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ABSTRACT Recent advances in AI technologies are dramatically changing the world and impacting our
daily life. However, human users still essentially need to cooperate with AI systems to complete tasks as
such technologies are never perfect. For optimal performance and safety in human-AI cooperation, human
users must appropriately adjust their level of trust to the actual reliability of AI systems. Poorly calibrated
trust can be a major cause of serious issues with safety and efficiency. Previous works on trust calibration
have emphasized the importance of system transparency for avoiding trust miscalibration. Measuring and
influencing trust are still challenging issues; consequently, not many studies have focused on how to detect
improper trust calibration nor how to mitigate it. We approach these research challenges with a behavior-
based approach to capture the status of calibration. A framework of adaptive trust calibration is proposed,
including a formal definition of improper trust calibration called ‘‘a trust equation’’. It involves cognitive
cues called ‘‘trust calibration cues (TCCs)’’ and a conceptual entity called ‘‘trust calibration AI’’ (TCAI),
which supervises the status of trust calibration. We conducted empirical evaluations using a simulated drone
environment with two types of cooperative tasks: a visual search task and a real-time navigation task.
We designed trust changing scenarios and evaluated our framework. The results demonstrated that adaptively
presenting a TCC could promote trust calibration more effectively than a traditional system transparency
approach.

INDEX TERMS Trust, trust calibration, human-AI cooperation, trusted AI, human-agent interaction.

I. INTRODUCTION
AI technologies have become increasingly common in all
aspects of our life. Examples of application areas include
autonomous vehicles, medical services, virtual agents, and
various web services. In such applications, it is inevitable that
human users will need to cooperate appropriately withAI sys-
tems as such technologies are never perfect. One key aspect
of human-AI cooperation is that human users should trust
AI systems, just as humans normally do with other human
partners [1], [2]. Trust definitely impacts human behavior and
the outcome of cooperation [3]–[5]. Trust is an attitudinal
judgment of the degree to which a user can rely on an agent
to achieve their goals under conditions of uncertainty [6].

Successful cooperation between users and agents would
require the users to appropriately adjust their level of trust
to the actual reliability of AI systems. This process is called
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‘‘trust calibration’’ [2]. While the reliability of an AI system
changes for various reasons in an environment, users often
fail to calibrate their trust in an AI system and end up in
a status called ‘‘over-trust’’ or ‘‘under-trust.’’ Over-trust is
poorly calibrated trust that exceeds the reliability of an AI
system; it can result in over-reliance on an AI system with
the expectation that it can perform outside of its designed
capability. Over-trust sometimes leads to serious safety
problems such as accidents involving autonomous vehicles
[7], [8]. Under-trust is poorly calibrated trust that falls short
of the AI’s reliability; it can result in an agent not being used,
excessive user workload, or deterioration in the total system
performance [9].

To help over-trusting or under-trusting users re-calibrate
their trust, we need to measure trust and influence it.
However, these two elements are still challenging.

Measuring trust is not easy, as trust is a latent construct.
Most of the research on trust has used self-reported trust
scales [10]–[12]; however, they are so intrusive that it is
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not practical to use them during task execution. Trust ques-
tionnaires conducted at the end of an experiment some-
times do not correctly reflect real-time trust during the
experiment [13]. Some studies examined the effectiveness
of physiological and neural measures such as gaze, heart
rate, and EEG. Although these are promising approaches,
further research would be necessary to clarify the correlation
between trust and these metrics. Several studies explored not
measuring trust but estimating it by using formal models.
Nam et al. [14] proposed a trust model formulated as a
Markov decision process based on the physical character-
istics of robot swarms. Chen et al. [15] modeled human
trust as a latent variable in a partially observable Markov
decision process that could accommodate trust dynamics and
human decision models. The trust modeling approach deeply
depends on the task properties or specific behaviors of robots.
Azevedo-Sa et al. [16] proposed an estimation method which
integrates driver’s behavior data through a Kalman filter-
based approach.

Managing trust by manipulating factors proven to be
influential in developing trust would also be complicated
and difficult. Extensive research has been done examining
the factors influencing trust or antecedents of trust. The
goal of such research is to capture the most critical vari-
ables that might have causal links to human trust [17]–[19].
Hoff and Bashir [20] reported 29 factors that are influential
in the development of human trust. Schaefer et al. [3] listed
31 factors. In both studies, they demonstrated that there are
many interactions among these factors and showed that some
of them are context-dependent or specific to human charac-
teristics. Although these findings are significantly valuable
in analyzing the latent structures of human trust, they also
suggest that it would be difficult to influence human trust
intentionally just by manipulating these factors.

Not many studies have focused on how to detect improper
trust calibration nor how to mitigate it. This paper aims to
address this deficiency in existing literature. We approach
the research challenges with an emphasis on two important
aspects of trust in human-AI cooperation: performance and
human behavior. We previously proposed a method of adap-
tive trust calibration [21], using a formal definition of over-
trust and under-trust, and conducted an initial evaluation with
an over-trust scenario. In the current study, we extend the
original method by introducing a third actor called ‘‘trust cal-
ibration AI’’ (TCAI) to human-AI cooperation. TCAI, which
was originally discussed in [22], is a meta-level conceptual
entity that supervises the status of trust calibration, to human-
AI cooperation. This allows us to more clearly define the
process of supporting trust calibration. The contributions of
this paper are as follows.
• We have proposed a framework of adaptive trust calibra-
tion by extending the original method with a conceptual
entity called ‘‘TCAI.’’

• The results of two empirical evaluations demonstrate
that the proposed framework was successful in detect-
ing and mitigating trust miscalibration that occurred in

two different types of cooperative applications: a visual
search and real-time navigation.

• We have discussed the applicability of the proposed
framework by classifying the types of human-AI
cooperation.

The remainder of the current paper is organized as fol-
lows. Section II reviews the existing work on trust calibra-
tion, our proposed framework is explained in Section III,
section IV gives an overview of the empirical evaluations,
section V describes the first evaluation with a visual search
task, section VI describes the second evaluation with a real-
time navigation task, and general discussions and the conclu-
sion are provided in Section VII and VIII.

II. RELATED WORK
Many attempts have been made to evaluate the effects of
system transparency in keeping appropriate trust. For an auto-
mated decision support system, McGuirl et al. [23] showed
that presenting continually updated system-confidence infor-
mation could improve trust calibration and lead to better
performance in a human-machine team. Studies on visual-
izing a car’s level of uncertainty during autonomous driving
[24]–[26] have indicated that good transparency by present-
ing system information helps maintain the appropriate trust in
vehicles. Helldin et al. [24] did experiments with 59 drivers in
a simulated autonomous driving environment. They demon-
strated that the drivers of autonomous vehicles who were
provided with uncertainty information trusted the automated
system less than those who did not receive such information,
which indicates more proper trust calibration than in the
control group. The drivers with the uncertainty information
also took control of the car faster when needed and were
able to perform tasks other than driving without risking
safety.

The primary goal of realizing system transparency is to
avoid improper trust calibration, not to deal with the status
of over-trust and under-trust.

Recent studies on trust repair in human-robot interaction
can be viewed as one of the countermeasures against under-
trust situations. Marinaccio et al. [27] proposed a framework
for repairing trust based on four types of errors that can occur
when automated aids are used in a healthcare system: slips,
lapses, mistakes, and violations. Their framework provides
effective repair strategies according to the type of error.
Robinette et al. [28] examined whether robots can repair trust
by apologizing, promising to do better, and providing addi-
tional information relevant to the trust situation. They showed
that all three of these actions can work and are more effective
when robots use them just prior to human users deciding to
trust them. Liu et al. [29] proposed a trust-repairing method
for human-supervised teams of robot swarms. They proposed
an algorithm for correcting undesired swarm behaviors by
weighting the information shared among the robots in the
swarm on the basis of the difference between the desired goal
and the current behavior of the robots. The results of an online
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experiment showed that their proposed method was effective
at restoring trust. Tolmeijer et al. [30] developed a taxonomy
of potential trust violations and suitable repair strategies for
human-robot interaction. Their taxonomy was defined with
four failure types and nine mitigation strategies. On the basis
of the taxonomy, conceptual ideas of autonomous failure
detection and repair were presented, using techniques such
as formal verification, explanation, and trust loss detection.
They suggested that a formal logic for trust [31] could be used
to model robotic trust scenarios to identify when and how a
system is not trusted or trust is lost.

