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ABSTRACT Current attention or transform modules in Convolutional Neural Networks (CNNs) are
designed pursuing lightweight and in-place. Generally, we need to decrease the channel dimension of input
feature maps for reducing computation cost firstly. And then we do some transformation for extracting
weight maps or converting to other feature space etc. Finally, we increase the channel dimension back for
outputting feature maps with the same size as input. When we change the channel dimension, commonly
we choose 1 × 1 convolutional layers or fully connected layers. They are simple and effective, but need
learning parameters and consuming more memory with other computation resources. We propose a novel
parameter free method named Channel Transformer Network (CTN) to decrease or increase channels for
these modules whilst keeping most information with lower computation complexity. We also introduce a
Video Co-segment Attentive Network (VCAN) for person re-identification (ReID) to improve pedestrian’s
noticeable representation across multiple video frames. We embed CTN in Non-local, CBAM, COSAM and
VCAN blocks to replace 1 × 1 convolutional or fully connected layers. Experiments of VCAN and CTN
embedding models onMars dataset for person ReID show significant performance in computation efficiency
and accuracy, especially VCAN reaches 90.05% in Rank-1. We believe CTN can also be used in other vision
tasks like image classification and object detection etc.

INDEX TERMS Channel transform, person re-identification, pyramid pooling, co-segmentation.

I. INTRODUCTION
CNNs were inspired by biological vision cortex where small
areas of neurons are responsive to particular regions of the
visual field namely receptive field [1] which is prevalent in
modern CNNs. A self-organized neural network model was
proposed by Fukushima in [2] for visual pattern recogni-
tion named ‘‘neocognitron’’, which had a similar hierarchy
structure of the visual nervous system introduced by Hubel
and Wiesel in [1]. Thanks to this type of hierarchical struc-
ture, neocognitron had an important capability to recognize
stimulus patterns based on appearance similarity neglecting
their position and small distortion, which is just the basis of
current popular convolutional and pooling layers in today’s
dominant CNNs. These works established later research on
CNNs, especially after LeCun introducing back-propagation
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algorithm to it for gradient based learning in LeNet-5 [3]
which formed the prototype of contemporary CNNs. With
the limitation of dataset scale, network size, hardware etc.,
early CNNs were very hard to be trained and the recognition
accuracy were even worse than traditional algorithms such
as SVM, Random Forests etc. Thus, they were not received
enough interests till Hinton won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) with [4].

An increasing number of works like ResNet [5] and
ResNeXt [6] have shown that deeper and wider CNNs can
extract rich semantic information. Whilst attention mecha-
nism has been another important factor in deep CNNs since
it can improve recognition performance through multiplying
feature maps by weight score maps. But there exists a prob-
lem that the number of feature maps which is called channel
dimension increases dramatically in deep CNNs though fea-
ture map spatial size getting smaller. Therefore, it will take
too much computation resources if we calculate channel-wise
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weight score directly. We need to reduce channel dimension
and keep spatial size of feature maps.

Normally, we design an attention or transform block which
can be inserted into any place in CNNs without affecting
the size of input and output feature maps, such as Non-
local [7], [8], CBAM [9], COSAM [10], CosegCA [11], etc.
In these blocks or modules, 1 × 1 convolutional layers or
fully connected layers are used to reduce channel dimension
at the beginning for saving computation complexity. And at
the end, they are used again to increase channel dimension for
restoring the size of feature maps. It’s really convenient and
efficient to change channel dimension with 1 × 1 convolu-
tional layers or fully connected layers, but need learningmore
network parameters and costing more computation resources.

In this paper, we propose the parameter-free Channel
Transformer Network (CTN) to replace 1 × 1 convolutional
layers or fully connected layers for decreasing or increasing
channel dimension with less computation and most informa-
tion in other CNNmodules. Specifically, we design CTNwith
two parts to change channel dimension, one is for decreas-
ing, and the other one is for increasing. We also present
the lightweight and efficient Video Co-segment Attentive
Network (VCAN) based on CosegCA [11] for person ReID
to better study CTN. Then we inject CTN into Non-local
[7], [8], CBAM [9], COSAM [10] and VCAN to make them
parameter-free when transforming channel dimension. To the
best of our knowledge, this is the first work that shows how to
change channel dimension in a parameter-free way for saving
network parameters and computation resources.

The main contribution of the paper exists in three folds:

(1) We propose a novel method named Channel Trans-
former Network (CTN) for channel dimension trans-
forming in CNN modules, including decreasing and
increasing.

(2) We also introduce a Video Co-segment Attentive
Network (VCAN) for person ReID to improve
video saliency representation which achieves 90.05%
in Rank-1 on Mars dataset outperforming the
state-of-the-arts.

(3) Extensive experiments onMars dataset for video-based
person ReID show significant performance of CTN and
VCAN in accuracy and computation complexity. CTN
embedding models reach more than 89.4% in Rank-1
with lower parameters and computation resources.

The rest of the paper is organized as follows: Recent related
works with this paper are reviewed in Section II. Designs of
the proposed methods are presented in Section III. Imple-
mentation details and experimental results are reported in
Section IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORKS
A. PERSON RE-IDENTIFICATION
The task aims to recognize a person through different non-
overlapping cameras. It’s really a challenging problem since
there exist a lot of variations like view point, background

clutter, occlusion, misalignment, etc. There have been lots
of works focusing on two branches for the problem, one is
image-based person ReID [12]–[21], the other one is video-
based [8], [10], [22]–[34].

