is the total of measurements. The time tolerance
T includes the weighted sum of the processing time of each
station:

T =
m∑
i=1

ζTiTi (5)

where, Ti is the processing tolerance, ζTi is the corresponding
coefficient, i is the ith tolerance, where m is the total of
processing station. And the cost C includes the algebraic sum
of material cost of each station:

C =
m∑
i=1

ζCiCi (6)

where, Ci is the material cost tolerance, where ζCi is the
corresponding coefficient, i is the ith tolerance, and m is the
total of processing station. Then the overall optimization goal
is to take the minimum value:

P = T + D+ C (7)

When formula (8) takes the minimum value, it shows that
our process path is optimal. Due to the uncertainty of worn
parts, the complexity of processing technology and the diver-
sity of processing paths, it is difficult tominimize formula (8).
It is assumed that there exist k routes {F1,F2, . . . ,Fk} to
process the worn parts, and the processing route of a worn
part is determined by the parameters of the worn part. It is
assumed that there exist quantitative parameters αi ∈ Ui(i =
1, 2, · · · , r), and qualitative parameter βj ∈ Uj(j = r +
1, 2, · · · , p), where Ui is the value range of αi, and Uj is the
value range of βj.
Different worn parts adopt different machining paths

according to the different properties of parameter. The worn
parts should be processed using different processing route.

There exist k machining paths, recorded as set F1,F2,
. . . . . .Fk . The machining path Fl = {F1,F2, . . . . . .Fk} of a
worn part is a multivariable function of parameters. Suppose
the function is

f : U1 × U2 × . . .× Ur × Tr+1 × . . .× Tp
→ {F1,F2, . . . ,Fk} (8)

Suppose the parameter of a worn part is x ∈ U1 × U2 ×

. . .× Ur × Tr+1 × . . .× Tp.

f (x) = Fi (9)
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FIGURE 1. Method framework.

Formula (9) shows that worn part x is processed by route
Fl (l ∈ {1, 2, . . . k}).

Experienced technicians firstly evaluate and measure the
worn parts, and then select the appropriate processing path
according to the evaluation and measure results. After a long
time of accumulation of these processing experiences, it has
a positive guiding role for the subsequent of remanufacturing
process. Assume the historical processing experience is 4,
Under the condition 4, the functions (8) form is

f (x) = f (x|4) = Fl (10)

where j = 1, . . . , k and f (x|4) is considered as a fixed
condition function.

Deal to the uncertainty of the parameters and the complex-
ity of the process path, it is difficult to get the specific expres-
sion of the function f (), and it makes the remanufacturing
processing path difficult to optimal.

Conditional evidence theory can effectively deal with the
prior information and nonlinear problems. If the prior infor-
mation is regarded as the prior evidence, and the each param-
eter information of worn parts is considered as characteristic
parameter evidence; so the prior information and character-
istic parameter evidence can be effectively integrated using
conditional evidence theory. Thus the optimal remanufac-
turing process path can be obtained using the appropriate
decision method.

The block diagram of integrated optimization model of
remanufacturing process using conditional evidence theory
is shown in Figure 1.

Different remanufacturing processes constitute the identi-
fication frame 2 = {F1,F2, . . . ,Fk}. Firstly, historical data
(information in database and experience information) is trans-
formed into prior evidence 0. The parameters of the worn
parts are evaluated and measured, and then qualitative and
quantitative parameters αi(i = 1, . . . , r), βj(j = r+1, . . . , p)
are transformed into corresponding evidence according to

workers’ experience, which is recorded as Ci(i = 1, . . . , r)
and Bj(j = r+1, . . . , p). Finally, conditional evidence theory
is used for fusion, and then the remanufacturing process path
is selected (decision output).

B. IMPLEMENTATION STEPS
Suppose a batch worn part has n pieces of processing
history information and every worn part has 5 attributes.
C1,C2,C3 are quantitative parameters, and the value ranges
are U1,U2,U3 respectively. C4,C5 are qualitative parame-
ters, whose value range is {none, slight, medium, serious}.
According to the different parameter values and the restric-
tion of the processing conditions of the enterprise, there are
4 processing paths {F1,F2,F3,F4}.