As shown above, the existing studies on trust repair focused
on the functionalities of robots for restoring trust. In con-
trast, we propose a framework for encouraging humans to re-
calibrate their trust by detecting the miscalibration status of
either over-trust or under-trust and emitting a simple cue to
inform them of it.

III. PROPOSED FRAMEWORK
We propose a framework of adaptive trust calibration that
consists of three elements:

1) definitions of over-trust and under-trust called
‘‘trust equations’’,

2) a cognitive cue called a ‘‘trust calibration cue’’,
3) a conceptual entity called a ‘‘trust calibration AI’’.

To describe the framework, we first define human-AI coop-
eration as a series of actions taken by a human user repeat-
edly working on selection problems to decide on either AI
execution or manual execution. Both the human user and the
AI should have the same functionality to execute a common
task, with different levels of performance depending on the
situation. The human user must solve a problem by selecting
who is to execute the task, and the final responsibility for the
outcome always belongs to the human user.

A. TRUST EQUATIONS
Performance and human behaviors in human-AI cooperation
play critical roles in our definitions of over-trust and under-
trust called ‘‘trust equations’’. Achieving better performance
is one of the fundamental goals of human-AI cooperation.
Previous research showed that trust in robots is mainly
affected by a robot’s performance [32]. Therefore, we focus
on the performance-related factors that influence trust. This
focus makes it possible to narrow down the definition of
trust to ‘‘the expectation that a task done by an AI sys-
tem will be successful.’’ The estimated reliability of an AI
system in terms of performance can be a good index of
such an expectation. Trust can also be viewed as a human
user’s behavior [33] in choosing whether to rely on an AI
system or to do a task manually. From a performance point
of view, such observable choice behavior can be considered
a result of comparing the estimated reliabilities of humans
and AI.

Three performance-related parameters,PA, P̂A, andPH , are
defined as follows.

• PA: Probability that a task done by an AI system will
be successful. This is called the ‘‘reliability of the AI
system.’’

• P̂A: Human user’s estimation of PA. This is a user’s trust
in the AI system.

• PH : Probability that a task done manually by a human
user will be successful. This is called the ‘‘capability of
the user.’’

The reliability of the AI system PA varies depending on the
conditions of the AI system. The user’s trust P̂A also changes
accordingly and becomes equal to PA if trust is appropriately
calibrated. Over-trust occurs if P̂A > PA, and under-trust
occurs if P̂A < PA. Since measuring the user’s trust P̂A is
difficult, we modified the definitions of over-trust and under-
trust by using a third parameter PH in addition to P̂A and PA:
• Over-trust: the human user estimates that the AI system
is more reliable than the user even though the actual
reliability of the AI system is lower than the user’s
capability.

(̂PA > PH ) ∧ (PH > PA) (1)

• Under-trust: the user estimates that they are better at a
task than the AI system even though the actual reliability
of the system is higher than the user’s capability.

(̂PA < PH ) ∧ (PH < PA) (2)

We call these two definitions ‘‘trust equations’’. The
first terms of (1) and (2) can be calculated by observ-
ing the user’s behaviors. Several studies [34]–[36] have
demonstrated that reliance behavior can be explained by
the relationship between a user’s trust in a system and
the user’s self-confidence in performing a task manually.
Maehigashi et al. [37] found that human users select for a
task to be done either through automation or manually on the
basis of how they perceive their own manual performance.
When a user decides to use a system, it is reasonable to say
that this behavior indicates P̂A > PH . If the user chooses
a manual execution, it indicates P̂A < PH . The first terms,
which are the inequalities of P̂A and PH , can be judged by
observing the user’s behavior, without directly measuring P̂A
or PH . If the second terms can be estimated, we can identify
the trust calibration status of human-AI cooperation using the
trust equations.

B. TRUST CALIBRATION CUE
To effectively notify human users of improper trust calibra-
tion, we explore the idea of giving them simple cues when
over-trust or under-trust is detected. Once users fall into the
state of over-trust or under-trust, it might not be easy to get
out of the state. This may be an example of confirmation
bias in the preservation of trust [38]. Calibration occurs
only in response to new evidence that changes the users’
situational awareness, while new evidence cannot be learned
without changing the current behavior first [33]. To solve this
dilemma, a new trigger is necessary to make the user aware of
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FIGURE 1. Four types of TCCs.

changes in the environment and to re-calibrate trust. We call
this trigger the ‘‘trust calibration cue’’ (TCC).

In our previous work [21], we designed and evaluated four
different types of TCCs: visual, audio, verbal, and anthropo-
morphic (see Figure 1). The visual TCC was a red warning
sign, which is considered to be one of the most common alert
signs according to [39], [40]. The audio TCC was a sound
with a frequency that decreases from 400 Hz to 250 Hz as a
negative message [41]. The verbal TCC is a tooltip balloon
with the warning message ‘‘This choice might not be a good
idea.’’ The anthropomorphic TCC was an animated drone
image with a cartoon-like face. The results of the evaluation
indicated that the verbal TCC was most effective among the
four TCCs in changing human users’ reliance behaviors.

The concept of the TCC was inspired by the works done
by Komatsu et al. [41], who proposed an intuitive notification
method called ‘‘artificial subtle expressions’’ (ASE). One of
their design requirements is ‘‘complementary,’’ which means
that notifications should not interfere with the main commu-
nication protocol. A TCC should also be perceived through
a different channel than the one used for the main interface
of a Task-AI. Users with improper trust calibration are likely
to have difficulty in understanding the system information
coming thorough the main interface.

Several studies on trust have proposed the use of ‘‘cues’’
to increase system transparency. Visser et al. [42] proposed
a design guideline for trust cues, which are informational
elements for assessing trust with autonomous systems. They
defined the cues in terms of trust dimensions and trust pro-
cessing stages. Cai and Lin [43] examined multi-modal cues
for conveying the confidence of a driver assistance system.
Unlike our TCC, the purpose of these ‘‘cues’’ was to deliver
system information to users.

C. TRUST CALIBRATION AI
Figure 2 shows a diagram of the proposed framework for
adaptive trust calibration. We introduce a conceptual entity in
human-AI cooperation called ‘‘trust calibration AI’’ (TCAI),
which is a meta-level entity that manages the whole process
of adaptive trust calibration. The TCAI is invisible to the user
to avoid bringing about issues regarding trust in the TCAI.

The human user works on selection problems to decide
whether a task should be done by an AI system (called a
‘‘Task-AI’’ in this diagram) or the human user should do it
manually. The Task-AI provides a human user with system
information through its system transparency interface. The
human user makes decisions by comparing PH and P̂A, which

are his/her reliability and the estimated reliability of the Task-
AI. Each decision corresponds to the first inequalities in the
proposed framework, (1) and (2).