Image-based methods mainly extract local and global spa-
tial information from one image of a person identity such
as [12], [13]. Guo et al. designed an efficient end-to-end
fully convolutional Siamese [35] network and exploredmulti-
level similarity for improving accuracy in [14]. He et al.
proposed a novel method namely Deep Spatial feature
Reconstruction (DSR) to resolve occlusion problem in [15].
Kalayeh et al. added a semantic segmentation branch for
parsing main human body regions to improve recognition
performance in [16]. Ke et al. introduced a new ID-adaption
network to transform ID-discriminative embedding features
to a common discriminative latent space for adapting unseen
identities in [17]. Sarfraz et al. utilized 14 joint keypoints
of human body and different viewpoints to explore fine and
coarse pose information for improving pedestrian represen-
tation in [18]. Zhang et al. utilized attribute information to
learn an attribute-semantic and identity-discriminative fea-
ture representation for better performance in [19]. Dai et al.
designed a relearning network with a backbone model pre-
trained on a large amount of labeled non-pedestrian images
in [20]. It could learn domain-specific features for strong
generalization capability of person ReID. Wang et al. pre-
sented a learning-to-mis-rank formulation and a novel multi-
stage network architecture to attack person ReID systems for
examining their robustness in [21].

Video-based methods can make full use of spatial and
temporal information in multiple frames within a person
tracklet. Chen et al. introduced OFEI (Optical Flow Energy
Image) feature to exploit spatial-temporally stable regions of
a pedestrian across frames in [22]. Mclaughlin et al. proposed
a Siamese [35] network structure in [23]. They used CNN for
extracting spatial features of multi-frames and RNN (Recur-
rent Neural Network) for exploring temporal information
from them. Then they utilized temporal pooling layer to fuse
the feature maps output from RNN. Yan et al. designed a
similar structure like [23] in [24]. They used LSTM (Long
Short-Term Memory) for aggregating temporal information
and fully connected layers for fusing whole representation.
Hermans et al. showed in [25] that their batch hard triplet
loss with soft margin achieved outstanding performance in
person ReID compared with both traditional triplet loss and
other published variants before. Zhou et al. presented a neural
network architecture including temporal attention module
for metric learning and spatial recurrent module for feature
learning in [26]. The temporal attention module could find
most discriminative images within the input video sequence.
And the spatial recurrent module could ensemble the around
information of every point in feature maps to calculate the
similarity between two video tracklets. Chen et al. divided
a long video tracklet into several short subsequences and
aggregated top-ranked similarities of them for similarity esti-
mation in [27]. It could minimize the intra-class variation in
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appearance whilst keeping other spatial and temporal infor-
mation. Gao et al. revisited and compared temporal modeling
approaches for video-based person ReID in [28]. They also
proposed a new attention generation network for extracting
temporal information. Li et al. proposed a spatiotemporal
attention model with a diversity regularization term in [29].
It could find distinctive human body parts automatically for
better recognition accuracy. Wu et al. introduced a stepwise
learning method in [30] for utilizing unlabeled pedestrian
video sequences to improve the model performance. Zhang
et al. imposed a reinforcement learning based method [31] to
train an agent for discriminating a pair of images one time.
Most methods focused on extracting discriminative clip-level
features, whereas Isobe et al. highlighted the clip-level data
augmentation in [32], since inconsistent data augmentation
within a video sequence brought additional noise. Tempo-
ral information is very important in video sequences, and
Li et al. exploited the multi-granularity temporal clues in a
video clip in [33]. They made use of parallel dilated convolu-
tions with different rates for short-term cues and a temporal
self-attention model for long-term dependencies. Wu et al.
utilized a GNN (Graph Neural Network) to leverage the
correlations between the local parts across frames in a tracklet
of a person in [34] for better whole pedestrian representation.
Long-range dependences in feature maps are very important
in recognition performance. Nevertheless, a large number of
methods neglected it. Liu et al. introduced Non-local [7]
to capture it in feature maps within different layers in [8].
They also provided a spatial and temporal efficient method to
reduce FLOPs (floating-point operations per second) for sav-
ing computation resources. Subramaniam et al. formulated a
Co-segmentation based AttentionModule (COSAM) [10] for
video-based person ReID. The module could help to extract
a common set of salient feature maps among video frames
through a Normalized Cross Correlation (NCC) layer and a
summarization layer.

B. ATTENTION MECHANISM
More and more works have proved the excellence of attention
mechanism. It has been another important factor in CNN
design like depth in ResNet [5], width in Inception [36]
and cardinality in ResNeXt [6]. It can help to explore more
salient information from feature maps for better recognition
accuracy. Wang et al. presented a residual style Non-local
building block in [7] to capture long-range dependencies in
feature maps. Firstly, they used three 1 × 1 convolutional
layers to reduce the channel dimension of the input fea-
ture maps by half respectively, and got three scaled feature
maps. Secondly, they fused two of them by matrix multipli-
cation followed by Softmax operation to get a weight matrix
which was multiplied by the left scaled feature maps later.
Finally, they utilized another 1 × 1 convolutional layer to
restore channel dimension as input feature maps, and added
it element-wise with the input to get the output self-attention
feature maps with the same size as the input ones. Non-local

has significant performance for vision recognition tasks, but
it’s very time and memory consuming. Zhu et al. tried to
reduce the matrix computation complexity by an asymmetric
Non-local architecture in which SPPNet [37] was used to
decrease the spatial size of feature maps in [38]. Hu et al.
proposed a novel channel-wise attention unit named Squeeze-
and-Excitation (SE) block [39]. It could be inserted into
modern convolutional networks for improving performance
like SE-ResNet and SE-Inception. Woo et al. introduced a
simple but effective attention block termed Convolutional
Block Attention Module (CBAM) in [9]. It was inserted as an
SE (Squeeze-and-Excitation) module in bottleneck blocks of
SE-ResNet [39], and fulfilled channel-wise and spatial-wise
attention to improve accuracy.