The number of the processing paths F1,F2,F3 and F4 used
in historical data is nI, nII, nIII, nIV respectively. Then the
frame of the evidence theory is 2 = {F1,F2,F3,F4}. The
frequency of using route F1, F2, F3, F4 is:

PI = nI/n
PII = nII/n
PIII = nIII/n
PVI = nVI/n

(11)

Then, 0 = {Pi,PII ,PIII ,PIV } is a random number set, and
β0() is a confidence function based on 0, where β0() is the
prior evidence. According to the value range of parameters
C1,C2,C3,C4,C5, each value range can be divided into 4
different categories I, II, III and IV, as shown in Tab 1.

The range of quantitative parameter U1,U2,U3 is divided
into 4 parts without overlap (Tab 1), The second column
of Tab1 shows the optimal processing paths of different
categories. 

U11 ∪ U12 ∪ U13 ∪ U14 = U1
U21 ∪ U22 ∪ U23 ∪ U24 = U2
U31 ∪ U32 ∪ U33 ∪ U34 = U3
U41 ∪ U42 ∪ U43 ∪ U44 = U4

(12)
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TABLE 1. Parameters of worn parts.

[-2pt]

If a worn part’s parameter C1 ∈ U11, then it belong to
class I. If the parameter C1 ∈ U12, then it belong to class II.
If the parameter C1 ∈ U13, then it belong to class III. If the
parameter C1 ∈ U14, then it belong to class VI. C2 and C3 are
classified according to the same method.

Transforming quantitative parameters into evidence: The
construction method of mass function is illustrated using the
featureC1 as an example. The midpoint and length of the four
intervalsU11,U12,U13,U14 of featureC1 are δ11, δ12, δ13, δ14
and |U11|, |U12|, |U13|, |U14| respectively. The mass function
is determined according to the actual measured value of the
feature.

The mass function is depending on the actual measurement
value x of C1.

if x ∈ U11, m1(F1) = ηe
−
|δ11−x|
|U11| ,m1(2) = 1− m1(F1)

if x ∈ U12, m1(F2) = ηe
−
|δ12−x|
|U12| ,m1(2) = 1− m1(F2)

if x ∈ U13, m1(F3) = ηe
−
|δ13−x|
|U13| ,m1(2) = 1− m1(F3)

if x ∈ U14, m1(F4) = ηe
−
|δ14−x|
|U14| ,m1(2) = 1− m1(F4)

(13)

η ∈ [0, 1] is a variable parameter. m1(Fi) is the possibility
using Fi as the processing route, and m1(2) represent the
uncertainty of the process route Fi. C2,C3 are transformed
into evidence m2 and m3 using the same method.

Then transform the qualitative of a worn part into evidence.
If the qualitative C4 = ‘‘None′′, then it belongs to class I.
If the qualitative C4 = ‘‘Slight’’, then it belongs to class II. If
the qualitative C4 = ‘‘Medium’’, then it belongs to class III.
If the qualitative C4 = ‘‘Severe’’, then it belong to class VI.
C5 is classified according to the same method.

Suppose the number of worn parts with C4 = ‘‘None’’,
‘‘Slight’’, ‘‘Medium’’, ‘‘Severe’’ is nNone, nSlight , nMidium,
nSevere respectively.
Transforming qualitative parameters into evidence:
Convert C4 to evidence according to the following rules:

if C4 = ‘‘None′′, m4(F1) = nNone/n,
m4(2) = 1− m4(F1)

if C4 = ‘‘Slight ′′, m4(F2) = nSlighte/n,
m4(2) = 1− m4(F2)

if C4 = ‘‘Medium′′, m4(F3) = nMedium/n,
m4(2) = 1− m4(F3)

if C4 = ‘‘Severe′′, m4(F4) = nSevere/n,
m4(2) = 1− m4(F4)

(14)

m4(Fi) is the possibility using the process route Fi, m4(2)
represents the uncertainty of the process route Fi, where i ∈
{1, 2, 3, 4}. Transform C5 into evidence m5 using the same
method.