The TCAI observes the human’s choice behaviors, which
indicate the answers to selection problems. This observa-
tion is made to evaluate the first inequalities in the trust
equations. The system transparency interface of the Task-
AI, which discloses its internal information, can help human
users solve selection problems. The TCAI also solves the
selection problems by estimating PA and P̂H with a model-
based or statistical approach. These estimations correspond to
evaluating the second inequalities in the trust equations. If the
observed human behaviors are not consistent with the TCAI’s
estimations, the TCAI judges that it has detected over-trust
or under-trust according to the trust equations, and it gives
a TCC to the human user to notify the user of an improper
trust calibration status. Although the TCAI can solve the
selection problems, it is always the human user, not the TCAI
nor the Task-AI, who makes the final decisions since the
human user is fully responsible for the outcomes of human-
AI cooperation. The TCAI only suggests to the human user
to recalibrate trust in the Task-AI.

The basic algorithm of the adaptive trust calibration per-
formed by the TCAI is described in Algorithm A0. This
framework aims to adaptively prompt a user to calibrate
her/his trust by presenting a trust calibration cue only when
the TCAI detects over-trust or under-trust by observing the
user’s choice behavior. This approach is taken to mitigate
over-trust or under-trust, in contrast with the traditional
approach of trying to maintain appropriate trust calibration
with continuous system transparency.

Algorithm A0 Adaptive Trust Calibration by TCAI
while Cooperative tasks exist do
Observe a user’s choice behavior. · · · P̂A ≶ PH
Evaluate the second inequalities
of the trust equations (1) and (2). · · · P̂H ≶ PA

Detect improper trust calibration.
if over-trust or under-trust is detected then

Present a trust calibration cue to the user.
end if

end while

IV. OVERVIEW OF TWO EMPIRICAL EVALUATIONS
We conducted two empirical studies to evaluate whether the
proposed framework was effective for two different types of
collaborative tasks. The evaluations were done with online
experiments using a web-based 3D drone simulator, which
we developed based on an open-source JavaScript WebGL
library CesiumJS [44] and the Bing Map API [45]. A screen-
shot of the simulator running on a Chrome browser is shown
in Figure 3.1

1All map images in the current paper are from Geospatial Information
Authority of Japan (CC BY 4.0). The images are similar but not identical to
the original ones used in the experiments due to a copyright reason.
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FIGURE 2. Proposed framework for adaptive trust calibration.

FIGURE 3. Online drone simulator. Simple operations with two cursor
keys for controlling the drone and mouse buttons for making choices.

The first empirical study was done with pothole inspec-
tion, which is a series of visual search tasks to check if
there are any holes or cracks in road images from a drone.
Each inspection task is executed discretely automatically by
the Task-AI or manually by a human user, and the tasks are
mutually independent. This type of visual inspection can be
categorized as a reconnaissance task, which is often used in
the trust research literature.

The second empirical study was done with autonomous
drone navigation. which is a series of real-time control tasks
of navigating a drone to reach a goal along a predefined
course. Each task is continuously executed through cooper-
ative activities between auto-pilot, operated by the Task-AI,
and manual-pilot, done by a human user. The state of each
navigation task is dependent on the result of the previous
navigation task, in terms of the drone position and the direc-
tion. Autonomous driving (SAE level 4) falls into the same
category as this task.

We expected the participants of the experiments to change
their choice behaviors if the TCAI detected inappropriate
trust calibration and presented a TCC.We tested the following
hypotheses:

[H1] the choice rates of manual executions increase
if TCCs are presented in cases of over-trust or
decrease if TCCs are presented in cases of under-
trust.

[H2] the participants with TCCs perform better than the
participants without TCCs.

[H3] adaptively presenting TCCs could trigger the trust
calibration process more effectively than continu-
ously maintaining system transparency.

Participants were recruited through crowdsourcing
services. Regarding online experiments in general,
Crump et al. [46] showed that the data collected online using
a web-browser seemed mostly in line with laboratory results,
so long as the experiment methods were solid. In these two
online experiments, sound effects and simulator speed perfor-
mances might vary with the different PC environments used
by each participant. To minimize these differences, 1) we
instructed the participants to adjust the audio volume properly
before the experiments, and 2) the simulator performance was
automatically measured and adjusted to achieve the same
drone speed at each participant’s PC. We also checked IP
addresses to avoid duplicate participation by the same person.

Both empirical studies were carried out with written
informed consent from all participants in accordance with
the Declaration of Helsinki and the recommendations of the
Ethical Guidelines for Medical and Health Research Involv-
ing Human Subjects provided by the Ministry of Education,
Culture, Sports, Science and Technology and the Ministry
of Health, Labour and Welfare in Japan. The protocol was
approved by the ethics committee of the National Institute of
Informatics.

V. EVALUATION WITH POTHOLE INSPECTION
This section presents the first empirical study to evaluate the
proposed framework with pothole inspection tasks under the
bi-directional changes of trust conditions. An early report on
this evaluation was described in [47].

A. METHOD
1) POTHOLE INSPECTION TASKS
A route with 30 checkpoints (CKPs) was prepared. Each CKP
was located in a rectangular inspection area. CKPs on the
route were displayed as small yellow circles on the screen
and as a pink one if it was the next target. The ten CKPs had
potholes in the corresponding areas while the other twenty
did not. When the drone came close enough to the next target
CKP on the route, a message popped up (Figure 4) in which
the participants were asked to make a choice: automatic
inspection or manual inspection.
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FIGURE 4. Popup message asking the participants for choice.

FIGURE 5. Reliability Indicator at the bottom left area of the screen.
Showing a higher reliability (left) and a deteriorated reliability (right).

FIGURE 6. Pothole inspection. Automatic inspection result window (left).
Manual inspection window (right).

The reliability of the automatic inspection was always
displayed by the indicator at the bottom left area of the screen
(Figure 5), which increased the system transparency.

If the participants clicked the ‘‘Auto’’ button, an automatic-
inspection result with a road image of the inspected area
was shown for three seconds. This feedback information
helped the participants evaluate the automatic inspection
performance, thereby increasing the system transparency
[2], [48]. If the participants selected the ‘‘Manual’’ button,
a road image was popped up, and the participants had to make
a pothole report manually. Figure 6 shows the popupwindows
of both cases. Potholes were artificially shown as irregular
shapes in a dark brown color on a road image in the popup
window.

We used a verbal TCC in this experiment as it showed the
most significant effect to change users’ behaviors in the first
empirical study. The screen image of the verbal TCC is shown
in Figure 7. If the proposed framework detected over-trust or
under-trust from a participant choice, this TCCwas presented
right after the choice action(pushing a button).

FIGURE 7. Verbal TCC.

2) PARTICIPANTS AND SCENARIOS
A total of seventy participants (51 male, 19 female) took
part in the experiment online. Their ages ranged from
25 to 75 years old (M = 44.2, SD = 10.3). The participants
were recruited through a cloud-sourcing service provided by
Yahoo! Japan.

We defined the ABA/BAB scenarios of under-trust (A) and
over-trust (B) by manipulating the weather conditions. The
performance of the automatic pothole inspection PA was
configured on the basis of signal detection theory (SDT) [49].
SDT defines the detection of signals in noisy environments.
Noise and signals are represented as overlapping density
distributions. The distance between the two distributions rep-
resents the sensitivity d ′ of a system. In the A condition,
the weather conditions were set to be good in the simulated
environment, and PA and the corresponding sensitivity d ′

were manipulated to be 0.88 and 2.35, respectively, indicat-
ing that the agent has a very high discrimination ability. In
contrast, the weather conditions were bad in the B condition,
and PA dropped to 0.50, and the corresponding sensitivity d ′

became 0.1, indicating the greatly deteriorated reliability of
the automatic pothole inspection.

If the participants failed to calibrate their trust properly,
the possibility of under-trust in the A condition or over-trust
in the B condition would be higher. In the ABA scenario,
the weather conditions of the experiment started as A, then
changed to B, and finally went back to A. The same applies to
the BAB scenario. Each condition continued until eight CKPs
were inspected. Participants were randomly assigned to one
of four groups: the NoTCC-ABA group (without TCC in the
ABA scenario), TCC-ABA (with a verbal cue in the ABA
scenario) group, NoTCC-BAB group, and TCC-BAB group.
The NoTCC-ABA/BAB groups were control groups in this
experiment.