C. OBJECT CO-SEGMENTATION
Co-segmentation is mainly used to segment objects with the
same category from several images even the class is not
belonging to the training dataset. It can help to remove back-
ground noise and keep salient feature information. Li et al.
presented a deep learning based Siamese encoder-decoder
structure for object co-segmentation in DOCS [40]. They
utilized a mutual correlation layer to calculate semantic simi-
larity between a pair of images. Thus, it’s hard to co-segment
multiple images at a time. They also built a large object co-
segmentation dataset with image pairs from PASCAL dataset
for training. Chen et al. proposed a channel-wise attention
based co-segmentation module namely CosegCA in [11].
It’s simple yet effective with low computation complexity
which was settled in the bottleneck layer of VGG16 [41]
for choosing related features semantically. CosegCA pro-
vided an efficient instant group co-segmentation method to
reduce complexity for co-segmenting several images (more
than 2) through group average channel-wise attention in
linear time complexity. Hsu et al. presented instance co-
segmentation aiming to recognize and segment all instances
belonging to the same class from two images in [42]. They
leveraged co-peak search and instance mask segmentation
to outperform the state-of-the-art methods. Zhang et al.
introduced a spatial and semantic modulated deep network
for object co-segmentation in [43]. The spatial modulator
could learn a mask with the correlations of image feature
descriptors. It focused on the objects of the same class for
each image. The semantic modulator was designed for image
classification. It could co-segment multi-images at a time
without the limitation of paired images. Hung et al. pro-
posed a self-supervised learning based part co-segmentation
method in [44]. It could segment parts within an image
under the help of some loss functions as self-supervised con-
straints. Lu et al. presented a Co-attention Siamese Network
(COSNet) [45] to segment foreground objects across video
frames through appearance and motion information. COSNet
utilized multiple reference frames for useful information
which frequently occurred as active foreground objects in
segmentation stage.
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FIGURE 1. Diagram of CDM-SegPool. The input feature maps are
segmented into Cout parts, and calculated by mean in these segments in
channel dimension.

III. METHOD
We propose a novel Channel Transformer Network (CTN)
to handle channels transforming problem which includes
two parts, one for down-sampling channels named
CDM (Channel Down-sample Module) (Fig. 1, Fig. 2,
Algorithm 1), and the other one for up-sampling chan-
nels called CUM (Channel Up-sample Module) (Fig. 3,
Algorithm 2). CTN can be easily embedded into other atten-
tion or transform blocks like Non-local [7], [8], CBAM [9],
COSAM [10], etc. to replace 1 × 1 convolutional layers or
fully connected layers for reducing parameters and saving
computation resources.

We also present a Video Co-segment Attentive Network
(VCAN) for person ReID (Fig. 4, Fig. 5) to better study
our CTN, in which CosegCA [11] is introduced to video-
based person ReID, and adapted for multiple frames (more
than 2) to extract pedestrian’s noticeable features. And we
further leverage CTN instead of fully connected layers in
channel attention module (Fig. 5) of VCAN to get model
CTN-VCAN with lower network parameters and computa-
tional complexity.

A. CHANNEL DOWN-SAMPLE MODULE
Given feature maps with size ofCin×H×W in whichCin,H ,
W represents input channels, height and width respectively.
Our CDM (Channel Down-sample Module) provides two
methods named SegPool (Segment Pool) and PymPool (Pyra-
mid Pool) for reducing channels from dimension Cin = 2n to
Cout = 2m (n > m) which are both the power of 2. CDM also
supplies another method called IrregularPool for decreasing
irregular channels, dimension of which is not the power of 2.

1) CDM-SEGPOOL
SegPool separates given feature maps into Cout parts accord-
ing to reduction rate as

R =
Cin
Cout
= 2n−m, (1)

where n and m depend on Cin and Cout , as shown in Fig. 1,
and calculates mean in each part along channel dimension.
Then we get down-sampled feature maps with new size of
Cout ×H ×W . We can easily see that, CDM-SegPool is very
straight, simple, lightweight and efficient, yet lack of thinking
about multi-scale information. It has been witnessed effective
in SPPNet [37], FPN (Feature Pyramid Networks) [46] and
multi-scale input for multi-stage discriminator [21] etc. that
multi-scale information is very important in feature represen-
tation. These methods mainly focused on multi-scale spatial
information, yet we take care of it in channel dimension from
a new insight.

2) CDM-PYMPOOL
Multi-scale information can help to improve recognition
accuracy. So, we design CDM-PymPool to capture it along
channel dimension in pyramid way like SPPNet [37] but not
in spatial field as shown in Fig. 2. CDM-PymPool does the
same work as CDM-SegPool for reducing regular channels
which are the power of 2. It’s based on CDM-SegPool in sev-
eral rounds with a series of reduction rates. Rounds number
is calculated as

Nr = logCout2 − 1, (2)

where Cout is output channels. Reduction rate in each round
is calculated as

Rk = Rbase ∗ 2k+1, k ∈ {0, 1, . . . ,Nr − 1}, (3)

where Rbase comes from (1).
In Fig. 2, input feature maps Fin ∈ RCin×H×W are down-

sampled by SegPool in several times with different reduction
rates got from (3), and then they are concatenated together
with global mean and min of input feature maps along chan-
nel dimension. At last, we get output feature maps Fout ∈
RCout×H×W . The relationship amongCin,Cout andRk is given
as

Cout = Cin ×
∑Nr−1

k=0

1
Rk
+ 2, (4)

whereCin andCout are input and output channels respectively,
Nr is rounds number got by (2), and Rk is the kth reduction
rate got by (3).We can find that we need two another channels
got by global mean and min or other methods to get output
feature maps with channels number Cout .
As introduced above, CDM-SegPool and CDM-PymPool

are suitable for input and output channels with the power of 2,
not for irregular channels (not the power of 2). So we design
another method CDM-IrregularPool for this condition.

3) CDM-IRREGULARPOOL
The method is also based on CDM-SegPool but take respon-
sible for decreasing feature maps on channels with irregular
input or output ones, dimension of which is not the power
of 2.