Suppose S is a worn part to be remanufactured The specific
steps of optimizing the remanufacturing routes using condi-
tional evidence theory are as follows:
STEP 1: Transforming quantitative parameters C1,C2,C3

of S into corresponding evidence m1,m2,m3 respectively.
STEP 2: Transforming qualitative parameters C4, C5 of S

into corresponding evidence.
STEP 3: Fuse the prior evidence 0 and the evidence

m1,m2,m3,m4,m5 of different features of the worn parts,
using the condition evidence rule.
STEP 4: Decision rules of the fusion results as follows

(i) The optimal processing path have the largest mass
function, and the value of the function should be greater
than 0.5.

(ii) The uncertainty of fusion results m(2) is less than 0.1.

If the fusion result does not meet the above conditions,
it cannot be used for decision-making and needs to be pro-
cessed manually.

III. APPLICATION EXAMPLES
A. BACKGROUND
The optimization experiment of the remanufactured
crankshaft machining process route was carried out. The
parameters of remanufactured crankshaft include physical
shape, surface quality, physical and chemical properties,
etc. According to the detection technology and machining
conditions of the remanufacturing enterprise, combined with
the actual experience in the remanufacturing process and the
evaluation of the industry experts, 8 quantitative parameters
and 2 non-quantitative parameters are selected as the actual
evaluation indexes of worn crankshaft. The quantitative
parameters include: the maximum wear of crankshaft main
journal C1, the maximum wear of connecting rod journal C2,
the roundness of main journal C3, the cylindricity of main
journal C4, the curvature C5, the twist C6, the axial clearance
C7 and the roughness C8; the qualitative indexes include: the
crack degree C9 and the ablation degree C10. Considering test
value of remanufactured crankshaft and the actual production
requirements of the enterprise, the worn crankshaft is divided
into four levels, and the classification standard is shown in
Table 2.
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TABLE 2. Classification standard of worn crankshaft.

TABLE 3. Available process paths for worn crankshaft.

The goal of integrated optimization is to maximize the
benefit of the enterprise, which involves processing time,
production costs, and dimensional tolerance of each remanu-
factured routes. Since the number P (formula 8) is difficult
to express in an analytical form, it is difficult to select an
optimized processing route by a conventional method. And
experienced workers will choose the appropriate process-
ing route based on the maximum benefit of the product.
Therefore, processing experience of workers is chosen as
an indirect optimization goal. The overall benefits of enter-
prises adopting different processing technologies for the same
kind of worn parts can be divided into three different situa-
tions: high, medium and low. For the experienced workers,
the machining process paths in Table 3 for Class I, II, III and
IV crankshafts are respectively adopted. The benefits of using
different processing technologies for four different types of
worn parts are shown in the Table 4.

Therefore, the path 1, 2, 3 and 4 can be used to process
the class I, II, III and IV parts respectively to maximize the
profits of the enterprise.

B. RESULTS
Taking the 4102QB crankshaft repaired by a remanufacturing
workshop as the research object, 200 sets of crankshaft blanks
are selected as test samples. The characteristic properties are
shown in Tab. 5.

The historical data are used to get PI = 0.24, PII = 0.35,
PIII = 0.31, PIV = 0.1, 0 = {PI ,PII ,PIII ,PIV , } then the
prior evidence is : β0(R1) = 0.24, β0(R2) = 0.35, β0(R3) =
0.31, β0(R4) = 0.1.
STEP 1: Let η = 0.7, and use step 1 of section II.A to

translate C1,C2, · · · ,C8 into evidence m1,m2, · · ·m8
STEP 2:Use step 2 of section II.A to translate C9,C10 into

evidence m9,m10.
STEP 3: Use condition evidence theory of section II.A to

fuse the prior evidence0 and the evidencemi(i = 1, · · · , 10).
STEP 4: The fusion results are determined according to the

following rules.