3) PROCEDURES
The online experiment started with an instruction phase
(see Figure 8). The participants were given an instruction
stating that the goal of the experiment was to inspect 24 CKPs
within 20 minutes. They also learned that the average success
rate of manual pothole inspection was 75%. The drone’s
automatic inspection was explained as ‘‘The reliability is
almost perfect, close to 100%,’’ for the participants of the two
groups in the ABA scenario and ‘‘The automatic inspection
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FIGURE 8. The instruction screen.

is accurate’’ for the participants of the two groups in the BAB
scenario. These sentences were meant to help the participants
calibrate their initial trust properly in the first period. They
also understood that the reliability of the automatic inspection
could fluctuate depending on the weather conditions. This
instruction was given to help the participants calibrate their
trust properly when the condition changed. In this instruction
phase, the participants were also guided to adjust the sound
volume level by listening to a 400-Hz beep sound.

Next, in the training phase, the participants started a
practice flight of the drone and learned how to inspect the
CKPs. This phase was finished after the first three CKPs were
inspected, and the main phase of the experiment was started.
The main phase first started with either condition A or B
depending on the scenario of the group. In the A condition,
the weather was good, and the visibility in the simulated envi-
ronment was high. Therefore, the drone’s automatic inspec-
tion functioned very well. In the B condition, it was dark and
rainy with the sound effects of a thunderstorm.

The reliability of the automatic inspection deteriorated due
to the low visibility in the environment. Each condition con-
tinued until the participants completed the inspection of eight
CKPs. The 1st CKP, the 9th CKP, and the 17th CKP were
the first CKPs of the three conditions. Figure 9 illustrates
the manipulation of PA with the weather conditions and the
expected changes of PH .
If the participants completed the 24th inspection or the

elapsed time exceeded 20 minutes, the main phase of the
experiment was finished.

The algorithm A1 ‘‘Adaptive Trust Calibration (1)’’ based
on the proposed framework was applied in the experiment.

FIGURE 9. ABA scenario.

Algorithm A1 Adaptive Trust Calibration (1)
Initialize:
M = the total number of CKPs.;
Over-trust flag list: OT[1], . . . , OT[M] are initialized with
zero;
Under-trust flag list: UT[1], . . . , UT[M] are initialized with
zero;
The number of current CKP: i⇐ 1;

while i 5 M and not time-over do
if the drone reached a CKP then

if choice behavior is AUTO and PH > PA then
OT [i]⇐ 1;
if i = 3 and (OT [i− 2]+ OT [i− 1]]) = 1 then
Over-trust is detected and TCC is presented to
the user;

end if
else if choice behavior is MANUAL and PH < PA
then
OU [i]⇐ 1;
if i = 3 and (OU [i− 2]+ OU [i− 1]]) = 1 then
Under-trust is detected and TCC is presented to
the user;

end if
end if
i⇐ i+ 1;

end if
end while

A simple moving average of three CKPs was used in the
algorithm to capture the participants’ behavior changes in
each condition with eight CKPs.

4) ESTIMATION OF PH AND MANIPULATION CHECK
Geirhos et al. [50] demonstrated that human image recogni-
tion is still better than the top-performing deep neural net-
works in the case of image degradation such as Gaussian
blur or additive Gaussian noise. As the pothole inspection
tasks are mainly image recognition tasks with blurred and
noisy road images when the weather conditions turned worse,
we assumed that PH would not fluctuate more widely than
PA when the weather conditions changed. Thus the inequality
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PA > PH was estimated to be true during the good weather
period and false during the bad one.

As a pre-experiment, we measured the manual success
rates (PH ) with the prepared CKP data to verify our
assumption. Thirty-two participants (25 male, 7 female)
were recruited through a cloud-sourcing service provided by
Yahoo! Japan. Their ages ranged from 25 to 65 years old
(M = 42, SD = 12). None of them joined the main experi-
ment. They manually inspected the prepared CKPs following
the same procedure of the main experiment, except that there
was no automatic inspection available. Half of them were in
the A condition, and the other were in the B condition. The
results indicated that the mean of the manual success rates
and the sensitivity d’ was 0.83 (SD = 0.15) and 1.85 for
the A condition and 0.79 (SD = 0.15) and 1.69 for the
B condition. As already explained, the performance of the
automatic inspection in themain experiment wasmanipulated
so that the success rates and the sensitivity d’ were 0.88 and
2.35 for condition A and 0.50 and 0.00 for condition B.
One sample t-test showed that the manual success rate was
smaller than the automatic success rate for the A condition
[t(47) = −2.26, p = 0.01,Cohen′sd = 0.33] and larger
than the automatic success rate for the B condition [t(47) =
−13.66, p < 0.01,Cohen′sd = 1.97]. Therefore, we con-
cluded that our assumption on PH was valid with the prepared
CKP data for the main experiment.

5) THE DEPENDENT VARIABLES
In this experiment, TCC presentation rates (hereinafter called
‘‘TCC rates’’), manual choice rates (hereinafter called ‘‘man-
ual rates’’), and the sensitivity d ′ were measured as the
dependent variables. TCC rates are the rates of the frequency
at which TCCs were presented to the participants at each
CKP, indicating how our framework was working during the
experiment. Manual rates are the mean values of the manual
choice ratio for each condition, showing how the participants
relied (or did not rely) on the drone’s automatic inspection
and therefore indicating their trust status. The sensitivity
d ′ demonstrates the performance of human-AI collaborative
tasks.

B. RESULTS
Seventy participants completed all 24 CKPs within the
time limit. Of the seventy participants, 17 were in the
NoTCC-ABA group, 18 in the TCC-ABA group, 21 in
the NoTCC-BAB group, and 14 in the TCC-BAB group.
The average time taken to finish the main phase of the exper-
iment was 9 minutes 5 seconds, which means 22.5 seconds
per CKP.

1) TCC RATES
Figure 10 and Figure 11 illustrate the TCC rates at each CKP
of the TCC-ABA group and the TCC-BAB group. Table 1
shows 3-CKP means of TCC rates in each condition. C1, C2,
and C3 mean A, B, and A for the ABA groups, B, A, and B

FIGURE 10. TCC rates of TCC-ABA group.

FIGURE 11. TCC rates of TCC-BAB group.

TABLE 1. 3-CKP means of TCC rates in each condition. Standard errors are
in parentheses.

for the BAB groups. ‘i-j’ indicates the mean value of the TCC
rates from CKP i to CKP j. Standard errors are in parentheses.

ABA groups: The mean of the TCC rates from CKP
3 to 5 [hereinafter referred to as MR (3-5)] for the first A
condition (C1) was low at 0.15 and slightly decreased to
0.13 for MR (6-8). We did a paired t-test that revealed no
significant difference between MR (3-5) and MR (6-8). For
the B condition (C2), the TCC rate went up to the maximum
at CKP 11. MR (11-13) was 0.48 and quickly decreased after
that. A paired t-test showed thatMR (14-16) was significantly
lower than MR (11-13) [t(17) = 4.53, one-tailed, p<0.01,
Cohen’s d= 0.99]. For the second A condition (C3), the TCC
rates were almost the same as the first A condition. The
difference between MR (19-21) and MR (22-24) was not
statistically significant.

BAB groups: The TCC rate for the first B condition (C1)
started from the highest value among the conditions at CKP 3
and then decreased with some fluctuations. A paired t-test
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TABLE 2. Means of the manual rates and the sensitivity d ′ .

revealed that MR (6-8) was significantly lower thanMR (3-5)
[t(13) = 1.84, one-tailed, p = 0.04, Cohen’s d = 0.43]. For
the A condition (C2), a paired t-test revealed that MR (14-16)
significantly decreased from MR (11-13) [t(13) = 1.99, one-
tailed, p = 0.03, Cohen’s d = 0.53] in the TCC-BAB group.
For the second B condition (C3), there was no significant
difference between MR (19-21) and MR (22-24), although
TCC rates slightly decreased during the condition.