As illustrated in algorithm 1, it firstly reduces channels
by half in a loop while the latest channel number hc is
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FIGURE 2. Diagram of CDM-PymPool. The channel dimension of input feature maps is reduced in pyramid way based on CDM-SegPool in Nr times, and
outputs from all rounds are concatenated with global mean and min or other methods along channel dimension.

Algorithm 1 CDM-IrregularPool

Input: Input feature maps Fin ∈ RCin×H×W

Output: Output feature maps Fout ∈ RCout×H×W

1: hc← Cin, lc← Cout
2: while hc ≥ 2× lc
3: if hc can be divided by 2
4: do CDM-SegPool with reduction rate 2
5: hc← hc/2
6: else
7: do CDM-SegPool with reduction rate 2 on hc− 1

channels
8: concatenate output feature maps with left one
9: hc← hc− 1/

2+ 1
10: end while
11: if hc > lc
12: dc← hc− lc
13: choose double dc feature maps and do CDM-SegPool

with reduction rate 2
14: concatenate output feature maps with left ones
15: Fout ← output feature maps

bigger than or equal to double output channel number lc.
In the loop, if the input channels can be divided by 2, they
are decreased by CDM-SegPool with reduction rate 2 in
half directly. Else, one channel is neglected and the left are
reduced by CDM-SegPool with reduction rate 2. The output
feature maps are concatenated with the ignored one along

channel dimension. hc is updated with the latest channel
number. And then, after the loop, it does CDM-SegPool
on double dc channels with reduction rate 2, where dc is
the delta channel number between the latest hc and the tar-
get lc, and concatenates the output with left ones. At last,
we get the final output feature maps with the target channel
number Cout .

B. CHANNEL UP-SAMPLE MODULE
Our CUM (Channel Up-sample Module) also provides two
methods namely Sample (Upsample) and PymPool (Pyramid
Pool) for increasing channels from dimension Cin = 2n

to Cout = 2m(n < m) which are both the power of 2.
CUM presents another method named IrregularPool too for
increasing irregular channels, dimension of which is not the
power of 2.

1) CUM-SAMPLE
The method just do up-sample nearest for feature maps from
Fin ∈ RCin×H×W to Fout ∈ RCout×H×W with expansion rate
E as

E =
Cout
Cin
= 2m−n. (5)

We can up-sample the feature maps with a new dimension
from Cin × 1 × H ×W to Cin × E × H ×W , then reshape
it to Cout × H × W . It’s also very straight and efficient like
CDM-SegPool, but do reverse process.
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FIGURE 3. Diagram of CUM-PymPool within one expansion procedure. Input feature maps are down-sampled by several CDM-SegPools with reduction
rate 2, and all output feature maps are concatenated with original inputs, global mean and min, then outputs feature maps with double Cin channels.

2) CUM-PYMPOOL
CUM-PymPool increases input channels mainly based on
CDM-SegPool. It expands channels like CDM-PymPool with
multi-scale pooling on channels in pyramid way. Expansion
rate is as (5), and expansion number is as

NE = m− n. (6)

As shown in Fig. 3, in each expansion procedure, we do
several rounds CDM-SegPool operation to get multi-scale
pooling on channels, rounds number in the kth procedure is
as

Nk = logCin×2
k

2 − 1, k ∈ {0, 1, . . . ,NE − 1}. (7)

We execute Nk times CDM-SegPool with reduction rate 2
in the kth expansion process. And then we concatenate input
feature maps and all these outputs from each CDM-SegPool
with global mean and min to get the kth output feature maps
with Coutk channels. Coutk is as

Coutk = Cin × 2k ×
(
1+

∑Nk−1

i=0

1
2i+1

)
+ 2,

k ∈ {0, 1, . . . ,NE − 1}, (8)

Cout = Coutk , (k == NE − 1). (9)

After NE times expanding, we get output feature maps with
Cout channels.

3) CUM-IRREGULARPOOL
There also exist the scenes that increasing channels of feature
maps with irregular input or output ones, whose channel
dimension is not the power of 2. So we design this method
to cover it. The module is mainly based on CDM-SegPool
to get multi-scale channel pooling information concatenated

Algorithm 2 CUM-IrregularPool

Input: Input feature maps Fin ∈ RCin×H×W

Output: Output feature maps Fout ∈ RCout×H×W

1: lc← Cin, hc← Cout
2: while hc ≥ 1.5× lc
3: if lc can be divided by 2
4: do CDM-SegPool with reduction rate 2 on Fin
5: concatenate Fin with output feature maps
6: lc← lc+ lc

/
2

7: else
8: do CDM-SegPool with reduction rate 2 on Fin with

lc-1 channels
9: concatenate Fin with output feature maps
10: lc← lc+ lc− 1/

2
11: end while
12: Fnew← Fin
13: while lc < hc
14: dc← hc− lc, nc← channels of Fnew
15: while nc > dc
16: if nc can be divided by 2
17: do CDM-SegPool with reduction rate 2 on Fnew
18: else
19: do CDM-SegPool with reduction rate 2 on Fnew with

nc − 1 channels
20: end while
21: concatenate Fin with Fnew
22: lc← channels of the latest Fin
23: end while
24: Fout← output feature maps

with input ones as shown in algorithm 2. It increases chan-
nels in two loops. In the first loop, channels are increased

VOLUME 8, 2020 220767



F. Zhang et al.: Channel Transformer Network

FIGURE 4. Diagram of VCAN. Feature maps of input T video frames are extracted by pre-trained ResNet50, and passed through average pooling and
channel attention module to get channel-wise attention scores, then up-sampled with the same size of feature maps to get attention maps. The feature
maps accompanied with their attention maps are grouped into T/2 pairs randomly, and they are cross multiplied by opposite attention maps in a pair for
keeping noticeable information across frames.

gradually while hc is bigger than or equal to 1.5 times
the latest lc, where hc equals to the target Cout and lc is
initialized with input Cin but updated in the loop with the
latest channel number of Fin. If lc can be divided by 2,
the channels are decreased by CDM-SegPool with reduc-
tion rate 2 in half. Else, one channel is neglected and the
left are reduced by CDM-SegPool with reduction rate 2.
Fin is concatenated with output feature maps along channel
dimension, and lc is updated with the latest channel num-
ber of Fin. In the second loop, it increases channel number
like the first loop step by step in which the latest channel
number lc is ensured not to exceed hc after increasing until
equals to it. Then we get the output feature maps with size
of Cout × H ×W .