TABLE 4. Corresponding income of different process paths of
remanufacturing Crankshaft.

I. The optimal processing path determined should have
the largest mass function and be greater than 0.5.

II. The uncertainty of fusion results m(2) is less
than 0.1.

When η is different values, the accuracy of the optimal
processing process path obtained by the method in this
paper compared with the actual processing process is shown
in Table 6.

It can be seen from table 6 that the accuracy of fusion
results vary with the parameter values. When the values are
large or small, the accuracy of fusion results is not the best.
The above experiments show that the accuracy of fusion
results reaches 95% - 93% when η = 0.7 and 0.9.
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TABLE 5. The characteristic properties OF the 4102QB crankshaft.

TABLE 6. Accuracy of fusion results.

Analysis of the reasons for the above phenomenon: when
η is small, it gives a larger value to the identification frame-
work 2. At this time, the uncertainty information is large,
while the accuracy of the fusion result with less deterministic
information is low. For example, when η = 0.1, the accuracy
of the fusion result is 21%. When η is large, the deterministic
information is large, and the uncertain information is small,
the evidence corresponding to different characteristic param-
eters may produce greater conflicts, so the accuracy of the
fusion results will be reduced.

C. DISCUSSION
This method can accurately guide the remanufacturing pro-
cess of waste crankshaft, and has achieved good application
effect. It improves the utilization rate of waste crankshafts and
improves the remanufacturing quality of waste crankshafts
from 93.1% to 95.6%. The unit cost of worn crankshaft in
remanufacturing workshop decreased from 664 CNY/p to
627 CNY/p. The average remanufacturing time decreased
from 1.64 h/p to 1.52 h/p. This method has been recognized
and promoted in the remanufacturing workshop of the reman-
ufacturing enterprise.

In conclusion, compared with similar research results [6],
[16]–[18], the integrated optimization decision method for
remanufacturing process based on conditional evidence the-
ory under uncertainty has the following advantages:

First of all, for remanufacturing operators, this method can
guide them to a more efficient and accurate remanufacturing
production operation.

FIGURE 2. The effect of the method.

Second, for remanufacturing production manager, this
method can help them reduce the cost, improve quality and
improve production efficiency of remanufacturing process.

Third, for remanufacturing enterprises, this method can
effectively expand the utilization efficiency of worn parts,
improve the quality of remanufacturing products, and fur-
ther condense the core competitiveness of remanufacturing
enterprises.

Last but not least, this method provides a meaningful refer-
ence for the data mining and application of remanufacturing
production management, as well as intelligent remanufac-
turing, and has a positive promoting significance for the
sustainable development of remanufacturing industry.

IV. CONCLUSION
Uncertainty is the most critical difficulty in remanufac-
turing enterprise management. How to reduce the impact
of uncertainty and improve the comprehensive benefits of
remanufacturing process is the challenge of remanufactur-
ing production management. Aiming at this problem and
challenge, an integrated optimization decision method for
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remanufacturing process based on conditional evidence the-
ory under uncertainty is studied.

The main innovations are as follows: (i) the method of
transforming quantitative and qualitative parameters into evi-
dence is proposed; (ii) the influence law among production
data, characteristics of worn parts and technological process
in remanufacturing is revealed; and (iii) an integrated opti-
mization decision method for remanufacturing process under
uncertainty is studied considering the comprehensive benefits
of quality, cost and time. Finally, an example of remanu-
facturing crankshaft is given to verify the effectiveness and
feasibility of the method.

With the increasing scale of remanufacturing industry,
research on the efficient application of remanufacturing
production data to promote the development of intelligent
remanufacturing is a broad direction to enhance the core
competitiveness of remanufacturing enterprises. It has a good
research prospect and practical value for promoting the sus-
tainable development of remanufacturing industry.
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