In summary, the TCC rates for all conditions showed a
similar trend in which the values were initially higher and
then decreased along the CKP series, except for the first
A condition of the TCC-ABA group. Higher TCC rates
were observed for the B conditions than the A conditions.
This indicates that over-trust detections in the bad weather
were more frequent than under-trust detections in the good
weather.

2) MANUAL RATES
The change in manual rates indicates how the participants
changed their trust in the automatic inspection. Building trust
is an accumulating process [6], and TCCs might need some
time to have an effect on changing manual rates and also
might be presented more than once per participant. There-
fore, we evaluated the proposed framework by comparing the
eight-CKPmean values of themanual rates for each condition
so that we could capture the accumulated effects of presenting
TCCs. Table 2 shows the means of the manual rates and the
sensitivity d ′ for each condition. C1, C2, and C3 are either
condition A or B, depending on the groups. Standard errors
are in parentheses.We conducted a one-wayANOVA (within-
subjects design; independent variable: the scenario conditions
of three levels, A, B, and A (B, A, and B), dependent variable:
manual rate) for each group. All post-hoc analysis was done
using the Holm-Bonferroni method. Figure 12 illustrates the
manual rates for each condition of each groups.

ABA groups: The result of the ANOVA for the NoTCC-
ABA group did not show any significant difference in the
manual rates among the three conditions [F(2, 32) = 0.20,
p = 0.82, η2p = 0.01]. In comparison, the ANOVA for
the TCC-ABA group revealed a significant difference in the
manual rates among the conditions in the ABA scenario
[F(2, 34) = 6.50, p < 0.01, η2p = 0.28]. The post-hoc

FIGURE 12. Manual rates (∗ : p < 0.05).

analysis indicated that the manual rate for the B condition
significantly increased from the first A condition [t(17) =
3.56, adjusted .p < 0.01]. The manual rate for the second
A condition also significantly decreased [t(17) = 2.45,
adjusted .p = 0.03] from the B condition, and the manual
rates for the first A condition and second A condition were
not significantly different [t(17) = 0.79, adjusted .p = 0.79].

BAB groups: The ANOVA analysis for the NoTCC-BAB
group revealed that there was a significant difference in the
manual rates [F(2, 40) = 6.41, p < 0.01, η2p = 0.24]. The
post-hoc analysis showed that the rate for the B condition was
not significantly changed from that for the first A condition
[t(20) = 1.46, adjusted .p = 0.16], while the manual rate
for the second B condition significantly increased from the
A condition [t(20) = 3.14, adjusted .p = 0.02], and it was
also significantly larger than for the first B condition [t(20) =
2.84, adjusted .p = 0.02]. The ANOVA analysis for the TCC-
BAB group showed that there was a significant difference
in the manual rate [F(2, 26) = 14.48, p < 0.01, η2p =
0.53]. The post-hoc analysis indicated that the manual rate
for the A condition significantly decreased from the first B
condition [t(13) = 2.65, adjusted .p = 0.02]. For the second
B condition, the manual rate increased significantly from the
A condition [t(20) = 4.47, adjusted .p < 0.01].

3) PERFORMANCE
We conducted the same one-way ANOVAwith the sensitivity
d ′ of each group. Figure 13 illustrates the sensitivity d ′ for
each condition of each groups.
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FIGURE 13. Sensitivity d ′ (∗ : p < 0.05, ∗∗ : p < 0.01).

ABA groups: For the NoTCC-ABA group, the main effect
of the sensitivity d ′ was found to be significant [F(2, 32) =
14.8, p < 0.01, η2p = 0.48]. The post-hoc analysis indicated
that themean value of d ′ significantly decreased from the first
A condition to the B condition [t(16) = 5.26, adjusted .p <
0.01] and then significantly increased from the B condition
to the second A condition [t(16) = 4.05, adjusted .p < 0.01].
For the TCC-ABA group, the main effect of the sensitivity d ′

was found to be significant [F(2, 34) = 7.52, p < 0.01, η2p =
0.31]. The post-hoc analysis indicated that the mean value of
d ′ significantly increased from the B condition to the second
A condition [t(17) = 5.44, adjusted .p < 0.01] and also
showed a significant increase from the first A condition to
the second A condition [t(17) = 2.61, adjusted .p = 0.04].
BAB groups: For the NoTCC-BAB group, the main effect

of the sensitivity d ′ was found to be significant [F(2, 40) =
7.45, p < 0.01, η2p = 0.27]. The post-hoc analysis revealed
that the mean value of d ′ significantly increased from the first
B condition to the A condition [t(20) = 3.76, adjusted .p <
0.01] and significantly decreased from the A condition to
the second B condition [t(20) = 2.98, adjusted .p = 0.01].
For the TCC-BAB group, the main effect of the sensitivity
d ′ was found to be significant [F(2, 26) = 4.75, P = 0.02,
η2p = 0.27]. The post-hoc analysis indicated that the mean
value of d ′ for the A condition marginally increased from that
for the first B condition [t(13) = 2.46, adjusted .p = 0.06].
The mean value of d ′ for the second B condition significantly
decreased from that for the A condition [t(13) = 3.13,
adjusted .p = 0.02].

C. DISCUSSION
1) ABA SCENARIO
For the first A condition, the TCC rates of both the NoTCC-
ABA group and the TCC-ABA group were low. The manual
rates were also low for both. This suggests that the partic-
ipants in both groups properly calibrated their trust in the
high reliability of the automatic inspection under the good
weather conditions, probably on the basis of their knowledge
acquired in the initial instruction phase. For the B condition,
the status of trust in the previous condition was clearly carried
over, so the TCC rates were initially very high. This suggests
that most of the participants were initially over-trusting the
drone’s automatic capability even when its reliability became

very low under the bad weather conditions. The TCC rates
drastically dropped for the TCC-ABA group. The manual
rates significantly increased for this group, while that for
the NoTCC-group remained the same as in the previous
condition. The sensitivity d ′ for the B condition was kept
high for the TCC-ABA group, while that for the NoTCC-
ABA group significantly dropped under the bad weather
conditions. These results indicate that presenting TCCs in
the B condition greatly impacted how participants behaved
in making choices, and the results also suggest that they
could properly calibrate their trust. Consequently, their task
performance did not deteriorate despite the bad weather. For
the second A condition, the manual rates of the TCC-ABA
group significantly decreased from the previous condition,
while those of the NoTCC-ABA group did not change at all.
It is not explicitly clear whether the participants in theNoTCC
groups properly calibrated their trust for this condition; how-
ever, the task performance of the NoTCC groups was slightly
worse than that in the TCC-ABA group.

BAB scenario: For the first B condition, the TCC rates
were high at the beginning. This was probably caused by
the instruction given to the participants regarding the high
reliability of the automatic inspection. After the initial high
period, the TCC rates showed a statistically significant
decrease for this condition. Although themean values ofman-
ual rates both for the NoTCC-BAB group and the TCC-BAB
group were almost similar in this condition, the sensitivity
d ′ indicates that the TCC-BAB group performed better than
the NoTCC-BAB group. For the A condition, the TCC rates
started at a slightly higher level than those observed for the
other A conditions in the ABA scenario. The rates steadily
decreased and reached the lowest levels among all conditions
in the experiment. The manual rates of the TCC-BAB group
showed a statistically significant drop from the previous con-
dition, while that of the NoTCC-BAB group did not. The
performance of the TCC-BAB group was kept higher than
that of the NoTCC-BAB group. These results demonstrate
the effectiveness of presenting TCCs to affect the behaviors
of the participants for whom the status of trust was under-
trust and suggest that trust calibration done to mitigate under-
trust was successfully promoted by the proposed framework.
For the second B condition, the TCC rates decreased toward
the end of this condition with some fluctuations. The manual
rates of both groups significantly increased to the highest
values in the experiment. One possible interpretation would
be that the 16 tasks before the second B condition would be
enough for most of the participants to learn the system and
the environment so that the participants in the NoTCC-BAB
group could calibrate their trust better in the second B con-
dition. Similar learning effects might also be behind the low
manual rates in the second A condition of the ABA scenario.