C. VIDEO CO-SEGMENT ATTENTIVE NETWORK
CosegCA [11] is an efficient and lightweight channel-wise
attention based co-segmentation module designed for co-
segmenting objects with the same category from a pair of
images. We believe it can considerably suppress irrelevant
objects and background noises from input paired images, and
help to extract salient information across video frames like
persons and their accessories in video-based person ReID
system.

Certainly, it can’t be leveraged in our framework directly
since multi-frames (T = 8) are chosen for learning in
which pedestrians and their wearables are what we want.

So, we optimized CosegCA for adapting our framework by
grouping input feature maps of T frames in pairs randomly
to extract salient person and related information. We call it
VCAN (Video Co-segment Attentive Network) as shown in
Fig. 4.

First of all, we use ResNet50 pre-trained on ImageNet [47]
to extract feature maps for given T video frames. Secondly,
we do average pooling operation on the feature maps for
calculating subsequent attention scores in channel attention
module as illustrated in Fig. 5. The first FC layer is used to
decrease the size of the input vector with reduction rate 4,
and the second FC layer is utilized to increase the size of the
transformed vector back. Both of the two FC layers are fol-
lowed by activation function Tanh and Sigmoid respectively
as [11]. And then, we up-sample the attention scores with the
same size of the feature maps to get the attention maps. Next,
we group the feature maps accompanied with their attention
maps into T /2 pairs. Finally, we cross multiply feature maps
by opposite attention maps in a pair to suppress irrelative
objects and background noises while keeping salient pedes-
trian and related information.

Themultiple frameswithin a person tracklet contain pedes-
trian and related accessories, while the background and inter-
ference information are various. Different channels across the
feature maps of one frame represent different semantic infor-
mation which is irrelevant to object position and scale. Since
the attention maps are up-sampled through channel-wise

220768 VOLUME 8, 2020



F. Zhang et al.: Channel Transformer Network

FIGURE 5. Diagram of channel attention module. Two Fully Connected
(FC) layers are followed by activation function Tanh and Sigmoid
respectively.

attention score vector, the feature maps can help to suppress
background and interference information well and retain
more information about pedestrian and related wearables
when multiplied by the other attention maps. Even if we
randomly group feature maps with related attention maps into
T /2 pairs, and cross-multiply the featuremaps by the opposite
attention maps in a pair.

IV. EXPERIMENTS
First of all, we inject our CTN(Channel Transformer Net-
work) into Non-local [7], [8], CBAM [9], COSAM [10] and
our VCAN (Video Co-segment Attentive Network) to replace
1×1 convolutional layers or fully connected layers. Secondly,
we evaluate them respectively in video-based person ReID on
MARS [48] dataset. And then, we do some ablation studies to
analyze the performance of them. Finally, we compare them
with the state-of-the-art methods in video-based personReID.
All experiments in this paper are carried out on two TITAN
RTX GPUs (24GB memory).

A. EXPERIMENTAL SETUP
1) DATASET
We select MARS [48] as our training and evaluating dataset,
since it’s one of the largest datasets in video-based person
ReID. It contains 1,261 person identities and about 20,000
tracklets captured by six cameras in Tsinghua University.
Each pedestrian occurs at least in two cameras and has around
13.2 tracklets on average.

2) EVALUATION PROTOCOLS
In MARS [48], dataset has been split into train and test sets,
and we follow settings in [8] which contains 625 identities
in train set and left in test set. We use Rank-1 accuracy
of Cumulative Matching Characteristics (CMC) and mean
Average Precision (mAP) to evaluate all our experiments.

3) IMPLEMENTATION DETAILS
We realize CBAM [9], COSAM [10], our VCAN and CTN
based on Liu’s framework [8] with Non-local [7], and choose
ResNet50 [5] pre-trained on ImageNet [47] as backbone
network. We replace 1 × 1 convolutional layers or fully
connected layers in Non-local, CBAM, COSAM and VCAN
with CTN. We follow Liu’s settings of hyper-parameters [8]

and RRS (Restricted Random Sampling) strategy [29] with
T = 8 for video frames selection. Selected frames are resized
to 256× 128 and augmented with random horizontal flip.
The last stride of ResNet50 is set to 1 for better performance
like [8] in all our experiments.

CBAM [9] is designed to replace SE (Squeeze-and-
Excitation) module in bottleneck block of SE-ResNet [39]
for improving classification and detection accuracy.We intro-
duce CBAM into video-based person ReID in our framework.
Ablation studies show that it’s better to insert CBAMbetween
layers in ResNet not as an se-module at the end of each
bottleneck block like [9] for video-based person ReID.

COSAM [10] is a co-segmentation based attention module
designed for video-based person ReID. It has a normalized
cross correlation layer and a summarization layer, which can
generate the corresponding spatial attention mask for input
feature maps. It uses feature maps of other T − 1 frames
to calculate cross correlations with the feature maps of the
selected one frame. So, channel dimension of input feature
maps in summarization layer is (T − 1) × H × W , where
T is the count of frames sampled from a video tracklet
which equals to 8 in our framework, H and W are height
and width of input feature maps respectively. We can easily
find out that the input channel dimension is irregular (not
the power of 2) in the spatial summarization layer, and we
need using CDM-IrregularPool module to reduce channel
dimension when CTN is embedded into COSAM.