The TCC groups significantly changed their choice behav-
iors over the first two conditions both in the ABA and in the
BAB scenarios, while the TCC groups did not. These results
clearly support hypothesis H1. Regarding the performance,
the results of the sensitivity d ′ confirm hypothesisH2, except
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for the case that the mean value of d ′ for the A condition
of the TCC-ABA group was slightly smaller than that of
the NoTCC-ABA group of which the participants probably
calibrated the trust properly.

The weather changes from the A condition to the B condi-
tion or vice versa were very noticeable in terms of screen vis-
ibility and sound effects. Nevertheless, the participants of the
NoTCC-ABA group did not significantly change their choice
behaviors and they were over-trusting or under-trusting the
drone’s automatic inspection. The reliability information con-
tinuously displayed at the reliability indicator did not help
the participants to calibrate the trust properly. In contrast to
this, the participants in the TCC groups successfully altered
their choice behaviors at the first weather changes.We believe
that the results demonstrate the effectiveness of the adaptive
method and confirmed hypothesis H3. TCCs were given
immediately after the behavior only if the TCAI judged the
participants to be in a state of over-trust or under-trust, so it
would be easier for them to understand the message of the
cues and to move forward in the trust calibration process.

Although we observed the under-trust status in the A con-
dition of the BAB scenario, the over-trust status was more
obviously observed in the B condition of the ABA scenario.
One of the reasons would be that the instruction of the exper-
iment made the participants expect the higher reliability of
the automatic inspection. Existing studies also demonstrated
the human tendency toward the automation called automation
bias [23] or perfect automation schema [51].

VI. EVALUATION WITH AUTONOMOUS
DRONE NAVIGATION
This section presents the second empirical study to evaluate
the proposed framework in a real-time application environ-
ment. An early report on this evaluation was described in our
previous work [52].We designed a cooperative control task of
navigating a drone to reach a destination along a predefined
course. The navigation can be done either by the drone’s
automatic capability or by a manual control. In contrast to the
pothole inspection tasks used in the first empirical evaluation,
the participants’ selection decisions and operations must be
made quickly enough to control the drone smoothly.

A. METHOD
1) AUTONOMOUS DRONE NAVIGATION TASKS
We added an auto-pilot function to the drone simulator used
in the previous experiments. Figure 14 shows a new screen
image of the simulator running in the Chrome browser.

The participants performed a task in which they flew a
drone along a course that was displayed on a screen until
the drone reached the goal of the course. A 10-km course
was prepared with an average altitude of 214 meters. The
course consisted of three 3.3-km parts (see Figure 15) with
the same trajectory in terms of curve and height. The width of
the coursewas 10.4meters. The participants had to control the
drone so that it stayed on the course until the goal. The drone

FIGURE 14. Online semi-autonomous drone simulator.

FIGURE 15. The first part of the course.

FIGURE 16. Cross-track error.

could be flown by autonomous navigation. This type of con-
trol is called ‘‘auto-pilot.’’ The auto-pilot was implemented
with a PID control over the heading direction and the pitch of
the drone tominimize cross-track error (see Figure 16), which
is the shortest distance between the drone and the center line
of the prepared course. The reliability of the auto-pilot was
always shown on the indicator displayed at the bottom area
of the screen.

The participants could take over the navigation of the
drone at any time with the left or right cursor keys. This
control is hereinafter called ‘‘manual-pilot.’’ The manual-
pilot period expired after 1.5 seconds unless any further key
inputs occurred. In this experiment, the pitch control was
always under auto-pilot, and the roll of the drone was fixed
flat to make the manual-pilot easier. The level of automation
in the experiment corresponded to Level 4 of the autonomous
driving [53], meaning that the auto-pilot could fly the drone at
all times, and participants could take over the control if they
wanted to, but they were not required to do so.
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FIGURE 17. Verbal TCC.

The verbal TCC was presented in front of the drone (see
Figure 17) when over-trust and under-trust were detected by
the framework. The message was intentionally indirect so as
to encourage the participants to re-consider their decisions
rather than blindly follow a cue.

To apply the proposed framework to the autonomous drone
navigation tasks, we modified the behavior measurement to
capture users’ choice behaviors.

Let bi be a sampled behavior at a timing i (0 ≤ i ≤ N ),
where bi = {1 : reliance, 0 : no reliance}, and N is the
maximum sampled timing of the task. Let Bt be a moving
average of bi at a timing t (t ≥ W ).

Bt =
1
W

t∑
i=t−W

bi, (3)

whereW (0 ≤ w ≤ N ) is the size of the time window defined
in accordance with the characteristics of the cooperation task.
Let K be a specified threshold. If Bt > K , it means P̂A > PH .
Otherwise, it indicates P̂A < PH .
The second terms of (1) and (2), PA could be calculated

with the sensor models and algorithms used to implement the
system, and PH could be estimated by using the parameters
of a target task and environmental conditions. Therefore,
the second terms can be also estimated.

2) PARTICIPANTS AND SCENARIO
A total of 36 online participants (30 male, 6 female) were
recruited a cloud-sourcing service provided by Yahoo! Japan.
Participants were randomly assigned to one of two groups:
the NoTCC group (without TCC) and the TCC group (with
TCC). Four of the male participants failed to complete the
experiment due to large deviations from the course. This left
us 32 participants whose ages ranged from 22 to 70 years old
(M = 46.6, SD = 11.4).

We defined the ABA scenario of under-trust (A) and over-
trust (B) by manipulating the reliability of the auto-pilot.
In the two A conditions, good weather conditions were sim-
ulated. The screen brightness was 100%, and there were
no sound effects except for the sound of the drone flying.
The parameters of the PID control were configured so that
PA became 0.93 and 0.91 in the first A (A1) condition and
the second A (A2) conditions respectively, which means the
drone with auto-pilot flew accurately along the course. In the
B condition, a thunderstorm was simulated with a blurred
and dark (40% brightness) screen and with sound effects.
The cross-track errors, which were inputs to the PID control,
were artificially distorted to simulate the deteriorated sensing
accuracy under the bad weather conditions. This made PA

deteriorate to 0.69, and the drone with auto-pilot would thus
often be off course. The participants were expected to take
over the control of the drone (called ‘‘disengagement’’ in
autonomous driving) when they saw the drone with auto-pilot
fail to stay on course.

3) PROCEDURES
The online experiment started with an instruction phase.
The participants were given an instruction stating that the goal
of the experiment was to fly the drone along the 10-km course
within 15 minutes. They were told that the score would be
better if the flight was more accurate. They learned that the
reliability of the drone’s auto-pilot, which was continuously
displayed on the indicator, was very high, although it could
fluctuate depending on the weather conditions. Next, the
training phase started. The participants started a practice
flight of the drone and experienced both the auto-pilot and the
manual-pilot with some guidance on the screen. The speed of
the drone was automatically adjusted according to the perfor-
mance of the PC of each participant to equalize the conditions
of the experiment. This phase was finished when the drone
reached the end of the 3-km training course, and the main
phase of the experiment was started with the A condition. The
proposed detection framework was applied during this phase.
The first A condition (hereinafter, called the A1 condition)
changed to the B condition followed by the second A con-
dition (hereinafter, called the A2 condition). Each condition
lasted for 3.3 km. When the drone reached the goal of the
10-km main course or the elapsed time exceeded 15 minutes,
the main phase was finished. After the experiment, the partic-
ipants were asked to fill out a post-experiment questionnaire.
The algorithm A2 ‘‘Adaptive Trust Calibration (2)’’ based
on the proposed framework was applied in the experiment.
The while loop in the algorithm was implemented as a timer-
event handling loop in the experimental system. The timer-
event was fired every 0.12 second. The moving average of
the participants behavior were calculated at each timer-event.
The window size was 12 seconds (W = 100), which was suit-
able for capturing the changes in trajectory for the prepared
course.