We implement ResNet50-CBAM, ResNet50-COSAM,
ResNet50-VCAN and ResNet50-Non-local in the same
framework with the same hyper-parameter settings as in [8],
and train the four networks for 200 epochs. We follow [8] to
choose cross-entropy loss and triplet loss for training and use
Adam optimizer with initial learning rate 0.0001 for back-
propagation. Learning rate is decayed by 10 every 50 epochs.
In each mini-batch, we also select 8 persons with 4 tracklets
per-identity and 8 frames per-tracklet as in [8].

B. ABLATION STUDIES
We do ablation studies on Non-local, CBAM, COSAM and
VCANwith various reduction rate Rwhich used for reducing
input channels for saving computation resources. And we
insert them within or after layer1, layer2, layer3 and layer4
of ResNet50 which has 3, 4, 6, and 3 bottleneck blocks
respectively.

1) ANALYSIS OF CTN IN NON-LOCAL
We follow [8] to insert 2 Non-local blocks after layer2_3,
layer2_4 and 3 Non-local blocks after layer3_4, layer3_5,
layer3_6 respectively. And then, we study original Non-local
and CTN-Non-local in which 1 × 1 convolutional layers are
replaced by our CTNwith various reduction rate R. One thing
need to be noted that, there are three 1 × 1 convolutional
layers exist in original Non-local block for reducing channel
dimension of input feature maps whilst only one parameter-
free CDM (Channel Down-sample Module) is used for it in
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FIGURE 6. Diagram of Non-local and CTN-Non-local. Three 1×1 convolutional layers are used in Non-local for decreasing the channel dimension of input
feature maps, yet only one CDM (Channel Down-sample Module) is used for that in CTN-Non-local. The CUM (Channel Up-sample Module) is as the
alternative to another 1×1 convolutional layer for increasing channel dimension.

our CTN-Non-local as shown in Fig. 6 for saving computa-
tion resources.

We analyze the two additional feature maps Fadd for
PymPool with reduction rate R = 2 as shown in Fig. 2,
and global mean, min, max and variance of input feature
maps are combined for better performance. CDM-PymPool
is used to replace the very beginning 1 × 1 convolutional
layers for reducing channels and CUM-Sample is chosen
as the alternative to the ending 1 × 1 convolutional layers
for increasing channels in Non-local blocks. The results are
illustrated in Table 1 that the pair of mean and min reaches
the best result. So we choose global mean and min as the
two additional feature maps Fadd for CDM-PymPool and
CUM-PymPool in all our following experiments.

We also check if it’s necessary to insert BatchNorm layer
after CUM (Channel Up-sample Module) just like original
Non-local. The results in Table 2 show that BatchNorm
helps to improve Rank-1 accuracy by 0.15% but dropping
mAP by 0.09% slightly. We use BatchNorm after CUM
like original Non-local block in all our left experiments for
Non-local.

We study different combinations of our CDM (Channel
Down-sampleModule) and CUM (Channel Up-sampleMod-
ule) in Non-local blocks to check their performance. The
results in Fig. 7, 8 and 9 show that the original Non-local
model achieves 89.80% in Rank-1 and 81.87% in mAP

TABLE 1. Comparison of the two additional feature maps Fadd for
PymPool with reduction rate R = 2. NL: Non-local, CTN: Channel
Transformer Network, CDM: Channel Down-sample Module, CUM:
Channel Up-sample Module, DSP: CDM-SegPool, DPP: CDM-PymPool,
USA: CUM-Sample, UPP: CUM-PymPool, R1: Rank-1. Top three results are
identified in red, blue and green respectively. All following tables and
charts use the same settings.

TABLE 2. Comparison of CUM with or without BatchNorm layer.

with reduction rate R = 2 (90.0% and 82.8% in Rank-1
and mAP respectively in [8]), higher than CTN-Non-local
(CDM-PymPool + CUM-Sample) model which achieves
89.44% and 81.71% in Rank-1 and mAP respectively.
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FIGURE 7. Performance chart of Non-local and CTN-Non-local in Rank-1 with various reduction rate R. Lateral axis: reduction rate R, Vertical axis: Rank-1
in percentage.

FIGURE 8. Performance chart of Non-local and CTN-Non-local in mAP with various reduction rate R. Lateral axis: reduction rate R, Vertical axis: mAP in
percentage.

FIGURE 9. Computation complexity chart of Non-local and CTN-Non-local in parameters and FLOPS with various reduction rate R. Parameters and FLOPS
of DSP, DPP, USA and UPP are very closed respectively, so we select DPP+UPP to represent CTN, following charts also use this setting. Lateral axis:
reduction rate R, Vertical axis: parameters in M (Million) and FLOPS in G (Giga) calculated with thop.

Yet our CTN-Non-local model reduces parameters, FLOPS
(floating-point operations per second) and whole training and
evaluating time by 23.81%, 24.82% and 14.15% respectively
while sacrificing 0.36% in Rank-1 and 0.16% in mAP with
reduction rate 2.

As illustrated in Fig. 7 and 8, the performance of origi-
nal Non-local model degrades along with bigger and bigger
reduction rate R since the model’s capability decays as shown
in Fig. 9, while CTN-Non-local model keeps well or even
better accuracy with lower parameters and FLOPS. That
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FIGURE 10. Performance chart of SE-CBAM, CTN-SE-CBAM, CBAM and CTN-CBAM in Rank-1 and mAP with reduction rate R = 16. BASE: SE-CBAM or
CBAM without CTN, Vertical axis: Rank-1 and mAP in percentage.

means our CTN is valid and efficient, and it works very well
in Non-local blocks. We also find that PymPool in CDM or
CUM can help to improve the accuracy at a very slight cost
in FLOPS.

CTN doesn’t take any parameters itself, and its compu-
tation complexity is low and stable as shown in Fig. 9.
It can make Non-local parameter-free if removing the last
BatchNorm layer after CUM in CTN-Non-local block, whose
reduction rate can be adjusted dynamically according to
working condition without re-training.

2) ANALYSIS OF CTN IN CBAM
We follow [9] to treat CBAM as SE (Squeeze-and-Excitation)
module [39] named SE-CBAM which is inserted in bot-
tleneck blocks in ResNet50 [5]. And we compare it with
CTN-SE-CBAM in which our CTN is used for decreasing
and increasing channel dimension in the channel attention
module of CBAM. The reduction rate R is set to 16 as [9].
The results are shown in Fig. 10 that the performance of
CTN-SE-CBAM is slightly better than SE-CBAMwith lower
parameters and FLOPS. CTN improves Rank-1 and mAP
of SE-CBAM by 0.15% and 0.18% when choosing CDM-
PymPool and CUM-PymPool to reduce and increase channel
dimension respectively.

We also try to insert original CBAM after layer1, layer2,
layer3 and layer4 in ResNet50, not like SE-CBAM as se-
module, and compare them with reduction rate 16 in Fig.
10. We find that just insert original CBAM after four layers
of ResNet50 can improve Rank-1 and mAP by 0.20% and
0.55% than original SE-CBAM model as [9] on MARS,
and save 7.03%, 0.17% and 21.43% in parameters, FLOPS
and whole training and evaluating time respectively. Then,
we compare CBAM with CTN-CBAM in which our CTN
is used to change channel dimension in Fig. 10. The
results show that CTN-CBAM (CDM-PymPool + CUM-
Sample) can improve Rank-1 and mAP by 1.31% and 0.95%
than original CBAM while cutting down 2.9% parameters
and 0.03% FLOPS, which proves again our CTN’s better
performance.

3) ANALYSIS OF CTN IN COSAM
We follow [10] to insert COSAM after the last two layers
of ResNet50, but reduce input channel dimension depending
on the reduction rate R for unique style in our framework,
not like [10] in which channel dimension is reduced to 256
fixedly. We also study different combinations of our CDM
(Channel Down-sample Module) and CUM (Channel Up-
sample Module) in COSAM blocks with various reduction
rate R to check their performance. The results in Fig. 11,
12 and 13 show that the original COSAM model achieves
88.48% in Rank-1 and 80.36% in mAP with reduction rate
R = 2 (83.7% and 77.2% in Rank-1 and mAP respec-
tively in [10]), lower than CTN-COSAM (CDM-SegPool +
CUM-Sample) model which achieves 89.55% and 80.79% in
Rank-1 and mAP respectively. And our CTN-COSAMmodel
largely reduces parameters, FLOPS and whole training and
evaluating time by 25.35%, 8.04% and 44.86% respectively
as well as improving 1.07% in Rank-1 and 0.43% in mAP
with reduction rate R = 2. The huge reduction in train-
ing and evaluating time shows that our CTN has significant
efficiency in transforming channel dimension especially for
irregular ones (not the power of 2, as described in COSAM
part of implementation details) than 1 × 1 convolutional
layers. The results also show that original COSAM model
takes more parameters and computation resources as shown
in Fig. 13, nevertheless its performance is worse than CTN-
COSAM. COSAMmodel also degrades along with increased
reduction rate R, while CTN-COSAM keeps better accuracy
with lower parameters and FLOPS as shown in Fig. 11 and
12. It proves our CTN is valid and efficient in COSAM
blocks too.

4) ANALYSIS OF CTN IN VCAN
We improve CosegCA [11] for resolving more than two
images simultaneously to adapt it in video-based person
ReID and name it VCAN (Video Co-segment Attentive
Network). Then, we study inserting VCAN after differ-
ent layers of ResNet50 with reduction rate 2 and com-
pare them in Table 3 to check which layers are most
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FIGURE 11. Performance chart of COSAM and CTN-COSAM in Rank-1 with various reduction rate R. Lateral axis: reduction rate R, Vertical axis: Rank-1 in
percentage.

FIGURE 12. Performance chart of COSAM and CTN-COSAM in mAP with various reduction rate R. Lateral axis: reduction rate R, Vertical axis: mAP in
percentage.

FIGURE 13. Computation complexity chart of COSAM and CTN-COSAM in parameters and FLOPS with various reduction rate R. Lateral axis: reduction rate
R, Vertical axis: parameters in M (Million) and FLOPS in G (Giga) calculated with thop.

suitable for it. And we achieve significant improvement
with 90.05% in Rank-1 and 82.16% in mAP when insert-
ing VCAN after the last layer of ResNet50 with lower
parameters and FLOPS. It shows that the last layer of
ResNet50 is the best place for inserting VCAN in our

framework. And we use it in all our left experiments
for VCAN.

We also compare VCAN and CTN-VCAN in which
channel transforming is replaced by our CTN in channel-
wise attention module with various reduction rate R. The
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FIGURE 14. Performance chart of VCAN and CTN-VCAN in Rank-1. Lateral axis: reduction rate R, Vertical axis: Rank-1 in percentage.

FIGURE 15. Performance chart of VCAN and CTN-VCAN in mAP. Lateral axis: reduction rate R, Vertical axis: mAP in percentage.

TABLE 3. Ablation study of VCAN after different layers in ResNet50 with
reduction rate 2. Params: Parameters in M (Million), FLOPS: Floating-point
operations per second in G (Giga), Elapsed: Whole training and evaluating
time in hour.

results in Fig. 14, 15 and 16 show that the original VCAN
model achieves 90.05% in Rank-1 and 82.16% in mAP with
reduction rate R = 2, higher than CTN-VCAN (CDM-
PymPool + CUM-Sample) model which achieves 89.55%
and 81.75% in Rank-1 and mAP respectively. However,
our CTN-VCAN model reduces parameters and FLOPS by
15.15%, 0.10% respectively while dropping 0.50% in Rank-
1 and 0.41% in mAP with reduction rate 2. It shows that our
VCAN itself is a lightweight but efficient model with low
parameters and FLOPS. We can also find that the accuracy
of VCAN degrades gradually with progressively increased
reduction rate R just like Non-local and COSAM, whereas

CTN-VCAN keeps more stable with well or even better
performance not only in accuracy but also in parameters
and FLOPS.