4) ESTIMATION OF PH AND MANIPULATION CHECK
We assumed that the drone’s auto pilot would utilize a
visual SLAM algorithm in the real situations to locate
its position. Although the robust algorithms are proposed,
low-illumination scenes remain challenging tasks [54].
Moreover, as described before, the work of [50] demon-
strated that human image recognition is still better than the
top-performing deep neural networks in the case of image
degradation. These pieces of work could provide a basis for
estimating the second terms of the proposed framework in
the experiment. We assumed that PA would fluctuate more
widely than PH under changing weather conditions, and we
estimated that the inequality PA > PH was true during the
good weather period and false during the bad one. We did
a pre-experiment to measure PH by asking the participants
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Algorithm A2 Adaptive Trust Calibration (2)
Initialize:
W ⇐ 100; K ⇐ 0.5:

while the drone is not reached the goal and not time-over
do
Get SampledBehavior ; /* 1:Auto or 0:Manual */
Estimate PH and PA;

if MovingAve(SampledBehavior,W ) > K then
Behavior ⇐ AutoPilot;

else
Behavior ⇐ ManualPilot;

end if
if Behavior = AutoPilot and PH > PA then

Over-trust is detected and TCC is presented to the
user;

else if Behavior = ManualPilot and PH < PA then
Under-trust is detected and TCC is presented to the
user;

end if

end while

to fly the drone with the manual-pilot only. Twenty par-
ticipants [17 male, 3 female, mean age 40.0 (SD = 12.0)]
were recruited through a cloud-sourcing service provided by
Yahoo! Japan. They performed themanual navigation tasks in
accordance with the same procedure of the main experiment.
The results indicated that the mean of the success rates of the
manual-pilot were 0.79, 0.80, 0.81 for the A1 condition,
the B condition and the A2 condition, respectively. One-
sample t-tests revealed that PA > PH in the A1 condition
[t(19) = −3.04, p < 0.01,Cohen′sd = 0.68] and also in the
A2 condition [t(19) = −2.19, p = 0.04,Cohen′sd = 0.52].
Another one-sample t-test indicated that PA < PH in the B
condition [t(19) = 2.31, p = 0.03,Cohen′sd = 0.49].
These results indicated that our assumptions were valid in the
current experiment.

5) DEPENDENT VARIABLES
In this experiment, three things were measured as the depen-
dent variables. TCC rates are the rates of the frequency at
which TCCs were presented to the participants, indicating
how our framework was working during the experiment.
Manual-pilot rates are the mean values of the manual-pilot
ratio for each condition, showing how the participants relied
(or did not rely) on the drone’s auto-pilot and therefore
indicating their trust calibration status. The means of cross-
track errors indicates the task performances or how well the
collaborative flight tasks between auto-pilot andmanual-pilot
were done.

B. RESULTS
Of the 32 participants, 17 were in the NoTCC group and
15 were in the TCC group. The average time taken to

finish the main phase of the experiment was XX minuets
YY seconds.

FIGURE 18. TCC rates.

1) TCC RATES
Figure18 illustrates TCC rates for each conditions in the TCC
group. TCCs were presented when under-trust was detected
in the A1 condition and A2 condition, and when over-trust
was detected in the B condition. The result of a one-way
ANOVA showed that the effect of the ABA conditions on
the TCC rates was significant [F(2, 28) = 6.41, p <

0.01, η2p = 0.31]. The post-hoc analysis using the Holm-
Bonferroni method showed that TCC rates for the A1 con-
dition was significant larger than that for the B condition
[t(14) = 2.77, adj.p = 0.045] and the A2 condition [t(14) =
2.72, adj.p = 0.045]. TCC rates for the B condition was
significant smaller than that for A2 condition [t(14) = 2.17,
adj.p = 0.048].

2) MANUAL-PILOT RATES
Figure 19 shows the manual rates in each group. The result
of the one-way ANOVA for the NoTCC group did not show
any significant difference in the manual rates among the three
conditions [F(2, 32) = 1.60, p = 0.22, η2p = 0.09]. On the
other hand, the one-way ANOVA for the TCC group revealed
the effect of the conditions [F(2, 28) = 32.6, p < 0.001,
η2p = 0.70]. Post-hoc analysis using he Holm-Bonferroni
method showed that the manual rates for the B condition was
significantly larger than those for the A1 condition [t(14) =
6.68, adj.p < 0.001] and for the A2 condition [t(14) = 5.72,
adj.p < 0.001].

3) CROSS-TRACK ERRORS
Figure 20 illustrates the mean values of the cross-track errors.
To evaluate performances of collaborative tasks between
auto-pilot and manual-pilot, the cross-track errors of the
NoTCC group and the TCC groups are compared with that of
the manual-pilot only group measured in the pre-experiment,
and also with that of the auto-pilot only. Although the one-
way ANOVA for the cross-track errors did not showed the
significant difference among the groups, the multiple com-
parisons using the Holm-Bonferroni method indicated that
the difference between the NoTCC group and the TCC group
was close to significance [t(25.3) = 2.49, adj.p = 0.06,
Cohen′s d = 2.77].
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FIGURE 19. Manual-pilot rates.

FIGURE 20. Cross-track errors.

C. DISCUSSION
In the A1 and A2 conditions, the TCC rates showed that
the TCAI detected the under-trust and presented TCCs. The
manual-pilot rates in the TCC group significantly increased
from the A1 condition to the B condition, and significantly
decreased from the B condition to A2 condition. No such
changes among the conditions were observed in the NoTCC
group.We consider these results supported the hypothesisH1
in the case of under-trust. TCC groups showed smaller cross-
track errors than the NoTCC group, although the difference
was close to significance. Therefore, we consider that the
results partially supported the hypothesis H2. The TCCs
successfully triggered the participants to change their choice
behaviors, and the task performances were improved. The
manual-pilot rates in the NoTCC group were kept high even
when the indicator showed high auto-pilot reliability in the
A1 and A2 conditions. The system transparency provided by
the indicator did not help the participants recalibrate their
trust in the auto-pilot properly. In contrast, TCCs adaptively
presented at the time of over-trust/under-trust changed the
participants’ behaviors in the TCC group. Therefore, these
results supported the hypothesis H3.
In this experiment, the manual rates were higher than

initially expected. This strong tendency of under-trust in
both groups might be caused by the participants’ preventive
actions when they anticipated that drone was about to go out
of the course. In the post-experiment questionnaire results,
forty percent of the participants answered that they selected

the manual-pilot when they notice that the drone was not
heading along the course direction (even though the drone
was still on the course). This early intervention observed in
the experiment suggested that the drone’s postures would sig-
nificantly impact the participants’ trust than the auto-pilot’s
reliability indicator.

Although we used a verbal TCC in this experiment, its
calibration effect was milder than in the first evaluation. This
result may be due to a mental workload of reading the text
message of verbal TCC during the real-time navigation task.
The other type of TCCs, such as the visual TCC or the audio
TCC shown in Figure 1, could be more effective as they are
more intuitive or with a different modality.

In summary, we demonstrated that our framework could
promote trust calibration in the continuous real-time task. The
task performance was also improved as a result of the proper
trust calibration.

VII. GENERAL DISCUSSION
A. APPLICABILITY OF PROPOSED FRAMEWORK
The empirical studies described above demonstrated that the
proposed framework helped the participants recalibrate their
trust when they were performing the two types of cooperative
tasks with the Task-AIs. In order to examine to what extent
the proposed framework is applicable to various applications
of human-AI cooperation, we discuss the prerequisites of the
framework: types of cooperative sequences and performance-
centric view of trust.

1) TYPES OF COOPERATIVE SEQUENCES
The trust equations are defined on the premise that human-
AI cooperation is a series of actions taken by a human user
repeatedly working on selection problems to decide on either
AI execution or manual execution. Both the human user
and the Task-AI can perform the task. Figure 21 illustrates
the four possible sequences of task executions and selection
decisions. The cooperative sequences discussed here are for
a team that consists of one human user and one Task-AI to
focus on the trust calibration issues that occur between them.

Types A0, A1, and A2 are within the scope of the proposed
framework. The sequence shown in the upper left of this
figure is Type A0. The human user should select who exe-
cutes the task. The pothole inspection in the first evaluation
corresponds to this type.

In Type A1, the Task-AI first executes a task, and the
human user monitors the status. Then, the human user
evaluates the result of the task execution and executes the
task manually if necessary. Type A1 is a variation of Type
A0with the condition that the AI’s task execution process and
status can be monitored. The drone navigation in the second
evaluation corresponds to this type. Applications of this type
include SAE level 4 autonomous driving (driver and AI) [53],
supervised unmanned vehicles (remote pilot and AI), and
telepresence robot navigation (operator and AI).

If there is no resource competition required for the task
execution and it is not necessary or possible for the human
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FIGURE 21. Types of cooperative sequences.

user to monitor the AI task execution, both the human and
AI can execute the same task simultaneously, and the human
can compare the results to choose which one to adopt. This
sequence is illustrated as Type A2. Applications such as
collaborative medical diagnostics (doctor and AI), product
visual inspection (inspector and AI) and baggage screening
systems (airport clerk and AI) could be examples of this type.

The cooperative sequence shown as Type B in Figure 21,
where onlyAI can perform the target task, is beyond the scope
of the current study. In Type B, the human user’s tasks are
monitoring the AI’s task execution (if possible) and accepting
or rejecting the result. Although it is clear that human trust
in AI has a significant impact on the decision to accept or
reject the result, the current framework cannot be applied to
Type B applications where the human user is not capable
of executing a task. Cooperative activities corresponding to
this type include AI doctors (AI and patient) and SAE level
5 autonomous driving (AI and passenger).

According to the LOA (Levels of Automation) defined
by Kaber and Endsley [55], [56], human-AI cooperation of
Types A0, A1, and A2 would be at the level of ‘‘shared
control,’’ in which a human user decides on a particular option
or strategy.

Although the cooperation sequences discussed here are
in quite simple forms, there is a wide range of potential
applications within the scope of the proposed framework.

2) PERFORMANCE-CENTRIC VIEW OF TRUST
We focus on trust factors related to system performance,
as achieving higher performance is one of the most important
goals of human-AI cooperation. If we can assume that a
human user will act rationally and deterministically accord-
ing to the estimated performance, trust can be viewed as
the observable human behavior of selecting a better perfor-
mance agent. In the proposed framework, the TCAI must
be able to estimate two types of performance: the Task-AI’s
performance PA and the human user’s performance P̂A. The
TCAI knows how the Task-AI works, so it could use the
internal system information to calculate the Task-AI per-
formance, PA. The human user’s performance, P̂H , could
be estimated by the TCAI with a model-based or statistical
approach. The results of the previous studies [114, 115] could
provide a basis for such estimation. A top-down approach is
considered a better way to build a model using prior knowl-
edge about the cooperative task’s features and structure. It is
also useful to take a bottom-up approach that utilizes the data
collected beforehand or on-the-fly during the task execution
if an appropriate estimation model is not available.

B. ROLE OF TRUST CALIBRATION AI
Of the roles an AI system should play in human-AI coopera-
tion, a Task-AI performs a domain-specific role and a TCAI
performs a meta role of facilitating proper trust calibration.

Previous studies on human-agent teaming proposed their
cooperation frameworks. Vecht et al. [57], [58] proposed a
concept of social AI modules that serve as intelligent mid-
dleware aiming to transform task-oriented AI components
and humans into a coherent human-agent team. One of the
key functionalities of the social AI modules is to mediate
high-level communication between humans and AIs. In their
model, task-oriented AI components are designed to per-
form a specific task optimally but may not be optimized
for human interaction. A pair of a task-oriented AI and a
corresponding social AI module is equivalent to our Task-
AI concept, which is designed to provide task-dependent
information through its system transparency interface. Their
model does not directly address trust calibration issues, which
are the main target of our proposed framework with the
TCAI. Cummings and Bruni [59] discussed three distinct
roles in the cooperative decision-making process: the moder-
ator, generator, and decider. The moderator in their process
model is the agent that keeps the decision-making process
moving forward. The generator is the agent that generates
candidates of feasible solutions, and the decider is the agent
that makes the final decision. In our proposed framework,
which focuses on managing the trust calibration process in
human-AI cooperation, the TCAI plays a similar role as the
moderator and generator in their model. In addition to such
functions, the TCAI encourages human users to recalibrate
their trust by issuing TCCs so that the user could make better
selections, thus achieving higher cooperation performances.
The decider in our framework is always the human user.
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The separation of a TCAI from a Task-AI allows the trust
calibration process to be defined more clearly, therefore we
expect that the proposed framework would facilitate a better
design of collaborative systems.

VIII. CONCLUSION
We approached the research challenges in trust calibration
with an emphasis on performance and human behavior in
human-AI cooperation. In the current study, we extended
our previously proposed method by introducing a concep-
tual entity called TCAI, which supervises the trust calibra-
tion process. We did two empirical studies to evaluate the
proposed framework. The first evaluation revealed that the
framework worked well with a visual search task involving
pothole inspection under dynamic trust changes. The second
evaluation indicated that the framework was also effective for
trust calibration in a real-time control task involving drone
navigation.

The recent proposal of Trust Engineering for human-
AI teaming by Ezer et al. [60] insisted that there are still
many challenges in managing trust in AI systems that are
increasingly complex and work within imperfect information
environments. They proposed six conceptual components in
Trust Engineering: adaptability, communication, explainabil-
ity, training/knowledge, assessment, and security. The results
of the current study contribute to the first three components,
which are mainly related to interactions between humans
and AI.

Shneiderman [61] proposed a concept called human-
centered artificial intelligence and discussed how to avoid
the dangers of excessive human control or excessive com-
puter control in Human-AI cooperation. In contrast to our
framework, he emphasized human self-efficacy, mastery, and
responsibility.

There are many other factors influencing trust to be con-
sidered in future research. Human-related factors such as
personality, propensity to trust, or automation bias should
be investigated further. The proposed detection algorithm
made a binary decision with a simple moving average. Future
research should involve exploring a different way of repre-
senting the over-trust or under-trust status, such as defining
the status as a probability depending on the degree of miscali-
bration of trust. Althoughwe have learned some lessons in the
empirical studies indicating that the TCCs were more effec-
tive than a simple reliability indicator in the case of miscal-
ibration, further research on multimodal user interfaces [62]
would be necessary to evaluate the concept of TCCs.

The proposed framework for adaptive trust calibration has
a simple structure that separates task-dependent and non-
task-dependent parts, and it could be applied to many appli-
cation situations. Despite several limitations, we believe that
the framework could contribute to a baseline design of trust-
worthy systems for better human-AI cooperation.
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