5) ANALYSIS OF PYMPOOL IN CTN
Different scale of pooling operations on channel dimension
can help the model get channel-wise multi-scale information,
since semantic information implicit in channels is affected
under pooling operations. We count the comparison experi-
ments of Non-local, CBAM, COSAM, VCAN and their cor-
responding CTN embedding models respectively in Fig.17.
The average percentage of the best models that contain Pym-
Pool are 75% and 66.67% according to Rank-1 and mAP
respectively. It shows that our PymPool is generally better
than direct transformation.

C. COMPARISON WITH STATE-OF-THE-ARTS
We compare our proposed VCAN, CTN-VCAN,
CTN-Non-local, CTN-COSAM and CTN-CBAM with the
state-of-the-art approaches on MARS dataset in Table 4. Our
VCAN and CTN-VCAN achieve significant performance
with 90.05% and 89.70% in Rank-1, 82.16% and 81.63% in
mAP respectively with lower parameters and FLOPS than
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TABLE 4. Comparison with the state-of-the-art video-based person ReID methods on MARS. Elapsed: Whole training and evaluating time in hour.
Parameters and FLOPS are calculated with thop in unit M (Million) and G (Giga) respectively.

FIGURE 16. Computation complexity chart of VCAN and CTN-VCAN in parameters and FLOPS. Lateral axis: reduction rate R, Vertical axis: parameters in
M (Million) and FLOPS in G (Giga) calculated with thop.

FIGURE 17. The percentage of the best models that contain PymPool according to Rank-1 and mAP via above comparison experiments. Vertical axis: The
percentage of the best models that contain PymPool. AVG: Average percentage of Non-local, CBAM, COSAM and VCAN.

NVAN [8] without re-ranking [49]. It’s worth to notice that
NVAN leverages Non-local [7] blocks to improve recogni-

tion accuracy which costs too much computation resources,
while our VCAN and CTN-VCAN employ co-segmentation
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FIGURE 18. Visualization of person ReID on MARS dataset with VCAN, Non-local, COSAM, CBAM and their CTN embedding models. The first row is the
query sequence including 8 frames, and following rows are sorted from Rank-1 to Rank-10 (left to right) presented by 4 frames in each one for better
exhibition. The match results are indicated by green boxes and red boxes for succeed and failed matches respectively.

block based attention mechanism to get competitive results
with lower parameters and FLOPS. Parameters, FLOPS and
elapsed time of NVAN [8] are calculated in our framework
for fair comparison.

COSAM [10] also uses co-segmentation inspired attention
mechanism with a normalized cross correlation layer and a
summarization layer to improve the performance of video-
based person ReID. It achieves 88.79% and 80.80% in Rank-
1 and mAP respectively in our training, higher than published
result in [10] with 3.89% and 0.90%, and lower than our
VCAN with 1.26% and 1.36% in Rank-1 and mAP respec-
tively. And it costs 89.49% more training and evaluating
time than our VCAN. Our CTN-COSAM reaches 89.55%
in Rank-1 (higher than COSAM with 0.76%) and 80.79%
in mAP (lower than COSAM with 0.01%). The parame-
ters, FLOPS and whole training and evaluating time of our
CTN-COSAM are lower than COSAM with 14.70%, 4.35%
and 42.71% respectively. The large time reduction shows that
our CTN has excellent efficiency in transforming channel
dimension especially for irregular channel dimension (not
the power of 2) than 1 × 1 convolutional layers and fully
connected layers.

Our CTN-CBAM model also gets high performance with
89.44% and 81.19% in Rank-1 and mAP respectively.
It improves Rank-1 and mAP by 1.31% and 0.95% than orig-
inal CBAM while reducing 2.9% in parameters and 0.03% in
FLOPS.

In brief, the results show that our parameter-free Chan-
nel Transformer Network (CTN) and Video Co-segment

Attentive Network for person ReID (VCAN) achieve out-
standing performance in accuracy and computation complex-
ity on MARS dataset.

D. RESULTS VISUALIZATION
We present the match results for a probe sample with various
models from our experiments in Fig. 18. It shows that all these
models have the capability to resolve occasional occlusion
across multi-frames, and our VCAN reaches the best match
result. Our CTN embedding models have relative or even
better matching performance than original ones as well as
lower parameters and computation complexity.

V. CONCLUSION
We propose a novel parameter-free Channel Transformer
Network (CTN) to replace 1 × 1 convolutional layers or
fully connected layers for increasing and decreasing channel
dimension in a CNN attention or transform block with lower
computational complexity. We also introduce a Video Co-
segment Attentive Network (VCAN) for person ReID which
leverages co-segmentation mechanism to extract salient fea-
ture information of common pedestrian and accessories
across multiple video frames in a sequence. We then embed
CTN into Non-local, CBAM, COSAM and VCAN to replace
original 1× 1 convolutional layers or fully connected layers
in the same video-based person ReID framework. Extensive
experiments onMARS dataset show that our CTN andVCAN
achieve state-of-the-art performance in accuracy and com-
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putation complexity in video-based person ReID. Our CTN
has outstanding efficiency in transforming channel dimension
especially for irregular one (not the power of 2) than 1 × 1
convolutional layers and fully connected layers. It’s also easy
to help other blocks to be parameter-free modules which are
convenient to adjust reduction rate dynamically according to
computation resources without re-training. We will embed
our CTN in other modules and vision tasks like image classi-
fication and object detection etc. for further research in future.
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